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Chapter �

Introduction

It is often said that mathematics is the science of pattern� that its objects

are purely structural in nature and have no proper identity apart from their

structure� To the working mathematician who takes the time to re�ect on

what he is doing� this statement may seem almost self�evident� As usually

understood by philosophers� however� the so�called structuralistic conception

of mathematics is seen as more or less directly opposed to the �substantial�

ist	 approach of Cantorian Set Theory and is indeed frequently employed to

de�ate the later�s foundational claims� This version of structuralism has a

strong nominalistic� or at least anti�Platonistic �avor� it is seen as a way to

�de�ontologize	 the mathematical universe by destroying the illusion of the

objective existence of individual mathematical objects endowed with unique

features and a clear�cut identity�

While accepting the above�mentioned structuralist slogan� I have little

sympathy for the latter views� More generally� the whole de�ationary pro�

gram seems to go against deep� old and provably useful common�sense in�
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tuitions about mathematics� My mind can easily and consistently hold� at

least at an informal level �as I think most mathematicians do�� two ideas

which the structuralists tend to regard as incompatible�

��� The objects of mathematics are simply all the possible structures

�regardless of whether or not they are actually realized as completed� realistic

objects� and there is nothing to them but their structure� their identity is

given by the structure only�

��� Nevertheless� the act of unifying such a pure structure into a com�

pleted whole �as Cantor has done�� taking it as an actual� well�de�ned indi�

vidual object� to which other structures could be applied� is a fully legitimate

mental act� without which mathematics would be impossible� For� to quote

Jon Barwise� the slogan mentioned in the above paragraph has to be cor�

rected� all science is the study of patterns� mathematics is the science of

patterns of patterns�

In this paper� I will not try to argue directly for the truth or the compat�

ibility of these two ideas� I shall rather take them for granted� and moreover

take them at face value� in order to articulate a new� coherent� more liberal

conception of what �sets	 are� I call this the structural�analytical concept of

set� Building on the intuitions and the work of Abramski� Aczel� Barwise�

Bo�a� Devlin� Forti� Honsell� Malitz� Moss� Weydert and others� my analyti�

cal theory of sets is based on a view of the mathematical activity as a process

of gradual� open�ended �trans�nite� unfolding of all possible structures� This

is opposed to the classical� �synthetical	 and cumulative �or iterative� con�






ception of set� in which the idealized mathematician is gradually building

the universe himself� in an open�ended process of set�formation� The classi�

cal quasi�constructivist approach is replaced by a dual� �de�constructivist	

one� based on the intuition that we are not the creators of the mathematical

universe� only its explorers� sets are not all built up in trans�nitely many

stages �although some of them are�� but their structure is unfolded� analyzed�

distinguished in successive stages�

To obtain a coherent and de�nite picture based on the above�mentioned

two ideas� some more ingredients must be added�

��� The traditional distinction between sets and classes has to be prop�

erly understood as a subtle distinction between two aspects of structures�

namely the actual and the potential structures� These correspond to two

ways of presenting a structure� as an object or as a mere relation between

objects� This dichotomy has been traditionally confused with many others�

�nite versus in�nite� small versus large etc� We need to carefully distinguish

these various meanings of the set�class distinction�

��� The necessity of giving an identity criterion for sets leads� in the

structural conception� to the notion of observational equivalence between

structures� Sets having indistinguishable structures must be identical� This

is the basis of axioms like the classical Extensionality� Aczel�s Strong Exten�

sionality and my axiom of Super�Strong Extensionality� As explained below

in section �� I de�ne observational equivalence between two processes of un�

folding as their capacity to simulate each other up to any �ordinal� degree
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of accuracy� This is a generalization of the standard notion of bisimulation�

there are several equivalent ways to do this� and the one I shall use in this

paper employs partial structural descriptions� which can be seen as in�nitary

modal sentences�

��� The above�mentioned structural understanding of the set�class dis�

tinction removes the traditional limitations imposed on the concept of set�

making possible a truly maximal conception of the set�theoretical universe�

The latter will be based on a literal reading of the expression �all possible

structures	� this unrestricted interpretation of the structural metaphor is

the source of my Super�Antifoundation Axiom �SAFA�� a strengthening of

Peter Aczel�s Antifoundation Axiom �AFA�� My axiom says basically that

every trans�nite pattern of structural unfolding can be seen as the unfolding

of a set� As a consequence� every de�nable structure� regardless of size� is in

some sense realizable as a set� This is a totally �naive	� unrestricted view of

sets�as�structures� The only restriction comes from the above�mentioned un�

derstanding of set identity� which forces us to identify sets corresponding to

observationally equivalent structures� This gives the following precise mean�

ing to the above claim� every de�nable binary structure is observationally

equivalent� but not necessarily isomorphic� to the ��structure of some set�

I will show that the analytical conception is more comprehensive than

the iterative one� it proves the existence of non�wellfounded sets like Aczel�s

� � f�g� of �over�comprehensive	 sets like the universal set �of all sets�

U or like the �largest ordinal	 On �which is just the set of all ordinals�
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including itself�� of �xed points for all monotonic operators� of very large

cardinals etc� The resulting universe has interesting closure and �xed�point

properties� it also satis�es very strong comprehension principles� namely the

so�called Generalized Positive Comprehension Principle� proposed by Malitz�

Weydert and Forti�

One can show that� unlike the classical naive theory of sets�as�collections�

this �naive	 concept of sets�as�structures is provably consistent� if we assume

some mild large cardinal hypothesis� My model for this theory is just an

in�nitary generalization of the classical �canonical model	 construction� used

for proving completeness for modal logic� Under certain assumptions� the

model is isomorphic to Forti�s topological �hyperuniverse	�
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Chapter �

Historical Discussion

��� Sets and Classes

The Aristotelian distinction between actual and potential existence was re�

covered by modern mathematical thinking in the guise of the set�class dis�

tinction �Cantor�s consistent�inconsistent multiplicities�� I regard this as a

distinction concerning structures� namely between two di�erent aspects of

a structure� the purely relational �or logical� notion of structure and the

substantial �or mathematical� understanding of structure� The �rst takes

structures as mere relations linking objects� or as predicates� ways of talking

about objects� the second deals with structures as objects�in�themselves� We

can only de�ne and explain relations and classes� but we can actually observe

and explore objects and sets�

The structuralists seem to assume the �rst notion as the fundamental one

and consider the second notion to be simply inconsistent� On the contrary� I

think both aspects are essential to our understanding of structures� The very

same structure exists potentially in its objects� as a relation� and can also
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be considered as an actual existence in its own respect� These two sides of

a structure might not match each other perfectly� maybe an actual object is

�richer	 than its potential counterpart� But� following Cantor �or at least my

interpretation of his views�� I believe that these two aspects are inseparable�

the potential presupposes the possibility of the actual� This means that� in

some sense� every possible structure can be �actualized	� In set�theoretical

terms� every class can somehow be realized as a set�

The central subject of this paper is to give a precise mathematical mean�

ing to this notion of realization of a structure� how can we consistently

understand the relation between a potential structure and its actualization�

But �rst� the distinction between sets and classes needs to be freed from

its ties to other pairs of opposite concepts� which are traditionally associated

with it� �nite�in�nite� small�large� predicative�impredicative� circular�non�

circular� well�founded�non�wellfounded� These latter distinctions are usu�

ally based either on non�structural features �e�g� size� or on some quasi�

constructivist restrictions on the kind of structures that are permissible in

set theory �e�g� predicativity or well�foundedness��

In this section and the next one� I consider some of the traditional con�

ceptions about in�nite totalities� the Aristotelian�medieval view of in�nite�

as�incompletable� the Cantor�Fraenkel�von Neumann doctrine of limitation

of size and Zermelo�s iterative conception� I argue that each of these doc�

trines is based on the confusion between the set�class distinction and one�

�



or some� of the above�mentioned pairs of opposing notions� Nevertheless�

these conceptions are useful as ways of isolating certain important kinds of

well�behaved sets�

��� Actual versus Potential

The opposition between the potential and the actual played a key role in

Aristotelian and medieval thought� Someone may be actually a child� but

potentially a full�grown man� something may be a piece of stone� but poten�

tially a sculpture� Aristotle explained movement� time and becoming as the

actualization of potentialities� To solve Zeno�s paradoxes� he also applied this

distinction� and the associated temporal metaphor� to the concept of in�nity�

He distinguished between the potential in�nite and the actual in�nite� and he

observed that the natural numbers are potentially in�nite� but not actually

so� From this� he arrived at the conclusion that there is in general no actu�

ally in�nite object� and moreover that such an object cannot be conceived�

Hence� in the case of in�nity� he made an exception to the general rule that�

if something is potentially thus and so� then it may become actually thus and

so� or at least it might be imagined to be� the stone may become a sculpture�

and this is what makes it potentially so� while it is utterly impossible for

anything� including the potentially in�nite� to be actually in�nite�

To show this� he rede�ned the metaphysical concept of in�nite� The

Greek expression �to apeiron� meant literally �the unlimited� the unbounded	�

and for Anaximander it also meant perfect� whole� unconditioned� imper�
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ishable� inexhaustible� uncountable� This meaning was recovered later by

Plotinus and the medieval thinking� and associated with transcendence� ab�

solute� plenitude and divinity� But for Aristotle� in�nite meant something

completely di�erent� almost the opposite of all the above� he says that �the

in�nite turns out to be the contrary of what it is said to be� It is not what has

no part outside it that is in�nite� but what always has some part outside it�

�Aristotle ����� Physics� III� ��� The in�nite is the un�nished� the inde�nite�

the unrealizable� that which cannot be completed� it cannot be actualized� It

is just an eternally unful�lled� unending succession which never reaches its

limits� The in�nite is never given all at once� but only over time� Observe

the temporal metaphor�

�In general� the in�nite exists through one thing being taken after

another� what is taken being always �nite� but ever other and

other� �Aristotle ����� Physics� III� ���

For Aristotle� then� actual implies �nite� and in�nity is simply synony�

mous with �pure potentiality� which can never be actualized	� In this way�

actual in�nity becomes a logical contradiction� The only way I can under�

stand this concept of in�nite is to give it a topological �avor� it seems to

point to processes or totalities which are not closed in the modern topologi�

cal sense �i�e� they do not contain their �limits� or accumulation points�� for

how else can we make sense of the above�mentioned de�nition of the in�nite

as �that which has some part outside it�� Compare with the following quote�

�Something is in�nite if� taking it quantity by quantity� we can
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always take something outside� �Aristotle ����� Physics� III� ���

It is implicitly understood that we can take something outside which still

belongs to it� and should actually be inside�but it�s not�� I shall return to

this topological reading later�

Recall that Aristotle was applying his analysis of the concept of in�nity

to the mathematical notion of in�nity� that which is a possible answer to

the question �How many�	 �as in �how many prime numbers exist�	�� But

the mathematical in�nite is not obviously identical to the incompletable� As

observed by Cantor� this mathematical notion refers to the size of �in�nitely

big	 collections� such as the natural numbers� and only asserts their incom�

pletability through certain means� namely through counting� We are the

ones who cannot actualize or realize the completed totality of all natural

numbers� in the restricted sense that we cannot count them� Hence they are

surely �incompletable	 �or �in�nite	 in Aristotle�s sense�� but only from a

limited point of view� from the perspective of our counting abilities� There

is no a priori reason for which we �or God� for that matter� would not be

able to complete them through some other means� or simply grasp them as

object�like� actual� undivided wholes� But this is precisely what was assumed

to be impossible by the Aristotelian analysis�

��� The Actual In�nite

In e�ect� what Aristotle did was to ��� disregard the ancient notion of

in�nity�as�whole� and ��� identify his concept of in�nite�as�pure�potentiality
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with the mathematical notion of in�nite�in�size� The Neo�Platonic and me�

dieval Christian thinkers have basically continued to accept ���� while reeval�

uating ���� the actual in�nity� in the form of in�nite�as�unconditioned�whole�

was established as the central object of religion� theology and philosophy� but

was kept out of mathematical science� being regarded as incomprehensible

by reason�

The work of Bolzano and Cantor broke with this tradition� The Cantorian

concept of set is that of a de�nite� object�like� actual� completed totality� He

speaks of a set as �a many which can be thought as a one	 �Cantor ������

�that is� every totality of de�nite elements which can be united to a whole

through a law	� In a ���� letter� he says�

�When ��� the totality of elements of a multiplicity can be thought without

contradiction as �being together	� so that their collection into �one thing	 is

possible� I call it a consistent multiplicity or a set��

�As an example� I give the collection� the totality of all �nite positive�

whole numbers� This set is a thing for itself and forms� quite apart from the

natural order of the numbers belonging to it� a de�nite quantum �xed in all

parts��� ��Cantor �����������

There are two distinct notions here� the concept of a general �multi�

plicity	 � collection or totality� possibly �inconsistent�� and the concept of

a �consistent multiplicity	� a �de�nite totality	� a collection which can be

thought as �one thing	� i�e� a set� This is Cantor�s version of Aristotle�s dis�

tinction between actual and potential� In the rest of this paper� following the

��



modern� post�von Neumann usage� I shall use the terms class� collection and

family to denote the �rst concept� while reserving the term set for the second

concept� I shall regard classes as having only a potential� or second�order�

existence� as being about the mathematical domain� but not necessarily being

in it� as de�nite� completed members� On the contrary� sets are to be seen as

actual� complete and de�nite objects� ��rst�class citizens	 of the mathemat�

ical realm� Classes are more process�like �as in the process of successively

generating all the natural numbers or all the ordinals�� while sets are more

object�like� Nevertheless� sets can be seen as coming from classes� as the

actualization of some process of generating all their members� Sets can be

thus understood as the �uni�ed	� completed version of their corresponding

classes �as in �a collection which can be thought as one thing��� The so�called

proper classes are Cantor�s inconsistent multiplicities� the classes which are

not sets� i�e� which cannot be considered as being already complete� actual

objects� Whether or not they can be somehow completed and actualized is

a di�erent question�

Some people would reject the above distinction� because they consider

that referring to these purely potential classes as if they were objects is both

inelegant and philosophically suspect� They insist that class�talk should be

avoided and that it should be used only as a manner of speaking� as in

Zermelo�Fraenkel�s system ZFC� I actually agree with them� I think that

talking about classes is useful and makes good sense� but that� as long as they

are just classes� they should be used only as predicates� and not referred to
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as subjects of predication �except maybe as an eliminable way of speaking��

After all� they are supposed to have only a potential existence� Their actual

counterparts �if any� are the sets� so the only proper way to talk about a

class as an object is to talk about its corresponding set� So I prefer to simply

have sets as the only objects� and to refer to classes only indirectly� through

their corresponding predicates ��unary formulas�� as in ZFC� I think this

re�ects nicely their evanescent and process�like nature� how else to give a

process but through its de�ning law or rule�of� formation �predicate��

The Comprehension Problem� which can be seen as originating in Can�

tor�s rejection of Aristotle�s identi�cation between the in�nite�in�size and the

un�actualizable� goes the other way around� It asks whether every class can

be actualized into a set� If not� then what is the criterion for sethood� and

how can it be justi�ed� If yes� then in what sense is the resulting object �set�

identical with the underlying process �class�� As we shall see� the structural�

analytical conception of sets answers paradoxically yes and no� And the

answer is perfectly consistent�

Against Aristotle� Cantor freed the potential�actual distinction from its

ties to the size�originated pair �nite�in�nite� He claims that there are in�nite�

in�size collections such as the natural numbers� which can be consistently

conceived as multiplicities uni�ed into a whole� But how can he claim some�

thing like that� How can we� as �nite beings� make an in�nite sequence into

an actual and complete object�

Cantor answers by appealing to God�s in�nite power� Who cares if we
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can conceive a collection as �one�� as long as God can do it� And God can

surely do it� as Cantor rejoices�

�They �the natural numbers form in their totality a manifold� uni�ed

thing in itself� delimited from the remaining content of God�s intellect� and

this thing is itself again an object of God�s knowledge ��

He quotes St� Augustin� �every in�nite is� in a way we cannot express�

made �nite to God �� This is what M� Hallett calls �Cantor�s �nitism	 �Hallet

������ In Weyl�s words ����for set theory� there is no di�erence in principle

between the �nite and the in�nite	� The size�distinction does not matter

anymore� from the moment Cantor decided to see the world �through God�s

eyes 	� In other words� mathematics should not depend on trivial human

limitations� such as �nitude�

There is a catch though� the same argument can be used to show that the

collection of all sets is a set� or more generally that every collection should

be somehow actualizable� Surely God can conceive the totality of all sets

as a uni�ed thing� After all� �every in�nite is made �nite to God�� Does

this mean that there is no real distinction between potential and actual after

all� at least from God�s point of view� This is exactly how �the renowned

atheist� Bertrand Russell understood Cantor�s theory �before the Paradox��

as asserting the so�called Naive Comprehension Principle� every class is a

set� The consequences are known� the set�theoretical paradoxes� and the

subsequent restrictions on the notion of set imposed by Russell� Zermelo and

others�
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As pointed by many� there are no Cantorian texts to back up this naive

set theory� By stressing the unity �or �wholeness	� or �thingness	� that

collections should posses in order to be sets� Cantor implicitly denies that all

classes are sets� But he does assert something very close to this� Namely� he

says that �each potential in�nite� if it is rigorously applied mathematically�

presupposes an actual in�nite� �Cantor ������ Or again�

The potential in�nite is only an auxiliary or relative concept� and

always indicates an underlying trans�nite without which it can

neither be nor be thought �Cantor ������

Cantor stresses in particular that the domains in which mathematical

variables �in a particular theory� take values have to be sets� �in order for

there to be a variable quantity in some mathematical study� the domain of

variability must be ����� a de�nite� actually in�nite set �� Apply this to set

theory itself and you will obtain the set of all sets�

One wonders how to consistently understand the two apparently contra�

dictory claims� only the �completed� de�nite� uni�ed� whole	 collections are

�actual objects	� sets� but every potential �in�nite� collection �presupposes	�

�indicates an underlying	 actually in�nite set� It seems to be only one so�

lution� the presupposed� underlying actual set is not always identical to the

given potential collection� but can nevertheless be regarded as its actualiza�

tion� To actualize something you might have to change it� But in such a

way that you do not lose anything� otherwise there is no sense to say you

actualized it�
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��� Boxes inside Boxes

The two main readings of the Cantorian de�nition of �sets	� that are com�

monly used to justify the most widely accepted set�theoretical system �ZFC��

are the limitation�of�size conception and the iterative �or cumulative� con�

ception� Both are based on what has been called �Barwise and Moss ���� 

the box metaphor � �A set is like a box� and forming a set is like putting

things in a box	� This is a particular intuition about sets� which could be

called the �bottom�up	 view of sets� one collects things to put in the box�

����� The Zermelo�Fraenkel Axioms

As mentioned above� the almost universally accepted axiomatic system for

set theory is the Zermelo�Fraenkel system ZFC� This is the system proposed

by Zermelo and strengthened by Fraenkel and von Neumann �who have added

the Replacement Axiom�� All classical mathematical theories and concepts

can be de�ned and developed inside ZFC� This system has become the

standard foundation for all mathematical studies� It is our opinion that any

reasonable alternative set theory should preserve all the advantages of ZFC�

by proving the existence of a transitive class V such that �V��� is a model of

ZFC� Moreover� it is highly desirable that the this model is standard� i�e� is

closed under set�formation�

We present here the Zermelo�Fraenkel axioms� The language of ZFC

is the �rst�order language with two binary relations� membership � and

equality �� We use small letters a� b� x� y� � � � for sets� We use capital letters
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A�B�X� Y� � � � to denote classes� i�e� arbitrary formulas having a designated

free variable x� We use class�relations R�Q� � � � to denote arbitrary binary

formulas� having two designated variables x� y etc� We use class�functions

�or operators	 F�G� � � � to denote class�relations which are functional� i�e�

for which we assume that for every set x there is a unique set y such that

F �x� y�� For convenience� we extend the membership and equality notations

to classes� we write x � X for X�x�� �x� y� � R for R�x� y�� X � Y for

�x�x � X � x � Y �� and F �x� � y for F �x� y��

We also introduce a standard set�theoretical notation for classes� we use

fx � x � Xg to denote the class X� In ZFC� we say that the class fx � x � Xg

is a set if we can prove that

�y�x�x � y � x � X��

In this case� the set y with this property is unique� by the axiom of Exten�

sionality �see below�� We shall informally identify the set y with the class

X in this case� and use the notations X� fx � x � Xg for both� In this

way� it is clear that every set y can be identi�ed with some class� namely

with fx � x � yg� �In general� the de�ning class is not unique�� We de�ne

inclusion for both sets and classes by�

X � Y �� �z�z � X � z � Y �

�the de�nition for sets is similar and can be considered a particular case of

the one for classes� via the above identi�cation of sets with special classes��

We also introduce the following standard
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Notations


	 �� fx � x 
� xg

V �� fx � x � xg

fa� bg �� fx � x � a or x � bg

fag �� fa� ag

�a� b� �� ffag� fa� bgg

A � B �� fx � x � A and x � Bg

A � B �� fx � x � A or x � Bg

�
A �� fx � �y�y � A and x � y�g

PA �� fx � x � Ag

F �A �� fy � �x � A s�t� y � F �x�g

We assume all the axioms of �rst�order logic with equality� In addition�

we postulate the following�

Extensionality� If x and y have the same elements then x � y�

�z�z � x � z � y� � x � y�

Pairing� If x� y are sets then fx� yg is a set�

Separation� If x is a set and X is a class then x�X is a set� Equivalently�

if x is a set and X is a class such that X � x then X is a set�

Union� If x is a set then
S
x is a set�
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Power Set� If x is a set then Px is a set�

In�nity� There exists an in�nite set� More concretely� there exists some

set y such that

	 � y and �x�x � y � x � fxg � y��

The least such set will be denoted by � �the set of all natural numbers��

Replacement� If x is a set and F is a class�function then the image F �x 

is a set�

Foundation� Every set is well�founded� i�e� V is the least class closed

under set�formation� if X is a class such that P � X then X � V � In

other words� for every class X we have�

�x�x � X � x � X� 
� �x�x � X��

Choice� Every set a of non�empty sets has a choice�function� if �x � a�x 
�

	� then there exists some set f � such that �x � a��y�x� y� � f and

�x� y��x� y� � f � y � x��

Note that the axiom of Separation is super�uous� since it is implied by

the axiom of Replacement� We keep it only for historical reasons� Also�

observe that Separation� Replacement and Foundation are actually axiom�

schemes� they involve a universal quanti�er on classes� which means that for

each formula �class� X �or F � we have a corresponding instance of each of

these axioms� It is well�known though that Foundation can be restated as a

single axiom�
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The system ZFC� can be obtained by eliminating the axiom of Foun�

dation from ZFC� As it has been observed by many authors� Foundation

is an arti�cial restriction on the set structures� whose primary justi�cation

is purely technical� it makes more de�nite our concept of set� allowing us

to prove things by induction along the membership relation ���induction��

But Foundation is not really necessary for developing any particular branch

of mathematics inside set theory� One can simply work in ZFC�� de�ne

the class WF of all well�founded sets �e�g� as the least class closed under

set�formation� and prove that this class is a transitive standard model for

ZFC �including Foundation��

Note also that all the axioms of ZFC�� except for Extensionality and

Choice� are particular cases of the general Naive Comprehension Principle

�stating that every de�nable class is a set�� Indeed� these axioms were ob�

tained by Zermelo by weakening Naive Comprehension� in such a way that no

paradoxes arise� but classical mathematics and Cantor�s theory of trans�nite

cardinals can be still developed and Cantor�s Well�Ordering Principle can be

proved as a theorem�

But� apart from their usefulness� what is the justi�cation for keeping pre�

cisely these instances of the Naive Comprehension Principle� and not others�

It is natural to look for an intuitive concept of set� more restricted than the

�naive	 one� but for which the Comprehension�like axioms of ZFC would

still be obviously true�
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����� Limitation of Size

The limitation�of�size conception �Fraenkel� Bernays� von Neumann� Levy�

understands the �unity	 or the �thingness	 of a collection as related to its

size� a class is to be regarded as an object if it is not too big� Observe the

underlying spatial metaphor� which puts a cardinality restriction on the box

metaphor� �one cannot put too many things in the same box	� Fraenkel uses

the physical� spatial metaphor of a encompassing wall �

�Sets have around them a closed wall which separates them from the

outside world�� while to form proper classes� �elements have to be taken from

outside every wall� no matter how inclusive��Fraenkel�

He also says proper classes are �contradictory because of their limitless

extent	� In a way� this is a rehabilitation of the pre�Cantorian conception

that the �actuality	 of a collection has something to do with its size� for

Aristotle and the medievals� all in�nite classes are �proper classes	� since

only the �nite collections are actual� while all those with size bigger than

every natural number have only a potential existence� Now� this �barrier	 is

just lifted� so that all classes which are smaller than some big ones �such as

the universe U� are considered �sets	� all the others �the �proper classes	�

having just a potential reality�

This identi�cation of the distinction set�class with the small�large distinc�

tion is so pervasive today� that I must stress again� for the sake of clarity� that

I do not adhere to it� for me� classes are just the loose�potential�collections

which do not necessarily form a unity� whereas sets are uni�ed�actual�classes�
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While accepting that small collections are sets� I agree with Hallett and

others that there are no good reasons to think that all sets are small �in any

sense of the notion of small�� such an assumption seems like an ad hoc solution

to Russell�s and Burali�Forti�s paradoxes� solution obtained by throwing out

each and every perfectly benign large class� just for the sake of getting rid

of the inconsistent Russell class R � fx � x 
� xg or the inconsistent class

On of all the ordinals� After all� one can easily turn against it Cantor�s own

arguments� aimed at the Aristotelian sized�based identi�cation of the in�nite

with the pure potentiality� Maybe not the excessive size of R and On is the

reason for their �incompleteness	� but their sheer �un�nished	 character�

Moreover� the limitation�of�size conception does not ful�ll its promise� it

cannot explain all the axioms of ZFC� and its spirit is actually in contradic�

tion with some of them� It can easily justify axioms such as the existence of

the Empty�Set� Pairing� Replacement �and Separation�� for Replacement it

is indeed the only explanation available at this moment� recall that Replace�

ment simply asserts that any collection which is not bigger than a given set

is also a set� The conception can be ad�hoc adapted to accommodate In�

�nity �by somehow understanding �smallness	 in a sense that doesn�t imply

�nitness� and Union �by replacing the smallness by �hereditarily smallness	�

sets are hereditarily small classes� i�e� small collections made out of small

collections etc��� But it o�ers no justi�cation for either the Foundation Ax�

iom or the Power�Set Axiom� Why should the power of a small set be itself







small� Even if this is true� it is not at all obvious� On the contrary� Cohen�s

and Easton�s results imply that there is no provable �non�trivial� connection

between the size of an in�nite set a and the size of its power�set Pa� the

power�set of an in�nite set �evades all our attempts to characterize it by

size	 �Cohen�� moreover� because of its non�absoluteness� it is closely related

to the size of the whole universe� So� on this conception� the power�set ax�

iom is at least counter�intuitive� One might still be compelled to accept it

on the basis of some proof� but not as an axiom� In M� Hallet�s words� �the

power�set axiom just is a mystery 	 �Hallett ������

In conclusion� I have to stress that the limitation�of�size conception does

separate out an important collection of sets� the small ones� Size distinctions

are central in set theory� and small sets behave di�erently from the large ones�

In a framework such as the one adopted here� allowing the existence of large

sets� the small ones can be neatly characterized as the ones which satisfy the

Replacement axiom� The hereditarily small sets will play an important role

in the axiomatization of our framework�

����� The Iterative Conception

The iterative conception of set �Zermelo� Schoen�eld� Scott� Wang� G!odel� is

based on a temporal understanding of the box metaphor� boxes are formed in

stages and put inside the new boxes� There is a temporal restriction on the

set�formation� you cannot put into a box objects which are not yet created�

So the �thingness	 of a collection is again understood in terms of the actual

versus potential distinction� at each moment� only the sets that have already


�



been created are actually existing� and so are available as building blocks for

the new sets� The �yet uncreated	 sets exist only potentially� Totalities like

the set of all sets cannot be formed at any stage� since this would entail an

instant actualization of all the sets that might be formed in the future� They

contain as members sets that occur at arbitrarily late stages� so that their

collection can never be formed� Such totalities cannot be completed and so

are condemned to remain in a potential state forever�

More precisely� it is assumed we have a logical sense of Time� consisting of

stages with a relation of precedence between them� These stages are identi�ed

with the ordinals� which means the �logical	 time is trans�nite and well�

ordered� The idealized mathematician is building the universe of sets in

time� At each stage he forms all the collections consisting of sets formed at

earlier stages� He adds these collections to his stock of available sets and

then goes to the next stage� The process has a memory � it cumulates all

the sets that have been formed� Notice the quasi�constructivist �avor of this

conception�

The iterative picture is very powerful and intuitive� and has become the

dominant conception in modern set theory� It easily justi�es the axioms

of Pairing� Union� In�nity and Foundation� It can be argued that it also

justi�es Separation and Power Set� But it clearly fails to o�er an explanation

for Replacement� there is no apparent reason for which the members of a

functional image of a previously formed set might not occur at arbitrarily

late stages�
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The standard answer is that� once we have a function F � we can imagine

a new stage beyond any of the old ones and form the range of the function at

this new stage� There are many reasons to consider this response as �awed�

A de�nable function is just a formula and each addition of a new stage� each

extension of the universe� might change the meaning of the formula� After

adding a new stage� we can indeed form the set that corresponds to the old

range of F � but this will not be the range of F in the new universe�

Sometimes the answer takes again the form of a size metaphor� one as�

sumes that the collection of stages �the logical �Time	� is large� compared

to each of the sets formed in the process� There are more stages than there

are elements in any set� In other words� each of the sets created at any

stage is smaller than the collection of all stages� This seems a plausible as�

sumption� and this combination of the temporal iterative metaphor with the

spatial metaphor of size can indeed justify Replacement� But how can we

consistently understand this mixture of metaphors� How can we ensure� in

advance� that the length of available Time will be longer than the enumera�

tion of any of the sets that will be formed during this Time�

Some authors understand this in terms of an �open�ended	 concept of

time� they think of the temporal stages as being themselves build up �in

time	� together with the sets� After we have created a set a at some stage

�� we don�t just add a �next	 stage� but we possibly have to add many

more stages� enough many to enumerate the sets created at stage �� If

this picture would be consistent� it would indeed justify Replacement� But

unfortunately� this view seems to me to be obviously inconsistent� despite
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its apparent intuitive character� what is the meaning of building Time �in

time	� Even worse� observe that in this view� we do not just create one

�stage	 at a time� by building all the sets associated with it� but we can

somehow get �ahead of time	 to create in�nitely many future stages� before

actually building the sets associated to them� Such an assumption seems to

render meaningless the basic iterative concept of �building sets in successive

stages� one after another� in a quasi�constructive manner	�

Despite all the talk about open�endedness of time� it seems to me that a

reasonable and consistent understanding of the iterative picture would have

to take the collection of available temporal stages as given� We create sets

in time� and some of these sets may re�ect the structure of the temporal

stages� up to isomorphism� but we cannot jump out of the logical time to

create some more time� Any justi�cation of Replacement that assumes such

an ad�hoc� magical power of �creation before creation	� is logically �awed�

and defeats the very purpose the iterative picture is supposed to serve�

But if we think of the collection On of stages as given� then how can we

ensure that the sets which will be successively created will be smaller than

On itself� The most natural way to do it would be to impose a limitation�

of�size condition on the iterative construction� at each stage we only form

the small collections of previously formed sets� where �small	 is understood

as �being smaller than the collection On of all stages	� In this way� we only

form sets which can� in principle� be enumerated at some future stage� This

view can successfully explain Replacement� But it unfortunately fails now to

justify Power Set� for the same reasons the pure limitation�of�size conception
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failed to do so� there is no warranty that the powerset of a small set will be

itself small�

There are problems with the Power Set anyway� in its full� impredicative

acception� this axiom goes against the quasi�constructive character of the

iterative conception� The fact that we can eventually build all the subsets of

a set does not obviously imply the possibility of having them all collected into

a whole� A more realistic understanding of the iterative picture would insist

that at each stage we form all the sets �i�e� all the collections that we can

actually form as uni�ed things� consisting of previously formed objects� But

whether or not this justi�es Power�Set is debatable� there are good arguments

�connected to Cohen�s work on forcing� to think that we can never complete

the full power set of an in�nite set� as the universe extends� the power�set

grows too �non�absoluteness��
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Chapter �

The Structural Conception of

Set

The �structure� forgetting metaphor	 was proposed by J� Barwise and L�Moss

in �Bar ���� � as a motivating intuition for Aczel�s Antifoundation Axiom

�AFA� and as an alternative to the usual �box� metaphor� The idea is that

sets are what is left when we take an aggregate �a complex object� and we

abstract everything but its structure�

By forgetting the nature of the components� the only thing that remains

is the aggregation�disaggregation relation between the whole and the com�

ponents� i�e� the membership structure� This structure is pointed� in that it

has a root� the underlying process of unfolding the structure� by successive

decompositions� has a starting point� namely the very object under consid�

eration� So we look at sets as pointed binary structures�

One can think of this conception as turning the iterative picture on its

head� instead of starting at the bottom and building sets in stages� as collec�

tions of previously given objects� we are now presented� from the start� with
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a uni�ed totality �an �object	�� which we analyze into its constituents� which

in their turn are to be analyzed���and so on� This is a �top�down	 approach

to the concept of set� In terms of the box metaphor� we do not put things

in boxes� they come in boxes� Moschovakis �in �Moschovakis ���� � uses a

�gift	 metaphor to introduce Aczel�s hypersets� we receive each box as a gift

from the universe� we just have to �unwrap	 the box to see what is inside

and to continue doing this for each new box encountered in the process� By

forgetting everything but this �pattern of unfolding	 we obtain a set�

Observe that under this conception there is no reason to limit the possi�

ble structures to wellfounded ones� A �possible world	 containing in�nitely

divisible objects �i�e� not ultimately reducible to unstructured� atomic com�

ponents� is surely conceivable � and this is enough for mathematics� regardless

of whether the real world is �atomic	 or not�

So the Foundation axiom has to go� But this immediately poses the

question of determining the identity of sets� what is the essential feature

of a set� As many people have pointed out �cf� Forster in �Forster ���� ��

maybe the most fundamental and least controversial principle about sets is

the view that all there is to know about a set is its members
 In the context

of Foundation� this principle can be reduced to the Axiom of Extensionality�

sets having the same members are identical� Foundation allows us to use

this principle to de�ne the relation of identity on sets by ��recursion� In

the absence of Foundation� we need some stronger notion to determine the

identity of sets�

In the context of the structural conception� there is a natural general�
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ization of Extensionality� that comes from the very principle of abstraction

we assumed� a set is nothing but a pattern of unfolding of a possible struc�

ture� so the identity of sets should be given by the identity of their analytical

patterns�

We obtain a notion of structural equivalence� based on the identity of an�

alytical behavior� two structures are equivalent if their patterns of unfolding

are the same� I will refer to this relation as observational equivalence� since I

think of the above analysis as a series of observations performed on the object

in question� As we shall see� there are various ways to rigorously de�ne this

notion� All these de�nitions are equivalent for small structures� All of them

have the following property� which is obvious in the above informal descrip�

tion of an analytical pattern� an unfolding of a set is given by unfoldings

of its elements� in purely structural terms� an unfolding of a pointed struc�

ture having some root g is given by unfoldings of pointed structures having

�immediate� successors of g as their roots�

So we can state the above criterion for set identity as� sets having ob�

servationally equivalent structures are identical� Depending on the notion

of observational equivalence that is used� we shall call this principle Strong

Extensionality or Super�Strong Extensionality� In its super�strong formula�

tion� this principle can be seen to capture the full structural content of the

above�mentioned slogan about sets as being determined only by their mem�

bers� this is because� as the above discussion shows� the unfolding pattern of

a set is uniquely determined by the unfolding patterns of its members�

Observe that this does not reduce set�identity to simple structural isomor�

��



phism� because of the untyped character of the set concept� the components

are themselves regarded as being sets� In other words� sets are structures

composed of sets�

For example� take an object� which happens to be a nonempty aggregate

of components� each of which is itself a nonempty aggregate� and so on����

Clearly� all the components have the same analytical behavior �pattern of

decomposition� as the initial object� if we forget everything but this pattern�

then all the components will be identi�ed with the initial object� The re�

sulting set has only one member� namely itself� this is Aczel�s � � f�g� the

ultimately frustrating gift �as Moschovakis called it�� a box having inside a

box having inside a box���all the way down�

Now we can state the main principles of the structural conception�

Maximality�orStructural Completeness�� every possible pat�

tern of structural unfolding is the pattern of unfolding of some set


Uniqueness �or �Super�strong Extensionality�� two sets that

are observationally equivalent �i
e
 have the same patterns of un�

folding	 are identical


Depending on the precise de�nition of observational equivalence� these

principles will be embodied by Aczel�s axiom of Antifoundation �AFA� or

by our axiom of Super�Antifoundation �SAFA�� The second of these prin�

ciples �the uniqueness side� is simply the above�mentioned Principle of �Su�

per�Strong Extensionality� The �rst principle �maximality� will be referred
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to as the existential side of these axioms� It is a maximality postulate� stating

that every possible structural pattern is realized� Depending on the under�

standing of what a �possible pattern	 is� we can obtain �the existential sides

of� Aczel�s axiom AFA� our axiom SAFA or a weaker version� called Weak

SAFA�

In any of the formulations� the conjunction of the above two principles is

easily seen to imply the following claim

Every �pointed binary� structure is observationally equivalent to

a unique set�

This con�rms that the underlying conception of set is indeed purely struc�

tural � there are no restrictions to be imposed to our �pointed binary� struc�

tures in order to represent them as set structures� as long as we are satis�ed

with having a representation only up to observational equivalence� Moreover�

there are good reasons to be satis�ed with such a representation� �by unique�

ness or super�strong extensionality� we cannot hope in general for a better

representation� since observationally equivalent sets have to be identical�

Of course� for particular structures� we can have perfect set representa�

tions� they may be isomorphic to the structure of a set� But if we are looking

for representation up to isomorphism� we can see that the Principle of �Su�

per�Strong Extensionality �in any of its formulations� will still impose some

limitations on the kind of binary structures that we can get� Namely� these

structures will have to be �super�	strongly extensional� i�e� the relativization

of �Super�Strong Extensionality to these structures has to hold�
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The above discussion is obviously informal� we have not made explicit

what our background assumptions are� we have not attempted to de�ne the

notions of structure and observational equivalence� In the rest of this chapter�

we shall give various semi�formal implementations of the above concepts�

The �rst is just Aczel�s theory of hypersets ZFA� We shall later see that�

by weakening the background assumptions of this theory� we can a�ord to

strengthen our notions of structure and observational equivalence to match

the informal ones of naive set theory� The resulting theory will simply be

called 	the Structural Theory of Sets	 �STS��

��� Antifoundation and Strong Extensional�

ity

Working in ZFC�� i�e� the system obtained by eliminating Foundation from

ZFC� Peter Aczel has de�ned the notion of a bisimulation between two

structures� The name comes from computer science� but the notion has

already been used in set theory under di�erent names�

De�nition ����� A set�bisimulation is a relation � between sets� having

the property that� if two sets are in the relation � then every member of one

of the sets is in the relation � with some member of the other set�

a � b � ��a� � a�b� � b a� � b� " �b� � b�a� � a a� � b� �

Two sets are said to be bisimilar if there exists some bisimulation � between

them�
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Bisimilarity can be de�ned more generally for pointed binary structures� In

the universe of ZFC�� the only binary structures available are the binary

graphs� which are de�ned as sets of ordered pairs of objects� The nodes of the

graph are all the members of these pairs� The underlying binary relation R

is called the edge relation �or the accessibility relation� of the graph� A node

g� is an immediate successor of a node g if gRg�� A node g� is a successor of

g if it can be reached from g by a �nite chain of immediate successors� A

pointed �binary	 graph G � �g�� R� is a pair consisting of a binary graph R

and a root �or a �point	� g�� having the property that every other node is

a successor of g�� One can de�ne bisimilarity between two pointed graphs

by replacing in the above de�nition the membership relation inside each set

�a� � a� b� � b� with the converse of the edge relation in the corresponding

graph�

De�nition ����� A bisimulation between two graphs is a relation � between

their nodes� having the property that � if two nodes are related by � then

every immediate successor of one of the nodes is related by � with some

immediate successor of the other node�

A bisimulation between two pointed graphs is just a bisimulation � be�

tween the two graphs� which relates the two roots� Two pointed graphs are

bisimilar if they are related by a bisimulation�

Bisimilarity is Aczel�s notion of observational equivalence� The same

concept is useful in modal logic� observe that a pointed graph is just a Kripke

structure having a distinguished world ��the actual world	�� As we shall see
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later� bisimilarity can be alternatively de�ned as in�nitary modal equivalence�

i�e� elementary equivalence with respect to in�nitary modal logic� The two

de�nitions are equivalent in ZFC�� but not in a more general setting allowing

for �large	 sets�

The above considerations on set identity as observational equivalence lead

naturally to the following strengthening of the classical axiom of extension�

ality�

Strong Extensionality�P� Aczel�� Bisimilar sets are identical


This axiom basically says that sets are uniquely determined by their mem�

bership structure� This gives a clear�cut identity to Aczel�s sets� One can

prove now that every set having the structure described in the above example

�i�e� a non�empty set consisting only of non�empty sets� each consisting only

of non�empty sets���etc�� has to be identical to the set � � f�g�

The above discussion on the structural metaphor suggests that strong

extensionality should be the only limitation imposed on the set structures�

This leads to a maximality principle� stating that� up to bisimilarity� every

pointed binary structure can be seen as a set� This is the existential half of

Aczel�s axiom of Antifoundation�

Existential AFA� Every pointed graph is bisimilar to some set


By Strong Extensionality� the set mentioned in this statement is unique�

So� putting together the last two axioms� one obtains a version of Aczel�s

main postulate�
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Antifoundation Axiom �AFA�� Every pointed graph is bisimilar to a

unique set


This statement seems to capture perfectly the structural conception of set�

sets are just pointed graphs modulo observational equivalence �bisimilarity	�

There are other equivalent ways of stating this axiom� e�g� in terms of solving

systems of equations �Barwise and Moss�� Aczel has a di�erent formulation

in terms of the notion of decoration�

De�nition ����� A decoration of a graph R is a function dR mapping nodes

to sets having the property that

dR�g� � fdR�g�� � gRg�g � for all nodes g�

Aczel states AFA in the form�

Every pointed graph has a unique decoration


Aczel�s system ZFA is obtained by adding the Antifoundation axiom

AFA to ZFC��

Against ZFA� one can argue that the acceptance of the axioms of ZFC��

as the background of our set theory� imposes an arti�cial limitation�of�size

on the kind of structures sets are� In particular� Replacement and Separa�

tion force our structures to be small � the sets obtained by collapsing these

structures in accordance to AFA will be hereditarily small� As it was ob�

served by Barwise and Moss in Vicious Circles� it seems that ZFA can be
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best understood as a general theory of hereditarily small sets� Indeed� if

we adopt the structural conception� then the iterative justi�cation for the

axioms of ZFC� �in particular for Separation� is no longer available� sets

are not built up from below in a wellfounded manner� but are obtained by

collapsing arbitrary structures� The only justi�cation for ZFC� comes now

from the limitation�of�size conception� But� as we know from the above dis�

cussion� the power�set axiom is not justi�ed by this conception� So we are

back to the �power set mystery	�

Moreover� one can argue that� from the point of view of the structural

conception� the �smallness	 condition looks unnatural� a simple artifact of

the way we usually represent �pointed binary� structures as sets in ZFC�� It

actually goes against the �maximality	 principles embodied by AFA� by im�

posing again an ad�hoc restriction to the possible set�structures� Even worse�

this limitation is of a non�structural nature� size is not a structural charac�

teristic �in the sense described above�� since it is not preserved by bisimilarity

�or by any reasonable notion of observational equivalence�� Indeed� one can

construct graphs of arbitrarily large size� which are nevertheless bisimilar to

the singleton � � f�g� Limitation of size is hence contrary to the spirit of

the �structure�forgetting	 metaphor�
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��� The Naive Concept of Structure� an An�

alytic Approach

In this paper we explore what happens if we take the structural notion of

set at face value and consequently drop any size restriction� The problem of

�nding such a theory was explicitly stated by J� Barwise and L� Moss in their

bookVicious Circles ��Barwise and Moss ���� �� in the chapter suggestively

entitled Wanted� A Strongly Extensional Theory of Classes� Our system STS

can be understood as an attempt to answer this call�

By renouncing to the limitation�of�size condition� we return to the pre�

set�theoretical ��logical	� notion of structure� a binary structure is just a

binary relation R� given by some formula� Set�theoretically� this can be still

represented as a class of pairs� but not necessarily as a set� be it small or not�

As mentioned in the Introduction� this is a completely naive conception of

structure� If we also �x a �root	� we obtain the class�analogue of a pointed

graph� the notion of pointed system� This concept has been studied in the

context of ZFC and ZFA� but not as a central notion� We shall take it as

the basic logical notion underlying the concept of set�

Next� we have to de�ne a notion of observational equivalence between

pointed systems� Aczel�s bisimilarity relation captures this notion only for

small systems �graphs�� It is not appropriate for large systems� since it is

based on the unwarranted assumption that we can use one of the systems as

a whole to describe or simulate the other� Let us suppose we �rst observe the

roots g�� g
�

� of the two systems� next� we are presented with an immediate
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successor of g
�

� in the second system� and we have to match it with some

immediate successor of g� in the �rst system� But this assumes one is given

a complete picture or list of the collection of all the immediate successors of

g�� This is not a natural assumption when de�ning a notion of observational

equivalence between large systems�

A more realistic assumption is that� at each step we only have access to

a list of partial descriptions of all the immediate successors� The list can

only use descriptions that have already been constructed� hence� even if the

collection of all the successors is large� the collection of their descriptions will

be small� But this means we are not matching a node with another node�

but a description of a node with another description� Both might actually

refer to many distinct nodes�

After � many steps� we might have to continue this process of unfolding

the structures� we now have available more descriptions of the immediate

successors of the initial roots� We obtain a trans�nite sequence of unfoldings�

which can be interpreted as a series of analytical experiments performed on

the initial object �set or pointed system�� Two objects will be observationally

equivalent if they have the same pattern of unfolding�

Observe the underlying temporal metaphor � as in the iterative picture�

we need a �logical	 concept of Time� given by an unending succession of

ordinal stages� but these are no longer stages of construction� but stages of

discovery
 The idealized mathematician is no longer the builder of the

mathematical universe� only its explorer� he just unwraps the gifts for all his
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trans�nite life� Keith Devlin� in his book on The Joy of Sets� called this an

analytic approach to set theory� contrasting it with the synthetic approach

of the iterative conception�

On the other hand� one can see that the analytic approach presupposes

the synthesis� the outcome of an �observation	 or experiment is a partial

description of the object in question� To analyze something is to actually

construct a new object� as a �partial� unfolding of the initial one� a �possi�

bly incomplete� representation of its structure� The explorer has to record

somehow the results of his explorations� cumulating all his past and present

information in a database� a box� Each of the data gathered in the box is

itself a partial description of the intended object� another box� In this sense�

the iterative universe is the �shadow	 of the analytic universe� its trace of

unfolding� when we explore the �real world	 of sets�as�structures� we simul�

taneously build the wellfounded universe of boxes�upon�boxes� as a way to

encode the partial information gained in the �rst process� The stages of

discovery are also stages of construction �of �theories	 or databases�� The

wellfounded sets play here the role of �linguistic objects	� descriptions of the

intended �possibly non�wellfounded� structures� But in the same time they

are �real	 objects in themselves� being a part of the intended universe�

����� Structural Unfoldings

Let us give a semi�formal implementation of the above concepts� For the

rest of this section we shall assume the following� we are given a universe
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U of objects� called sets and satisfying Extensionality� we are also given

a collection V � U of well�founded hereditarily small sets� satisfying the

axioms of ZFC �actually this is a much stronger assumption than we need��

The elements of V will be used to provide descriptions for arbitrary sets or

structures� Inside V � one can de�ne the collection On of all �von Neumann�

ordinals in the usual manner� We shall also assume an informal Principle

of De�nition by Ordinal Recursion� basically� this says that we can de�ne

operations and relations on arbitrary sets by induction on ordinals�

This principle can be made precise� let us say that a variable y is bounded

by a variable x in the formula � if all the occurrences of y in � are in the

scope of some quanti�er of the form �y � x or �y � x� For a given variable

x� we say that an nary relation symbol R is bounded by x in the �rst variable

in the formula � if� for every subformula of � of the form R�t�� t�� � � � tn�� the

�rst term t� is a variable bounded by x in ��

The Recursion Principle we need can be stated now in the following form�

Given an n # �ary relation symbol R�x� x�� � � � xn� and a formula

in n# � variables ��x� x�� � � � xn�R� such that R is bounded by x

in �� there exists some class�relation R such that we have

�� � On�x� � � ��xn�R��� x�� � � � xn� �� ���� x�� � � � xn�R��

Of course� the existential claim of this principle refers to classes� R is a

class�relation� In ZFC and ZFA� this principle can be proved� by explicitly

de�ning the class R� In our axiomatic system STS� we shall assume as an
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axiom some instance of this principle� namely the Satisfaction Axioms� and

then SAFA will allow us to prove the full Recursion Principle� by explicitly

de�ning the relation R� But we cannot do this yet� so we prefer to keep

this principle informal� �The only way to formalize it directly would be to

introduce some �xed�point operator � to the language� allowing us to form

a new formula �R���� x�� � � � xn�� which de�nes the above class�relation R�

but this would of course lead us away from �rst�order logic to some kind of

a �xed point logic��

Having �xed our background assumptions� we proceed to make explicit

the above notions of structural unfolding and observational equivalence� Given

a set a� we want to successively �unfold	 its structure� i�e� to construct a

succession of well�founded sets� which will be called the unfoldings of the set

a� The unfoldings will encode �in their membership structure� all the infor�

mation about the structure of a which is available at some de�nite stage of

analysis� So the unfoldings will play the role of partial descriptions of the

given set� The unfoldings form a succession� in which later unfoldings o�er

better descriptions than earlier ones�

We that one can think of this succession of unfoldings of a given set as

being well�ordered� In other words� the stages of unfolding can be identi�ed

with the ordinals� Indeed� suppose we are given some stage of unfolding�

i�e� we have constructed partial descriptions for every set� These are the

best descriptions available at this stage� But we can now construct a better

description for each set a� by collecting all the available descriptions of its
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members� This is the natural way to further �unfold	 the set a� thus form�

ing its �next	 unfolding� we simply go inside the set and collect the best

available descriptions of its elements into a new set� which gives us a better

representation of a� So for every stage of unfolding there is a �next	 stage� at

which we form the next unfolding� Suppose now that we are given� not one

unfolding� but a succession of unfoldings of the same set� such that there is

no best one� We can then accumulate all these descriptions to form a single�

better one� Formally� this new unfolding is simply given by the sequence of

all the previous unfoldings� We conclude that� for every set of unfoldings�

there is a �next better	 one�

So the stages of unfolding form an unending well�ordered succession� in

correspondence with the ordinals� This means that� for each set a and each

ordinal �� we can form a set a�� called the unfolding of rank � of the set a

�or� for short� the �th unfolding of the set a�� We shall de�ne these unfoldings

according to the above ideas�

Suppose we are given the �th unfoldings a� for all sets a� we de�ne the

next unfolding a��� as the set of all the �th unfoldings of the members of a�

For limit stages �� suppose we are given all the �th unfoldings� for all

ordinals � 	 � and all sets a� We de�ne the �th unfolding of the set a as the

��sequence of all its unfoldings of ranks less than ��

What about the �initial	 �th unfolding a�� We just consider � as a limit

ordinal� which gives us that a� is always the empty sequence 	�

To summarize� a �successor	 unfolding �having a successor ordinal as its

rank� is a way of analyzing the given set into components and representing it
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by the set of all the immediately preceding unfoldings of the components� a

�limit	 unfolding is a way of keeping track of all the previous unfoldings of the

given set and representing it by the sequence of these preceding unfoldings�

This means that� as expected� the process of unfolding has a memory � limit

stages are moments of recollection� at which one accumulates the results of

previous stages� By contrast� the successor stages are moments of active

analysis� at which one goes inside each set� decomposing it into parts�

More precisely� we can de�ne the notion of unfolding by recursion on the

ordinals�

De�nition ����� For every ordinal � and every set a� the unfolding of rank

� of the set a is the set a�� de�ned by�

a��� � fb� � b � ag

a� � ha�i��� � for limit ordinals �

where ha�i��� is the sequence s of length � given by s��� � a� for every

� 	 ��

The notion of unfolding can be similarly de�ned for classes or pointed

systems �Kripke structures�� For a classe A� we put�

A��� � fb� � b � Ag

A� � hA�i��� � for limit ordinals� �

For a given system �relation�R�or graphs� we de�ne the unfoldings �g� R��
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of the pointed system �g� R�� for all nodes g and all ordinals ��

�g� R���� � f�g�� R�� � gRg�g

�g� R�� � h�g� R��i��� � for limit ordinals� �

The informal character of this de�nition is due to the fact that it assumes

we can de�ne functions on the whole universe of sets by recursion on the

ordinals� in ZFC this could be done using Foundation� which makes possible

to consider the above de�nition as a double ��recursion on both sets a and

ordinals �� But in our possibly larger universe U � we cannot do ��recursion�

so the above de�nition cannot be justi�ed in this way� In the next chapter�

we shall set up an axiomatic system STS in which one can prove a Recursion

Theorem that can be used to justify any such de�nition�

There are other ways of de�ning notions of unfolding� for which this dis�

tinction between the successor and the limit stages is not so relevant� one

can simply do both at once� at each stage� both analyze into components

and keep track of the previous stages� But all the natural alternatives are

essentially equivalent to our notion� One such notion of mixed unfolding has

been de�ned and studied by Ronald Fagin under the name of ���worlds	

�see Fagin ������ Fagin�s � 
 worlds are de�ned for Kripke structures �in�

stead of sets� and they provide a way of partially describing structures up to

bisimilarity� These descriptions are essentially equivalent with ours� in the

case of Kripke structures with only one accessibility relation� understood as

membership�

Examples
 �In the examples below� the notation �� is only used to
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denote the 
th unfolding of �� and should not be confused with ordinal or

cardinal exponentiation��

� The unfoldings of the empty set 	�

	� � 	 � for all successor ordinals ��

	� � h	i��� � for limit ordinals ��

where the sequence h	i��� is simply the function mapping every ordinal

less than � into 	�

� The unfoldings of rank ��

	� � 	

a� � f	g � for all non�empty sets a 
� 	�

� The unfoldings of the natural numbers� for a natural number n � 
�

we have

nk � minfn� kg � for all natural numbers k

n� � h�� �� � � � � n
 �� n� n� n� n� � � � i

n��� � fh�� �� � � � i� h�� �� �� � � � � i� h�� �� 
� 
� � � � i� � � � h�� �� 
� � � � � n� n� � � � ig

� fk� � k 	 ng

etc�
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� The unfoldings of the set � � f�� �� 
 � � � g of all natural numbers�

�n � n � for every natural number n�

�� � h�� �� 
� �� � � � � n� � � � i

���� � fh�� �� � � � i� h�� �� �� � � � i� h�� �� 
� 
� � � � i� � � � � h�� �� 
� � � � � n� n� n� � � � i� � � � g

�
�

n��

n��� � fk� � k � �g

etc�

� The unfoldings of Aczel�s self�singleton set � � f�g� We have not

postulated the existence of any non�wellfounded sets� However� we have

extended the de�nition of unfoldings to classes and pointed graphs �or

systems�� One can now consider a pointed graph G � �g� R� having

only one node g �say g � 	� which is its own and only successor�

R � f�g� g�g� Consider the unfoldings G�� These will be the same as

the unfoldings of Aczel�s self�singleton set � � f�g� if such a set would

exist� So we can describe the unfoldings of �� regardless of the question

of its existence�
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�� � 	

�� � f	g

�� � ff	gg

���

�� � h	� f	g� ff	gg� fff	ggg� � � �i

���� � f��g

���� � ff��gg

���

��� � h	� f	g� ff	gg� � � ���� f��g� ff��gg� fff��ggg� � � � i

���

� The set of all possible unfoldings of a given rank � One can see� by

recursion� that for every ordinal �� there is only a small set of distinct

��unfoldings� Actually� the collection of all possible unfoldings of rank

� is a �small� set in V �

� The unfoldings of the Universe� As mentioned above� we extended the

de�nition of unfoldings to classes� Consider now the class U of all sets�

One can see that its unfolding of rank �#� is just the above�mentioned

set of all possible unfoldings of rank �� One can show that we have
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U� � 	

U� � f	g

U� � f	� f	gg

���

U� � hU�i��� � for limit ordinals �

U��� � fa� � a � Ug �the set of all unfoldings of rank ��

U��� � P�U����

From this� one can prove by induction that� for each �� the ��unfolding

U� of the whole universe is just a �hereditarily� small set in V � So

from the point of view of its successive unfoldings� the universe is just

another structure� which we can analyze and describe up to any degree

of accuracy� using only small well�founded sets as descriptions�

One can easily check that unfoldings have the following properties�

�� If a � b then a� � b��� for every ��


� If a � b then a��� � b��� for every ��

In the next chapter we shall prove the converses of these statements�

assuming the axioms of our system STS� Property � above and its converse

show that� in our system� the above�de�ned notion of unfolding is well��t for

the job it was intended to do� it indeed captures all there is to know about a

set� namely its members�
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De�nition ����� Two objects �sets� classes or pointed systems� are obser�

vationally equivalent if all their unfoldings coincide� e�g� for sets�

a � b i� a� � b� for all ordinals ��

We can obtain a bisimulation�type characterization of observational equiv�

alence if we �rst de�ne a notion of observational equivalence up to rank ��

for every ordinal �� as identity of unfoldings of rank ��

a �� b i� a� � b��

Observe that we have�

a � b i� a �� b for all ordinals �

Then one can easily check that we have the following equivalences�

Proposition �����

a ���� b i�� for every a� � a there exists some b� � b s
 t
 a� �� b
�

and� dually�

for every b� � b there exists some a� � a s
 t
 a� �� b
� 


a �� b i�� for every � 	 � we have a �� b�

for limit ordinals ��

This is the promised bisimulation�type characterization� One can state

this in a uniform manner by observing that the above two equivalences can

be combined into one� which states that a �� b is equivalent to

�
 	 � ��a� � a�b� � b a� �� b
� " �b� � b�a� � a a� �� b

� �
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In words � two sets are ��equivalent if for every ordinal 
 	 �� every member

of one of the sets is ��equivalent to some member of the other set
 The sets

are observationally equivalent if they are ��equivalent for every ��

One can use this characterization to check that for graphs that are �small	

�i�e� in V �� observational equivalence is the same with bisimilarity� One can

also see that if a set is hereditarily small� then its membership graph is

isomorphic to a graph in V � so for small sets� observational equivalence will

coincide with bisimilarity� In particular� the two notions coincide in Aczel�s

universe�

����� Modal sentences as partial descriptions

Let us analyze more carefully the above�mentioned process of unfolding set

structures� As de�ned above� unfoldings of rank � are partial descriptions

of the given set� which are nevertheless relatively maximal from an informa�

tional point of view� they gather all the information that is available at stage

� about a set and its members� In other words� they are designed to provide

the best possible description of the set a that is available at stage ��

We want now to decompose the maximal descriptions given by unfoldings

into simpler� more basic partial descriptions� Observe for instance that an

unfolding gives a description for every member of the set� but it might happen

we only know the description of some of its members� Also� at some stage�

we might not know the real unfolding of a set� but only be able to narrow

down the possibilities to a set of possible �alternative� unfoldings�
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I call every such permissible partial description an analytical description

or �anticipating things a bit� a modal sentence� Not every de�nable property

is an analytical description� The main intuition is that we are never given

the full structure� but we can only know its successive unfoldings� So a

general guideline for constructing new partial descriptions is that they should

be �bounded	 by the unfolding process� they should not assume we know

the full structure or the real identity of the object �set� or of its members�

but should use only information that is available at some de�nite stage of

unfolding� The adequacy of an analytical description should be decidable

during the unfolding process� given a set a and a description �� there must

exist a stage � such that we can check whether or not � does actually describe

a by looking at the unfolding of rank � of the set a�

In other words� analytical descriptions should be �bounded	 by unfold�

ings� every such description should be informationally weaker than some

unfolding� We can only observe sets and structures through their unfoldings�

and analytical descriptions should be only based on such �observations	�

This boundedness condition rules out languages like �rst�order logic� since

the truth�value of sentences of the form a � b or a � b depends on the whole

��structure of the sets a� b� There is no obvious way to directly check at

some de�nite ordinal stage a description of a set x saying that x � a� the

same goes for descriptions like� x � a� or x � x� or �x has two distinct

members	� All these assume a full knowledge of the identity of x� that is

of its structure� or a full knowledge of the structures of its members� this is

because� as we have seen� the real identity of sets is not given beforehand�
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but is determined by their full structure� It may of course happen that for

particular sets we can decide these properties only on the basis of some un�

folding �which means that in these cases the property will be equivalent to

some analytical description��

To make things precise� we introduce the following

De�nition ����� Let P be a unary predicate �i�e� a class P � for which we

write P �a� instead of a � P �� P is an analytical description if there exists

some ordinal stage �� such that one can decide whether or not P holds by

looking at the �th unfolding� that is� we have�

�a� b�a� � b� �� �Pa � Pb���

We also say that in this case the description P is bounded by ��

A careful analysis of analytical descriptions shows that they can all be

generated by the following three operations�

��� Negation
 Given a possible description � and an object a� we con�

struct a new description ��� to capture the information that � does

not describe a�

��� Conjunction
 Given a set $ of descriptions of the object a� we accu�

mulate all descriptions in $ by forming their conjunction
V

$�

��� Diamond
 Given a description � of some member �or members� of a

set a� we construct the description ��� which captures the information

that a has a member described by ��

��



Observe that the �rst two operations refer to sets�as�objects and generate

the language of in�nitary propositional logic� The third is the most basic

operation involved in partial unfolding� we just unwrap the box and pick up

�the description of� some thing inside� The language L� generated by these

three operations is called the in�nitary modal logic� One can consider this

logic as a fragment of L��� the standard �rst�order language with in�nitary

conjunctions and disjunctions� But it is easy to see that� unlike the sentences

of the full L��� any sentence of the in�nitary modal logic L� is bounded by

some ordinal� and so it is an analytical description�

One can similarly de�ne these modal descriptions for pointed systems

�and graphs�� The resulting description relation coincides with the Kripke

semantics for in�nitary modal logic� We call this relation satisfaction and we

de�ne it recursively in the familiar way for Kripke structures� For sets� the

corresponding recursive clauses correspond to the set�semantics for modal

logic� de�ned in the more restricted case of ZFA by J� Barwise and L� Moss

in Vicious Circles�

a j� �� i� a � �

a j�
�

$ i� a j� � for all � � $

a j� �� i� a� j� � for some a� � a�

We can also de�ne the dual operators
W

� � and some other useful oper�

ators�
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�
$ �� �

�
f�� � � � $g

�� �� ����

�$ �� f�� � � � $g

�$ �� f�� � � � $g

� � � ��
�

f�� �g

� � � ��
�

f�� �g

�$ ��
�
�$ ��

�
$�

The last operator will be useful in constructing modal sentences that

capture the above notion of unfolding�

De�nition ����� A sound description of a pointed binary structure� or set�

is just a modal sentence satis�ed by that structure� A modal sentence is said

to be consistent if it is a sound description of some structure� i�e� is satis�ed

by some pointed graph� A modal theory is a collection of �in�nitary� modal

sentences� The �modal	 theory of a structure is the collection of all the modal

sentences satis�ed by that structure�

As expected� the information captured by our earlier notions of unfolding

and maximal description of level � can be now expressed by certain modal

sentences�

De�nition ����� De�ne� for each set a and each ordinal �� a modal sentence
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��a � by recursion on ordinals �

����
a �� �f��b � b � ag

��a ��
�

f��a � 
 	 �g�

Proposition ����


b j� ��a i� b� � a��

In particular� we always have a j� ��a 


Proof
 Easy induction on �� �

This shows that our modal sentences ��a capture indeed the same infor�

mation as the corresponding unfoldings�

As a consequence� the relations of observational equivalence � and of

equivalence �� up to rank �� as de�ned in the previous section� are easily

expressible in terms of modal sentences�

a �� b i� ��a � ��b

a � b i� a� b satisfy the same modal sentences

So observational equivalence� as de�ned in the previous section� coincides

with modal equivalence� So we can now give an alternative de�nition for

observational equivalence�

De�nition ����� Two sets� or structures� are observationally equivalent if

they have the same modal descriptions� i�e� if their modal theories coincide�

One can also prove that the above notion of description is maximal� in�ni�

tary modal language is the largest language which is bounded by unfoldings�

More precisely� one can prove�
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Proposition ����	 Let P be an analytical description� bounded by some or�

dinal �
 Then the predicate P is �essentially modal�� i
e
 it is logically

equivalent to some modal sentence �P 


Proof
 Take

�P ��
�

f��a � P �a�g�

We need to prove that for every set b� we have P �b� � b j� �P �

For one direction� suppose that we have P �b�� Then b � fa � P �a�g and

we also know that b j� ��b � These imply that b j�
W
f��a � P �a�g� i�e� b j� �P �

For the other direction� suppose we have b j� �P � By the choice of the

sentence �P � this means that there exists some a such that we have P �a�

and also b j� ��a � Then� by the above Proposition� it follows that b� � a��

From this� together with P �a� and with the fact that P is bounded by �� we

conclude that we have P �b�� �

��� The Super�Antifoundation Axiom SAFA

The essence of the structural conception of set can be now captured by the

following �

Sets are just arbitrary pointed systems modulo observational equiv�

alence


In the system STS presented in the next chapter� this is expressed by the

following AFA�like theorem�

��



Weak SAFA
 Every pointed system is observationally equiva�

lent to a unique set


This was our initial formulation of our main axiom SAFA ��Super�Antifoundation

Axiom	�� designed to replace AFA in the context of a theory of arbitrarily�

sized strongly extensional classes� We shall call this statement Weak SAFA�

since it is weaker than the �nal formulation of SAFA �to be presented in

the next section�� The existential half of Weak SAFA ��every pointed sys�

tem is equivalent to some set	� is a strengthening of the existential AFA�

The uniqueness half is a strengthening of strong extensionality� which can

be called Super�Strong Extensionality� observationally equivalent sets are

identical�

Stated explicitly in terms of unfoldings� the meaning of Weak SAFA is

this�

Given any structure �pointed system	 S� the trans�nite pattern

�sequence	 of unfoldings of S can be always seen as the pattern

of unfolding of some set
 and this pattern of unfolding uniquely

determines the set


There also exists an explicit formulation of Weak SAFA in terms of modal

theories� First� recall that a modal sentence is consistent i� it is satis�ed by

some pointed graph� Observe now that the existential half of Aczel�s AFA is

equivalent to the statement that every consistent modal sentence is satis�ed

by some set�

To generalize this formulation� we need the following
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De�nition ����� A modal theory is consistent if all its members are satis�

�ed by a single structure �pointed system�� The total analytical pattern of a

structure is nothing but its modal theory� i�e� the collection of all its sound

descriptions�

One can see that the total analytical pattern of every set is a consistent modal

theory� and that moreover it is maximally consistent� Then one can check

that the converse of this statement is equivalent to the above�mentioned

formulation of Weak SAFA�

Proposition ����� Weak SAFA is equivalent to the assertion that�

Every maximally consistent modal theory is satis�ed by a unique

set


This is a nice way to see that Weak SAFA is indeed a strengthening of

AFA� This formulation is strong enough for a lot of purposes� In particular�

its uniqueness half is enough to give sets a clear structural identity� Its

existential half is also enough to de�ne almost all interesting sets in our

theory �e�g� the universal set U�� and to prove the main closure properties�

the universe of sets U can be thus seen to be closed under power�set� arbitrary

intersections� unions of small families of sets� pairs� Cartesian products etc�

But one cannot prove the Union axiom� if a is some set� then
S
a cannot be

proved to be a set�

We shall see this failure is not due to some incompleteness or lack of clo�

sure of the universe of sets� but rather with the �incompleteness	 of our uni�

verse of de�nable classes� The deep reason is the lack of strong class�forming
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principles in all theories which reject �as does ours� as well as ZFC and ZFA�

arbitrary classes�as�objects� accepting them only as ways�of�speaking about

unary formulas� Observe that the above de�nition of consistency for modal

theories involves a quanti�er over pointed systems� In practice� a consistent

modal theory will be given together with a pointed system satisfying it� so

there will not be any problems in stating properties that quantify universally

over consistent modal theories� But there will be problems when we will have

to prove the existence of some consistent theory� It might happen that we

cannot prove the consistency of the theory� because we cannot de�ne a cor�

responding pointed system� despite the fact that we can �see	 it is �locally

consistent	� indeed� we can express the theory as a sequence of partial un�

foldings �modal sentences�� which might not be strong enough to allow us to

put our hands on a pointed system� but could still be seen to be consistent up

to any ordinal stage of unfolding� The AFA�like theorem mentioned above

would not apply to it� Such an analytical pattern would give a potentially

consistent description of a possible structure� but it would remain unrealized

both in the realm of sets and in the one of pointed systems� The reason is

that we cannot show it to be consistent � we cannot prove the existence of a

system that satis�es it� This is exactly what happens when we try to prove

the existence of the union�set
S
a�

The intention behind Weak SAFA was to generalize the existential half of

AFA� seen as a maximality principle� We wanted to ensure that the universe

is as large as it is consistent with strong extensionality� by postulating that

every possible structural pattern is realized by a set� But we can now see that�
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if we limit ourselves to descriptions that are maximal �like the unfoldings

and the total analytical pattern�� we lose some of the possibilities� The main

advantage of introducing modal sentences as partial descriptions instead of

the unfoldings is that we can recover these lost possibilities�

But� for this� we need an alternative de�nition of consistency for modal

theories� one that would not involve quanti�cation over pointed systems�

De�nition ����� A modal theory is weakly consistent if all its subsets are

consistent� More generally� a partial analytical pattern is any collection of

sound descriptions which is closed under in�nitary conjunction�

The last condition is needed if we want to think of our collection as en�

coding the knowledge we might have about a particular structure at a certain

moment� for� given a set of sound partial descriptions of the same object� we

�know	 that their conjunction is also a sound description of that object� As

a consequence� every partial analytical pattern is weakly consistent� though it

might not be provably consistent� because of the above�mentioned weakness

of our theory of classes� The price to be paid for not having classes�as�objects

but only as predicates is that we can sometimes �see	 from inside the theory

that a certain pattern is possible �weakly consistent� and so it describes a

possible structure� without being able to de�ne a structure that realizes it

inside the theory� The assumption that every weakly consistent theory is con�

sistent is equivalent to a �strong in�nity axiom	 �namely to the hypothesis

that the cardinal of the universe is weakly compact��
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But denying sethood to weakly consistent structures is a restriction to the

structure paradigm� which comes again as an artifact of the way we formalize

pointed systems �as classes� inside set theory� There is no reason to throw

away collections of descriptions that we can easily see to be possible patterns

of analytical behavior� The spirit of the structural conception points toward

a maximal notion of set� and hence to the following strong version of the

�existential half of� Super�Antifoundation Axiom�

Every partial analytical pattern describes a set�

This formulation is stronger than the previous one �in terms of unfoldings��

since it �corrects	 the above�mentioned lack of strong class�comprehension

principles� Assuming this postulate one can actually prove the mentioned

strong in�nity axiom�

The uniqueness half of SAFA �super�strong extensionality� can be ex�

pressed now as� sets are uniquely determined by their total analytical pat�

tern�� It is easy to check that this is equivalent to the previous formulation

�in terms of unfolding� and also with the last formulation of strong exten�

sionality� Putting the two halves together� one obtains our central postulate

SAFA� which embodies our set�theoretical philosophy � loosely speaking� a

set is any possible pattern of observable behavior under iterative unfolding


�




Chapter �

Axiomatic Theory and

Developments

��� The System STS

I present an axiomatic system STS �Structural Theory of Sets	� I shall use

the standard language of Set Theory� with variables for sets� I shall also

use classes as a �manner of speaking	 extensionally about unary formulas�

The class of all sets �de�ned by the formula x � x� is denoted by U � I also

postulate the existence of two classes V and Sat� The �rst is intended to be

the class of all wellfounded sets and so a model of ZFC� the second is the

relation of satisfaction of a modal formula by a set�

I shall assume that the class U of all sets is an extensional universe satis�

fying some very mild closure conditions �closure under singletons and �nite

unions�� As far as I know� the existence of the sets formed by these operations

has never been doubted�

The class V is needed for constructing descriptions to record the results
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of the analytic process� As we have seen in the previous chapter� we need to

construct a synthetic�iterative universe V in order to be able to talk about

large sets and structures� The wellfounded sets in V will play the role of

partial descriptions for sets� and the ordinals �de�ned inside V in the usual

way� will play the role of stages �levels	 of description� So we think of the

wellfounded elements of V as �linguistic objects	� that we successively build

in a quasi�constructive manner� and use in exploring the sets of the �real

world	� But at the same time the elements of V are themselves parts of the

real world�

The intuitive picture for V is the basic iterative picture� we think of V

as being built up from below� in trans�nitely many stages� at each stage� we

form all the sets made out of previously constructed elements� At limit stages

we accumulate the results of our set�formation� We keep doing this �as long

as we can	� i�e� until we have formed all the sets that can be formed in this

way� It is natural to assume this will take a long time� i�e� the entire process

of set�formation is �large	� This can be understood in at least two ways�

First� the process is in�nite� so that we can form the set of natural numbers

at some stage� this justi�es the axiom of In�nity� Secondly� the process is

larger than any of its outputs� so that there are more stages than there are

members in any set formed in this way� to put it the other way around� sets

in V are �small	� compared to the length of the formation process � This

justi�es Replacement�

The resulting class V will have to be transitive and closed under set�
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formation� a set will be in V if and only if its members are in V � Notice that

we do not claim this process can be actually carried out in full� V is just a

class� i�e� is simply a way of describing this process of formation�

Notice also that we do not assume we can form power�sets inside V � We

just accumulate in the class V all the objects that can be formed as sets

of previously�formed objects� Nothing in the iterative picture warrants that

the collection of all the subsets of a set can be itself uni�ed into a set� This

makes more intuitive the above �smallness	 assumption�

I should mention though that� as a consequence of our axiom SAFA� the

Power�Set axiom will in fact be valid� SAFA does imply that the power set

can be uni�ed into a set� but this has nothing to do with V � with the iterative

conception or with limitation of size� the sets postulated by SAFA can be

both non�wellfounded and large� In fact� if we de�ne �as von Neumann did�

�smallness of a set	 as �being smaller than the universe	 �where by universe

we mean U�� then it is not true that the power�set of a small set is itself

small� as we shall see� there exist sets smaller than U whose power�sets are

as large as the universe� But once� by SAFA� every power�set is accepted as

a set� the class V will also satisfy the Power Set axiom� because V is closed

under set formation� �In fact� V will be proved to be a model of ZFC��� If

we choose to de�ne smallness as �smaller than some set in V 	 �or� in von

Neumann style� as �smaller than V itself	� then it follows that the power�

set of a small set is also small� But this rather non�intuitive claim is now

a theorem� not an axiom� As in the case of Cantor�s theorem on the non�
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denumerability of the continuum� we just accept the existence of the power

set as a provable fact� and not because of its self�evidence� This solves the

above�mentioned �power�set mystery	� SAFA provides us with a separate

justi�cation for power sets�

Basic Axioms


�A��� Extensionality

�A��� Closure of the universe U under singletons and �nite unions� if a� b

are sets then fag� a � b are sets�

�A��� A set is in V i� all its elements are in V � In other words� the class

V is transitive and closed under subsets� PV � V�

�A��� V is a model of the axioms of� In�nity� Replacement� Union and

Choice


We de�ne smallness� systems and graphs� modal sentences and satisfac�

tion�

De�nition ����� A set is small if it is of the same size as some set in V

De�nition ����� A �pointed	 system is �a pair of a �top	 set and� a class

of pairs �i�e� a binary relation��

De�nition ����� A �pointed	 graph is a small � pointed� system� A �pointed	

V �graph is a �pointed� graph that belongs to V �

��



In the rest of this dissertation� we assume that we are given some encoding

of the symbols ��
V

and � as well�founded sets in V � We also use �� as

abbreviation for the pair ��� ��� and similarly for the other modal formulas�

�Technically� to make this work� we have to assume that none of the basic

connectives is encoded as a pair��

De�nition ����� De�ne� by recursion inside V � the class L� of in�nitary

modal sentences as the least subclass of V such that�

�� if � � L� then ���� � L� and ���� � L�


� if $ � L� is a set of modal sentences then �
V

$� � L��

We de�ne the other modal connectives ��������� by the usual abbrevia�

tions�

De�nition ����� We de�ne� by recursion in V � satisfaction for modal for�

mulas on pointed V �graphs S j� ��

�g� R� j� �� if �g� R� � �

�g� R� j�
�

$ if �g� R� j� � for all � � $

�g� R� j� �� if �g�� R� j� � for some g� s�t� gRg��

Intuitively� we would like to de�ne satisfaction on a set� by considering its

��structure as a pointed graph� But� for large sets� their ��structures will not

be graphs in V � so we cannot use recursion in V to de�ne satisfaction on an

arbitrary set
 To do this� we would need a principle of recursion of the type
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mentioned in the previous chapter� Instead of this� we shall just postulate the

corresponding inductive conditions as axioms about the unde�ned predicate

Sat� In the following� we use the notation a j� � for �a� �� � Sat�

Satisfaction Axioms


�A��� a j� �� i� a � �

�A��� a j�
�

$ i� a j� � for all � � $

�A
�� a j� �� i� a� j� � for some a� � a�

We can now de�ne observational equivalence � as modal equivalence�

two pointed systems are observationally equivalent if they have the same

descriptions� i�e� they satisfy the same in�nitary modal sentences� �Techni�

cally� we �rst de�ne it for objects� i�e� sets and pointed graphs� and then

extend it to pointed systems and classes�� All the notions de�ned in the

section on modal descriptions� in particular the relations ��� the notions of

sound description� partial and total analytical pattern� the modal theory of

a set th�a� � f� � a j� �g� can be now rigorously de�ned� and the results

mentioned in the previous section can be proved�

The most straightforward way to rigorously de�ne the above notions of

observational equivalence up to rank � is not by the recursive de�nition from

the previous section� but in a more indirect manner� This is because we

have not yet proved a Recursion Theorem for functions having the whole

universe as domain� this will have to wait� since it will make essential use
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of our axiom SAFA� But one can still use recursion inside V to de�ne the

following notions�

De�nition ����� The degree of a modal sentence � � L� is an ordinal

deg��� � On� de�ned by recursion in V �

deg�
�

$� � supfdeg��� � � � $g

deg���� � deg���

deg���� � deg��� # ��

For each ordinal �� the observational equivalence up to rank � is a relation

��� de�ned by�

a �� b i� a and b satisfy the same modal sentences of degree � ��

Then one can prove that these equivalence relations satisfy the recursive

�bisimulation	�type condition mentioned in the previous section� namely�

a �� b is equivalent to

�
 	 � ��a� � a�b� � b a� �� b
� " �b� � b�a� � a a� �� b

� �

We cannot yet de�ne the above notions of unfolding and description of a

set in full generality �again because we do not have a general Recursion The�

orem yet�� but we can only de�ne them for sets in V �by the very de�nition

from the previous section� which can be made into a recursive de�nition for

sets a � V ��

We can state now the main axiom of the system�
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�A��� Super�Anti�Foundation Axiom �SAFA��

�i�� Existence �Structural Completeness	� Every partial analytical pattern

describes a set�

�ii�� Uniqueness �Super�Strong Extensionality	� Sets are uniquely deter�

mined by their total analytical pattern� i�e� if a � b then a � b�

��� Correspondence between Sets and Modal

Theories

Recall that a weakly consistent theory is a modal theory �i�e� a class of

modal sentences� such that all its subsets are satis�able on pointed graphs�

A theory is complete if for every modal sentence �� the theory contains

� or its negation� A theory is maximally weakly consistent if it is weakly

consistent and has no weakly consistent proper extension� One can check

that the maximally weakly consistent theories coincide with the complete

weakly consistent theories�

The existential half of SAFA is equivalent to the following �compactness	�

type statement�

Every weakly consistent theory T is satis�ed by some set a� i
e


T � th�a�


But it is easy to see that every theory of the form th�a� is maximally

weakly complete� So� by the above statement and by maximality� we conclude
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that the maximally weakly consistent theories are exactly the ones of the form

th�a� for some set a�

On the other hand� super�strong extensionality says that sets are charac�

terized by their modal theories� if th�a� � th�b� then a � b� So the function

th that associates to each set a its modal theory th�a� is a one�to�one corre�

spondence� This is a generalization of a theorem about sets in ZFA� proved

by Barwise and Moss� a set in Aczel�s hyperuniverse can be characterized by

a single modal sentence�

Putting these together� we can see that� taken as a whole� SAFA implies

the following statement�

The function th gives a bijective correspondence between sets and

maximally weakly consistent modal theories


The last statement is weaker than SAFA and is actually equivalent to

what we called �weak SAFA	 in the previous chapter� the claim that every

pointed system is observationally equivalent to a set�

It is useful to know there exists a modal system K� for in�nitary modal

logic� which is sound for pointed systems �and graphs� and weakly complete

for pointed graphs� One can show that� in the context of the other axioms

of our system� the consistent theories of this proof system are precisely the

weakly consistent theories�

So we conclude that th is a bijective correspondence between sets and

maximally consistent theories in K�� One can make this bijection into an

isomorphism� by de�ning an accessibility relation between theories� as in the
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canonical model construction in standard modal logic�

De�nition ����� For T� S maximally weakly consistent modal theories� put

T � S i� ���� � S � �� � T �

i� ����� � T � � � S� �

One can easily check now that we have the following

Proposition ����� For all sets a� b�

a � b i� th�b� � th�a� �

i
e
 the above�mentioned bijection is an isomorphism between the ��structure

of the universe of sets and the accessibility structure between maximally

weakly consistent modal theories


Proof


For one direction� assume a � b� To show that th�b� � th�a�� let � �

th�a�� Then a j� �� so b j� ��� i�e� �� � th�b��

For the other direction� assume th�b� � th�a� and let set b� � b�fag� To

show a � b� we need to prove that b � b�� By Super�Strong Extensionality� it

is enough to show that b and b� satisfy the same modal sentences� We prove

this by induction on the complexity of sentences� The only non�trivial case

is the induction step for sentences of the form ���

Suppose that b j� ��� Then there is some c � b such that c j� �� But

b � b�� so we have c � b�� Hence b� j� ���
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For the converse� suppose that b� j� ��� Then there is some c� � b� such

that c� j� �� If c� � b� then we obtain that b j� ��� as desired� If c� � b� n b�

then we must have c� � a� and so a j� �� i�e� � � th�a�� But we assumed

th�b� � th�a�� which by de�nition implies that �� � th�b�� Hence b j� ���

�

So one could say that a set is just a maximally �weakly	 consistent theory

in in�nitary modal logic� This gives the idea for proving the consistency of our

system STS� working in ZFC with an appropriate large cardinal assumption

�the existence of a weakly compact cardinal ��� we shall de�ne the modal

logic L� having only conjunctions of size less than �� construct its canonical

model and interpret it as a universe of sets� with membership de�ned by the

accessibility relation� This construction gives a model of the system STS�

��� The Canonical Model of STS

We shall sketch here the proof of consistency of our system STS� We only

give here the construction of the model� the main de�nitions and lemmas

and sketch the proof of the validity of our axioms for this model�

As mentioned in the previous section� we work in ZFC with an extra�

assumption� namely that of the existence of an in�nite weakly compact car�

dinal �� For our purposes� it is convenient to de�ne weak compactness by the

following�

De�nition ����� Consider� for each cardinal �� the �rst�order language L��

with in�nitary conjunctions and disjunctions of length strictly less than ��
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We say that L�� is strongly incompact if there exists some signature � and

some set % of sentences of L����� with the following properties�

� % has cardinal power �

� % has no model

� Every subset of % of power 	 � has a model�

If this is not the case� we say that L�� is weakly compact�

A cardinal � is said to be strongly inaccessible if the corresponding uni�

verse V� in the iterative hierarchy is a model of ZFC� The cardinal � is said

to be weakly compact if it is weakly inaccessible and L�� is weakly compact�

It is well�known that the above de�nition is equivalent to the more com�

monly used de�nition of weak compactness in terms of trees� The hypothesis

of the existence of in�nite weakly compact cardinal is known to be unprov�

able in ZFC� but is nevertheless generally considered by most set�theorists

to be consistent with ZFC� Actually� the existence of in�nite weakly com�

pact cardinals is nowadays seen as a rather mild large cardinal assumption�

Throughout this section� we shall assume this hypothesis�

Historical Note
 To the best of our knowledge� the �rst to have considered

this assumption to construct a model for a universal set theory satisfying

Positive Comprehension was Weydert �Weydert���� � As already mentioned�

Forti and Hinnion �Forti���� have succeeded in proving the consistency of

the Generalized Comprehension Principle� in the assumption of the existence
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of an in�nite weakly compact cardinal� The model in �Foti���� can be proved

to be isomorphic to the 	canonical model	 construction given below�

Let now � be a ��xed� in�nite weakly compact cardinal� We consider now

the modal logic L�� de�ned exactly as in�nitary modal logic L�� but with

conjunctions and disjunctions restricted to sets of sentences of size strictly

smaller than �� Clearly� L� is a subfragment of L���� � where � � R is

the signature consisting of one binary relation symbol R� By the strong

inaccessibility of �� the set L� of all these modal sentences has size �� A

theory of L� is a set $ � L��

We de�ne satisfaction of a modal sentence or theory by a pointed graph

�g� R� in the usual way� We can also de�ne satisfaction for sets a �in our

ZFC�universe	 as in STS� by considering the pointed graphs given by their

membership structures� We use the notations�

th��g� R� � f� � L� � �g� R� j� �g

th��a� � f� � L� � a j� �g

A theory $ is said to be consistent if it is satis�ed by some pointed graph�

The theory $ of L� is weakly consistent if every subset of $ of power 	 � is

consistent� It is clear that the weak compactness of � implies the following

Lemma ����� Every weakly consistent theory of L� is consistent


A theory is said to be maximally consistent if it is consistent and has no

consistent proper extension� It is easy to see that�
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Lemma ����� A theory $ of L� is maximally consistent i� it is of the form

th�g� R�� for some pointed graph �g� R�


Proof
 By the consistency of $� there exists some �g� R� satisfying it� i�e�

$ � th�g� R�� But th�g� R� is also consistent �being satis�ed by �g� R��� by

the maximality of $� we have $ � th�g� R�� The converse is trivial� �

From this we can easily prove that�

Lemma ����� Every weakly consistent theory of L� is included in some

maximally weakly consistent theory


Proof
 Let $ be weakly consistent� by our �rst lemma above� $ must be

consistent� Let �g� R� some pointed graph satisfying $� Then $ � th�g� R��

and th�g� R� is maximally consistent by the previous lemma� �

Notations� We put Th� �� f$ � L� � $ is maximally consistent g� We

denote the elements of Th� by letters T� S � � � � to distinguish them from

arbitrary theories �denoted by $�& � � � ��

De�nition ����� For T� S � Th�� we put �as in the case of L��

T � S i� ���� � S � �� � T �

i� ����� � T � � � S� �

The graph M �� �Th���� is an in�nitary analogue of the canonical

model construction for modal logic� As usual� we write T j� � when we have

�T��� j� ��

It is easy now to check that
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Lemma ����� For T � Th�� � � L�� and $ � L� having size card�$� 	 ��

we have the following�

�
 ���� � T i� � 
� T

�

V

$ � T i� $ � T

�
 �� � T i� there exists S � Th� s
t
 T � S and � � S

Proof
 Induction on the complexity of sentences�

The steps for negation and conjunction are trivial�

For �� in one direction� suppose that �� � T � Let $ be a theory given

by�

$ �� f� � �� � Tg � f�g�

It is easy to check that $ is weakly consistent� if & � $ is a subtheory of

size 	 �� then & can be seen to be equivalent either to a sentence of the

form � or to a sentence of the form � � �� where �� � T � �This is because

T is maximally consistent� so it is closed under conjunction� and because� in

general� �
V

' is equivalent to
V
f�
 � 
 � 'g�� If & were inconsistent then

one of the above two sentences would be inconsistent� In both cases� the

stronger of the two sentences� namely � � �� would be inconsistent� Then

��� ��� would also be inconsistent� But it is easy to see that ��� ��� � T

�using modal reasoning� the fact that T is maximally consistent and the

facts that �� � T and �� � T �� So it follows that T would be inconsistent�

Contradiction�
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This shows that every such & is consistent� So $ is weakly consistent�

By the previous lemma� $ is included in some maximally consistent theory

S� One can easily check now that we have T � S and � � S�

The converse direction is trivial� �

As an easy corollary we obtain the

Lemma ����
 �Truth Lemma for Canonical Model�

For every T � Th� and every � � L�� we have�

T j� � i� � � T�

Proof
 � Easy induction on the complexity of sentences� using the previous

lemma� �

The canonical model M � �Th���� o�ers a natural interpretation to the

language of set theory� in which the universe is taken to be the set Th� and

the membership relation is interpreted as the converse of �� We want to

prove that this is a model of the axioms of STS� For this� we �rst need to

give an interpretation to the basic classes �formulas� V and Sat of the system

STS�

We put

VM �� fth��x� � x � V�g

SatM �� f�T� �� � T � Th�� � � Tg

Now we can state the main theorem of this section�

��



Theorem ����� �M� VM� SatM� is a model of the axioms of STS
 As a

consequence� STS is consistent� if we assume the axioms of ZFC and the

existence of an in�nite weakly compact cardinal


Proof
 �sketch�

� Extensionality is easy to check� suppose that we have T� T � � Th� s�t�

�S � Th��T � S � T � � S�� By the de�nition of �� this implies that

we have f� � �� � Tg � f� � �� � T �g� This provides the essential

step �for �� for proving that ���� � T � � � T ��� by induction on

the complexity of �� the other two steps� for negation and conjunction�

are trivial�

� Closure of the Universe under pairing and binary union� Let T� S �

Th�� Check that the theories

$ �� f�� � � � T � Sg � f��� � �� � � � T� � � S

and

& �� f�� � �� � T � Sg � f�� � �� � T � Sg

are weakly consistent� Then� check that the unique maximal consistent

theory fT� SgM which extends $ formally satis�es �in the model M

the de�ning property of the unordered pair� similarly� the maximally

consistent theory extending & satis�es the de�ning property of the

	M�union	 of the sets corresponding to T and S�

� The properties of VM�
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We shall use the following internalization of �a special case of� the

Barwise�Moss Modal Characterization Theorem for sets in VAFA�

Every set a � V� is characterized by some sentence 
a � L��

This can be obtained by �rst restricting the above�mentioned theorem

to the well�founded sets in V � and then by applying re�ection �using

the fact that � is an accessible cardinal� so that V� j� ZFC�

It is easy to check now that �VM��� is isomorphic to �V����� the

isomorphism is given by the restriction of the function th� to V�� which

is onto de�nition �since VM was de�ned as the range of this function�

and one�to�one by the above characterization result� This isomorphism

shows that V M is indeed a model for ZFC�

The only properties of VM that remain to be checked are transitivity

and closure under subsets� Transitivity is trivial� For closure under

subsets� let us suppose that T � Th� is 	M�included	 in VM� i�e� that

�S � Th��T � S �� S � VM�

By the de�nitions of � and VM� this means that every maximally con�

sistent theory S� with the property that S � f� � �� � Tg� is satis�ed

by some set aS � VM� But the above characterization result� aS is

characterized by its sentence 
S � L�� so that S �being the maximal

theory of some aS� must contain this sentence�

It follows that the theory

$ �� f� � �� � Tg � f�
a � a � V�g
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is inconsistent� By our �rst lemma� there must exist some inconsistent

& � $ of power 	 �� But it is easy to see that such a & will be

equivalent to a theory of the form

&� � f�g � f�
a � a � Ag�

where �� � T and A is a subset of V� of size 	 �� and hence A � V�

�since � is inaccessible�� But this means that f�g � f
V
a�A �
ag is

inconsistent� so � logically entails
W
a�A 
a� Hence �� �� T � entails

�
W
a�A 
a� By the maximality of 
� it follows that �

W
a�A 
a � T �

From this one can easily deduce that�

T � th�fa � A � �
a � Tg�

But fa � A � �
a � Tg � V� �since A � V��� and so T � VM �by the

de�nition of VM��

� Satisfaction Axioms�

First� we remark that the interpretation of �the formula de�ning� L�

in our model is L��

L�M�
� � L��

Similarly� we remark that the notion of satisfaction of a formula of L�

by a pointed graph in V � is absolute for our model� Finally� we make

the trivial observation that our choice for SatM was the right one�

Sat�M� � SatM�

This implies that our model satis�es the Satisfaction Axioms�
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� SAFA�

The uniqueness half �Strong extensionality� follows trivially from the

Truth Lemma above� which basically says that th��T��� � T �

The existential half � we �rst check that the notion of 	weak consis�

tency	 of a theory $ � L� is absolute for our model� Then� let $ be a

	weakly consistent	 theory� in the sense of the model M� By absolute�

ness� $ is really weakly consistent �in the sense above�� By the lemma

above� there exists a maximally consistent theory T � $� T � Th�� By

the Truth Lemma� this implies that T j� $� so $ is indeed satis�ed by

some 	set	 of our model�

�

��� The Meaning of Classes

As mentioned above� we only consider classes �and in particular pointed sys�

tems and modal theories� as ways of talking about sets� Classes are syntactic

objects �predicates�� which can be used to denote real objects� i�e� sets� There

are various ways a class can be used to do this� For instance� a class can

be thought to denote collectively any of its members� In this sense� a class

may not have a denotation �if it is empty�� but in general will have multiple

denotations� We are not concerned here with this notion of denotation� but

rather with the non�ambiguous ones� in which a class is used as a name�

denoting a unique object� So all the denotation relations we shall consider

will be functions �possibly partial�� Note that they will not be �functions	

�




in the set�theoretical sense� since they are de�ned on proper classes� we shall

use them as convenient notations�

����� The Denotation Function

We are looking for a uniform way to give a meaning �a denotation� to every

de�nable class� This denotation has to be an object� i�e� a set� which can

be thought as the intended �model	 of the class� We start with particular

families of classes� for which there is an obvious meaning�

�� Literal Denotation of a Set�Class
 This is the most straightfor�

ward� naive� notion of denotation� A class is thought to denote itself�

in case it is a set� A class C has a literal denotation dlit�C�if and only

if C is a set� In this case� C denotes itself� dlit�C� � C�

Unfortunately� this denotation function is partial� because of the set�

theoretical paradoxes�


� Modal Denotation �Characterization�
 By Super�Strong Exten�

sionality� we know that every set a is characterized by its total analyt�

ical pattern� i�e� its modal theory th�a�� As mentioned above� this is

the class of all the sound analytical descriptions of the set a� So it is a

natural idea to use the class th�a� as a name for the set a�

The modal denotation �or characterization	 function is the inverse th��

of the function th� Namely� th�� is de�ned on maximally weakly con�

sistent modal theories and
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th���T � �� the unique set a such that th�a� � T�

�� Generalized Denotation of a Class
 As we have seen� proper classes

cannot have literal denotations� But nevertheless� SAFA gives us a way

to assign a unique �generalized denotation	 to every class�

Proposition ����� Every class C is observationally equivalent to a

unique set d�C�


Proof


Let d�C� � th���th�C�� be the modal denotation of the theory of C�

By de�nition� this is the unique set a such that th�a� � th�C�� i�e� the

unique set a � C� �

De�nition ����� The function d� given by d�C� � th���th�C��� will

be called the generalized denotation �or simply the denotation� of C�

Obviously� when C is a set� the generalized denotation coincides with

the literal denotation� d�C� � dlit�C� � C�

In the context of our system� this denotation operation seems to be the

canonical candidate for playing the role of a formal correspondent of

the Cantorian operation of �unifying a collection into one thing	� The

denotation of a class is the only object �set� which is observationally

equivalent to that class� So the denotation function d provides us with
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an internal representative �inside the universe of sets� for each class�

The uniqueness of this representative shows that there is no other can�

didate for the Cantorian function of unifying a class into a set� We

shall later prove that the denotation of C can be seen as the closure

C of the class C in a certain topology� We shall also see what are

the denotations of some of the well�known �paradoxical	 classes �e�g�

Russell�s class��

But� for now� the very existence of the denotation function provides

the beginning of an explanation for the classical set�theoretical para�

doxes� In ZFC and ZFA� the paradoxes were understood as proving

that some classes� though de�nable� are nevertheless meaningless� since

they do not denote any object� But the proper classes in STS� while

not having a literal denotation� still have a meaning� given by their gen�

eralized denotation� The lesson of the paradoxes is that we can freely

de�ne sets�as�classes only up to observational equivalence� So the Com�

prehension Principle is limited only by the Super�Strong Extensionality

Principle� when we �form	 or de�ne a set d�C� by comprehension� de�

noting it by the class C � fx � P �x�g de�ned by a predicate P � we have

only identi�ed the set up to observational equivalence� There might be

many classes observationally equivalent to C� and the denotation func�

tion picks only one of them to represent all� Denotation is preserved

by observational equivalence� But this means that d�C� cannot be al�

ways equal to C itself �as for the literal denotation�� because distinct
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observationally equivalent classes must have the same denotation� The

proper classes �or the �paradoxical	 classes� are those classes C for

which d�C� 
� C�

The classical set�theoretical paradoxes can be thus understood as para�

doxes of denotation� This idea was proposed� in a slightly di�erent

context� by J� Barwise and L� Moss in Vicious Circles� The way

we understand this proposal in STS is by the generalized denotation

function� The classical paradoxes prove that the denotation of a class

cannot be always �literal	� This is now explained by the fact that ob�

servational equivalence puts a restriction on our power to control the

actual structure of the denotation of a class�

In other words� our capacity to de�ne sets by predicates� or to unify

classes into wholes� is subject to the limitations associated with our

capacity to observe �in principle� the intended set� No de�nition can

help us identify objects beyond the limits set by the relation of observa�

tional equivalence� The Naive Comprehension Principle is true modulo

observational equivalence� The �generalized� denotation function gives

us a canonical way to assign to each de�nable class some reference�

which is an object re�ecting all the analytical �i�e� in�nitary modal�

properties of that class�

The denotation function can be further extended to pointed systems�

�� The Denotation of a Pointed System
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We can use pointed systems as names for sets� by the following gener�

alization of the above proposition�

Proposition ����� �Weak SAFA�� Every pointed system S � �g� R�

is observationally equivalent to a unique set d�S�


Proof
 Take d�S� � th���th�S��� �

As we have mentioned in the previous chapter� this proposition is a

particularly useful and natural weakening of SAFA� which was my

initial proposal for the axiom SAFA� Its uniqueness half is just super�

strong extensionality� while its existential half �every pointed system

is � to some set� is called structural completeness
 If we think of

� as modal equivalence� then this can be seen as a strong Re�ection

Principle for in�nitary modal logic�

So we can think of a pointed system S as a way to denote the unique

set d�S� which is observationally equivalent to S� Thus� we de�ne the

denotation function d for pointed systems by

d�S� �� th���th�S���

There is a slight ambiguity produced by the fact that pointed systems

are classes� and the denotation of S as a class is not in general the same

as its denotation as a pointed system� But we shall still use the same

notation d for both functions� and decide which function is meant by

notation used for its argument � S or �g� R� for systems� and A�B�C���

for classes��
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We can recover the class�denotation from the pointed�system�denotation�

by identifying classes with particular kinds of pointed systems� Namely�

we associate to a given class C the pointed system SC de�ned by its

membership�structure� just take an arbitrary object as the root and

take as its immediate successors all the members of C �or some copies

of them�� and in rest take membership as the successor �edge� relation�

Then one can easily show that our two denotation functions �agree	 in

the following sense�

d�C� � d�SC��

This shows that the notion of denotation for pointed systems can be

indeed understood as an extension of the class�denotation function�

As in the case of classes� the denotation of a pointed system acts as

the internal representative �inside the universe of sets� of a family of

observationally equivalent pointed systems� The denotation function

is the formal implementation of my earlier notion of �actualization	

or �realization	 of a potential structure� Denotation takes a potential

structure �pointed system� S and returns an actual ��structure �set�

d�S�� which is observationally equivalent to S�

��	 Decorations and approximations

One can understand the denotation of a pointed system as a generalization

of Aczel�s notion of decoration� Recall that a decoration of a graph �i�e� small

system� R is a function dR mapping nodes to sets such that
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dR�g� � fdR�g�� � gRg�g � for all nodes g�

For large systems� this notion of decoration is not so useful� since the

collections fdR�g� � gRg�g on the right side will usually not be sets� while the

left side dR�g� is by de�nition a set� So most large systems will not have

decorations in Aczel�s sense� But there is a more natural generalization of

this notion for systems�

De�nition ����� A decoration of a system �binary relation� R is a de�nable

class�function dR� having the property that

dR�g� � fdR�g�� � gRg�g � for all sets g�

The decoration of a pointed system S � �g� R� is the set dR�g��

We use the same name �decoration� for the more general notion� This

is consistent� since one can easily see that� if a system R has a decoration

in Aczel�s sense� then it has a decoration in our generalized sense� and the

two notions coincide for S� In particular� they coincide for the small systems

�graphs�� which form the speci�c domain of application of Aczel�s de�nition�

Moreover� generalized decorations are unique �by super�strong extensional�

ity�� So there is no possibility of confusion� and we can use the same term

to denote both notions�

We do not use capital letters to denote decorations� since we shall prove

later that they are always sets� But the relevant part of a decoration is its
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restriction to the class fg � gRg� for some g�g of all the nodes of the system

R� And this restriction is not always a set �but only when the class of all

nodes is itself a set��

An easy consequence of SAFA is the following generalization of Aczel�s

formulation of AFA�

Proposition ����� Every system has a unique decoration
 The decoration

of a pointed system S is its denotation d�S�


As a result of this proposition� the notions of decoration and denotation

of a pointed system coincide� Aczel�s decorations were conceived as gener�

alizations of Mostowski�s collapsing functions� that map well�founded struc�

tures to set�structures in ZFC� and Aczel�s AFA was a generalization of

Mostowski�s well�known Collapsing Lemma to non�wellfounded structures�

Now we can understand the denotation of a pointed system as a way of

collapsing it to a set in STS� and the weak version of SAFA as a further

generalization of the Collapsing Lemma�

Proof of the proposition
 For a system R� de�ne the function dR by�

dR�g� �� d�g� R��

where d is the denotation function for pointed systems� One can check that dR

is indeed a de�nable class�function �the actual de�nition is given by dR�g� �

th���th�g� R�� �� To show that dR is a decoration� we need to prove that the

denotation function has the following property�

d�g� R� � fd�g�� R� � gRrg�
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for every pointed system �g� R��

To show this� we use the fact that d�g� R� � �g� R�� to prove that� for all

modal sentences �� we have�

d�g� R� j� � i� fd�g�� R� � gRrg j� ��

The proof of this is an easy induction on the complexity of modal formulas

�� �

Applications


�� Aczel�s Universe� One can easily use the concept of decoration to con�

struct a standard model of Aczel�s ZFA inside our theory� just take

the decorations of all the pointed graphs in V �

VAFA �� fdR�g� � �g� R� � V is a pointed V 
 graphg�

This coincides with the class HS of all hereditarily small sets and can

be proved to be a model of ZFA� It is the natural model of Aczel�s

theory inside our universe of sets�

�� Unfoldings� As another application� we can now formally de�ne the un�

foldings of rank �� by transforming the informal de�nition by recursion

into a corresponding system �relation�� whose decorations are the un�

foldings�
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Formally� we �rst put� for every ordinal � and every set x�

a�x �� ��� x� ��

b�x �� ��� x� ��

c�x �� ��� x� 
�

Then we de�ne a class�relation R by the following clauses�

�i� a���
x Ra�y i� y � x

�ii� a�xRb
�
x i� � 	 � and � is a limit ordinal

�iii� b�xRf�g� b
�
xRc

�
x

�iv� f�gR�

�v� �R
 i� 
 	 �

�vi� c�xR�� c
�
xRa

�
x

�vii� no other pairs are in the relation R but the ones listed above �in

cases �i���vi���

We can then de�ne the unfoldings by�

x� �� dR�a�x�

and check by induction that they satisfy the desired recursive equations�

We can similarly de�ne the modal sentences ��a and �a� informally de�

�ned above �to capture the information given by unfoldings and descrip�

tions�� It is easy to check that they have all the properties mentioned
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in section �� in particular that� for every set b� we have�

b j� �a� i� b �� a�

Moreover� one can easily see that �a� is semantically equivalent to the

conjunction of all the modal sentences of rank � �� We shall call the

sentence �a� the modal description of rank � of the set a�

�� Bo�a Approximations We shall show now that every class can be ap�

proximated by hereditarily small sets in a canonical way� In other words�

we show that� for every �� every possible unfolding of rank � is realized

in Aczel�s universe VAFA � HS� More precisely�

Proposition ����� Every class is approximable by sets in VAFA � in

the following sense � for every class C and every ordinal � there exists

some c� � VAFA s
t
 c� �� C


We �rst prove the proposition for sets� For this� we introduce the

Forti�Bo�a approximations�

De�nition ����� A Forti�Bo�a approximation of rank � of a set a is

a set a�� satisfying the following conditions�

a��� � fb� � b � ag

a� � fb� � b is a set s�t� b� � a��� for every � 	 �g� for � limit ordinal�

Observe that this is not a simple de�nition by recursion� the clause for

limit�ordinals is not inductive� But one can prove the existence of the
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Bo�a approximations by using decorations� Using the same notations

a�x � we de�ne a class�relation R� by the following inductive clauses

�i�� a���
x R�a�y i� y � x

�ii�� a�xR
�a�y i� a���

x R�a�y � for every � 	 �� �� limit ordinal�

Then we de�ne

x� �� dR�a�x�

and check by induction that these approximations are hereditarily small

and satisfy the conditions of the above de�nition� Then we show that

they indeed approximate the given set� in the sense of the proposition

above�

Lemma ����� For all sets a and all ordinals �� we have

a� �� a�

Proof
 The proof goes by induction on �� The successor step is trivial�

since the inductive clause for approximation in this case matches the

recursive bisimulation�like clause for ����� For the limit case� we need

to show that a� �� a� For this� we check by induction on 
 that�

a� �� a
� for all 
 	 � and all sets a��

Both the successor and the limit cases for this second induction are

trivial� �

��



Now we can extend this to classes�

Proof of Proposition above
 Let C be a given class� Put c � d�C��

This is a set having the property that c � C� and so c �� C for every

�� By the above lemma� the hereditarily small approximations c� of

the set c satisfy c� � �c� By transitivity we obtain c� � C� �

Observe the similarity between approximations and unfoldings� The

only di�erence is at the limit stages� The unfoldings approximate the

given set in an informational sense� while the Bo�a approximations are

real 	set�theoretical	 approximations� their ��structure is more and

more alike the structure of the given set� They have all the useful prop�

erties of the unfoldings� and moreover they provide canonical hereditar�

ily small representatives for every set� up to observational equivalence

of rank �� But the price for this is that they are not necessarily well�

founded� they live in Aczel�s universe VAFA� while the unfoldings live

in the well�founded universe WF �

As far as I know� the above notion of approximation was �rst de�ned

inside SAFA by Forti �Forti���� � in his construction of a model for the

Generalized Positive Comprehension Principle� It was then formalized

by Bo�a �Bo�a���� � who gave it a direct axiomatization� independent

of AFA�
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����� Paradoxical Sets

The classical set�theoretical paradoxes show that certain classes are �para�

doxical	� i�e� they cannot be sets� but proper classes� In our system� this

means they do not denote themselves� they are not their own �generalized�

denotations� But what are the denotations of these paradoxical classes� We

have understood these denotations as �actualizations	 of the corresponding

classes� and characterized them as decorations of the associated pointed sys�

tems� But� in the case of the speci�c classes that generate the classical para�

doxes� we would like to have some concrete descriptions for their denotations�

���� The Universe
 The class U of all sets is a set �and so it is its

own denotation�� What about Cantor�s paradox� Well� U is an exception to

Cantor�s diagonal argument� PU � U is not bigger than U � Cantor�s argu�

ment cannot be carried out� since the collections obtained by diagonalization

are not sets� but proper classes� U is the largest �xed�point of the power�set

operator�

���� The set of all ordinals
 We start with the class On of all the

von Neumann ordinals� An ordinal is a set which is well�ordered by ��

Alternatively� the class On can be de�ned as the least class closed under

the two Cantorian operations of successor and limit �i�e� union�� if � is an

ordinal then its successor � � f�g is an ordinal� if A is a set of ordinals then

its supremum
S
A is an ordinal�

One can show that ordinals look more and more alike as they grow bigger�
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indeed� we have � �� 
 for all 
 � �� Moreover� they look more and more

alike the class of all ordinals� � �� On for every ��

Now� if On were a set then we could form the set On � fOng� But from

the above observation �and the recursive bisimulation�type properties of ���

would follow that On �� On� fOng for all �� and so On � On� fOng� By

super�strong bisimilarity we obtain On � On � fOng� so On � On� This is

a contradiction� the ordinals are well�ordered by �� i�e� well�founded� So On

cannot be a set�

The above argument closely resembles the classical Burali�Forti argument�

But this version of the argument can also be applied to the set d�On�� the

denotation of the class On� This is the smallest set closed under successors

and limit�set�union�� The same argument above� starting with �if On were

a set��� 	 can be now applied to d�On�� which is indeed a set and is ob�

servationally equivalent to On� But now the argument does not lead to a

contradiction� d�On� is not necessarily well�founded� The conclusion is that

we just have�

d�On� � On � fd�On�g�

So the �nal outcome of the Cantorian operations of successor and limit

is a �xed point of these operations� This reveals the structure of the the

set d�On�� the denotation of the class of all ordinals� this �largest ordinal	

contains as members all the well�founded ordinals� and one more thing� itself�

We shall sometimes consider d�On� as a non�standard �ordinal	� bigger than
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all the standard ones� For this reason we shall use the symbol � to denote

it� So we put

� �� d�On� � On � f�g�

���� The Universe of the Limitation�of�Size Conception
 The

natural universe for the limitation of size conception is the class HS of all

hereditarily small sets� which coincides with Aczel�s universe VAFA� This

is not a set� To see this� recall the Proposition in the previous section�

saying that every set can be approximated by hereditarily small sets� As a

consequence� we obtain that the denotation of Aczel�s universe VAFA is the

whole universe U �

Corollary ����� VAFA � U � and so d�VAFA� � U 


Proof
 We show that VAFA ���� U for all � � On � one direction is

easy� since VAFA � U � for the other direction� we use the above�mentioned

Proposition� saying that �� � On�a � U�a� � VAFAa �� a
�� �

So the real universe� which is re�exive �U � U�� is indistinguishable �at

any stage of unfolding� from Aczel�s non�re�exive universe VAFA� This seems

weird� what is the use of U then� The answer is that VAFA is not an actual

object� Its actualization is our universe U �

Remark
 VAFA 
� U � since by Russell�s Paradox we have VAFA �� VAFA

� while U � U �� and so VAFA is not a set � since otherwise VAFA � U

would imply VAFA � U � by SAFA��
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���� The Russell Set
 A set is re�exive if it is a member of itself� By

Russell�s Paradox� the Russell class of all non�re�exive sets R � fx � x 
� xg

cannot be set� What are the missing elements� It turns out that every re�

�exive set which is not hereditarily small �not in VAFA� can be approximated

by non�re�exive sets� So we conclude that we have�

d�R� � R � �U n VAFA�

���� The set of all wellfounded sets
 Mirimano� �s paradox shows

that the class WF of all wellfounded sets cannot be a set� Its denotation is

d�WF � � fx � every hereditarily small element of the transitive

closure of x is wellfoundedg�

Observe that WF is generated by the well�known iterative process� if

we put V� � 	� V��� � PV� and V� �
S
��� V� for � limit� then we have

WF �
S
� V� Its denotation d�WF � is the least �xed point of this process

�among sets��

d�WF � � P�d�WF ���

Examples ����� ���� and ���� can be generalized to a theory of mono�

tonic operators� having least and greatest �xed points� Our universe has very

interesting properties in this respect� unlike what happens in ZFC �or ZFA��

the usual iterative�inductive way of constructing the least �xed point can be
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dualized to get a construction of the largest �xed point �see below the chapter

on Applications��

����� The Size of the Universe

Proposition ����
 If A 
� B � VAFA are distinct subclasses of VAFA then

their denotations are distinct� d�A� 
� d�B� 


Proof
 Let a � A n B �say�� Then a � VAFA� so a is characterizable by a

modal formula 
a� by the Modal Characterization Theorem for sets in VAFA

proved by Barwise and Moss� Hence A j� �
a � while B j� ��
a � But

A � d�A� and B � d�B� � so d�A� j� �
a� d�B� j� ��
a � and hence

d�A� 
� d�B� � �

Note that the above Proposition gives us an injection of the �external	

powerset of VAFA�the family of all subclasses of VAFA� into U � and hence that

jU j � 
jVAFAj � jVAFAj� Using SAFA� one can show that we also have�

Proposition ����� jU j � 
jVAFAj
 Hence jU j � 
jVAFAj


Recall the notation � �� d�On� � On � f�g� This can be considered

as being �the last ordinal	� although a non�standard one �since it is not

wellordered by �� but is still wellordered by ��� It has the size of VAFA � and

of On�� so we can identify it with �the cardinal of VAFA	 � which was until

now just an informal notation ��� Thus we de�ne�

jCj �� � i� C has the same size as VAFA�
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Hence we have�

jVAFAj � jWF j � jOnj � j�j � ��

Let us also de�ne�

jCj � U i� C has the same size as U �

Then the above Proposition says that

jU j � 
��

A nice equation indeed �
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Chapter �

Comprehension and Topology

	�� Comprehension for Modal Theories

In this section� we prove the Comprehension Principle for Modal Theories�

every modal theory de�nes a set� We also prove that this Modal Comprehen�

sion is enough to generate all the sets�every set is de�nable by an �in�nitary	

modal theory� We also show that the denotation function for classes has all

the properties of a topological closure operator� We do this by introducing

a closure operator on classes� dual to the notion of deductive closure of a

modal theory� We later prove that this closure operator coincides with the

denotation function on classes�

����� Closure and Modal De�nability

It is well�known that every relation between two sets �or classes� induces a

	Galois connection	 between the respective subsets �or subclasses�� I investi�

gate here the Galois connection induced by the satisfaction relation between

the class U of all sets and the class L� of all in�nitary modal sentences�
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De�nition ����� For a modal theory T � the class de�ned by T is the class

Mod�T � ��fa � a j� � for every � � Tg consisting of all the 		models	 of the

theory $� i�e� all the sets satisfying $� We say a class C is modally de�nable

if it is de�ned by some modal theory� i�e� C � Mod�$� for some $ � L��

Dually� for a class C � U � consider its modal theory Th�C� �� f� �

c j� � for every c � Cg� containing the modal sentences that satis�ed by

every member of C� We say that a theory is deductively closed if it is of the

form Th�C�� These theories are the ones that are closed under �semantical�

entailment�

Notice the di�erence between Th�C� and th�C��

Consider now the family Class of all classes� Again� this is just a way of

speaking� everything we shall de�ne or prove can be stated without reference

to families of classes� But nevertheless� from an intuitive point of view� it is

useful to consider the family Class and observe that it is a complete lattice

with respect to inclusion� The supremum and in�mum of any family of classes

is given by their union and their intersection� respectively� The least element

of Class is the empty set 	� while the greatest element is the universe U �

We can also consider the family Theory of all modal theories� which is also a

complete lattice with inclusion� Then we can understand the operators Mod

and Th as functions between these complete lattices�

Proposition ����� The pair �Mod� Th� is a Galois connection between classes

and theories �both ordered by inclusion	� i
e�

C � Mod�T � i� T � Th�C��

���



Consequently� the operators T �
� Th�Mod�T �� �on theories	 and C �
�

Mod�Th�C�� are topological closure operators on the corresponding complete

lattices


Proof
 Easy� �

De�nition ����� Let T �� Th�Mod�T �� �the deductive closure of T � and

C �� Mod�Th�C��� The second will be called the closure of C�

As mentioned above� both have the properties of a topological closure

operator� In particular� we have�

� every class is included in its closure� C � C�

� the empty�set and of the universe are their own closures� 	 � 	� U � U �

This implies that the empty set 	 and the universe U are both sets�

� Closure permutes with arbitrary intersections� if F is a �de�nable�

family of classes then

�
F �

�
fC � C � Fg�

We shall see later how can we state this directly� without any reference

of families of classes�

� Closure permutes with binary union� A � B � A�B� This will be later

generalized to small unions� i�e� unions of small families of classes�
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Observe that a class C is modally de�nable if and only if C � C� The

closure of a class C will be studied in the next section �when it will be given

an alternative de�nition� in terms of decorations�� We shall see that the

closure of C is the �generalized� denotation of C� So the closure operation

on classes can be understood as the Cantorian operation of unifying a class

into a set� to unify all the objects having some property into a whole one

might have to add some extra�objects� which cannot be separated from the

class� In topological terms� these are the �limits	 or �accumulation points	

of the process that generates all the members of the class�

We know that every set can be characterized by a modal theory� We

show now that every set is also de�nable by a modal theory� Moreover� the

converse is true� modally de�nable classes are sets� So we obtain our �rst

characterization of sets�as�classes�

Theorem ����� �Modal Comprehension Principle and its Converse�

A class C is a set if and only if it is modally de�nable� i
e
 i� C � C


In particular� C is always a set �since C � C� by the topological properties

of closure	


Proof
 To show that every set is modally de�nable� let a be set� T � th�a�

be its characteristic theory� Then check that the theory T� � �� f� � �� �

$g de�nes the class a�

To show modally de�nable classes are sets� Let $ be a modal theory and

let C � fc � c j� $g be the class de�ned by it� We can safely assume that $ is

the largest theory with this property� i�e� that $ � f� � c j� � for all c � Cg�
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Now take the theory D$ �� f�� � � � $g � f�� � ���� �� $g� Check

this theory is weakly consistent� take some set a satisfying it and check that

a � C� �

The above theorem can be restated in the following form�

The restriction of the operator Th to the universe U of sets gives a

bijective correspondence between sets and deductively closed modal

theories
 The inverse of this correspondence is given by the oper�

ator Mod


����� Applications of Modal Comprehension

As an easy consequence we prove�

Proposition ����� The union axiom and the power set axiom are true


Proof
 Let a be a set and let $ � Th�a� �� f� � x j� � for every x � ag�

Since a is a set� we have a � Mod�Th�a�� � fx � x j� $g� so that a is de�ned

by the theory $� Then it easy to check thatPa is de�ned by the theory

�$ �� f�� � � � $g�

Similarly�
S
a is de�ned by the theory $� � �� f� � �� � $g� but this

fact is harder to check� it makes essential use of the strong formulation of

SAFA� To see this� let a� be some set satisfying the theory $� �� We need

to show that a� �
S
a� i�e� that there exists some b � a� such that a� � b� To

construct the set b� we take the theory

& � $ ��th�a�� � $ � f�� � a� j� �g�
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Now� it is easy to see that any set b which satis�es this theory must have

the desired properties that� b � a and a� � b� So it is enough to show there

exists some set b satisfying the theory &� But there is no direct way to show

that & is consistent �i�e� to construct a pointed system which satis�es it��

The theory & is a proper class� de�ned in terms of the maximal theory th�a��

of a�� for which we do not have any control� except that we know that a�

satis�es $� � �so that we must have $� � � th�a����

The trick is to use strong SAFA� in this way� we only need to check that

& is weakly consistent� For this� let &� � & be a subset of &� Then� by the

de�nition of &� it follows that we can write &� as a union of two sets &� �

$� � �'� with $� � $ and ' � th�a��� Then we must have �
V

'� � th�a��

�here
V

' is a sentence since ' is a set�� But th�a�� is a consistent theory�

so ��
V

'� �� th�a��� But� as mentioned above� we know that $� � � th�a���

and hence ��
V

'� �� $� �� But this means that ���
V

'� �� $� By the

de�nition of $ � Th�a�� it follows that there must exist some b � a which

falsi�es ���
V

'�� In other words� b j� �
V

'� From this follows that b j� �


for every 
 � '� i�e� b j� �'� But we also have b � a � fx � x j� $g� so

b j� $ and hence b j� $� �since $� � $�� Putting these together� we see that

b j� $� � �'� and so the theory &� � $� � �' is consistent� But &� is just

an arbitrary subset of &� Hence & is weakly consistent� By SAFA� there

exists some b which satis�es the theory &� �As pointed out above� any such

b will have the desired properties�� �
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One can similarly prove the universe of sets is closed under small unions�

arbitrary intersections� singletons etc�

In particular� it follows that V is in fact a model of full ZFC�� We have

not assumed Foundation for V � so we cannot prove it to be a model of full

ZFC� But we can of course construct the class WF � V of all well�founded

sets� which is indeed a model of ZFC�

We shall now prove a version of the topological property stating that

closure permutes with arbitrary intersections� Taking into account the fact

that the closure of a class is always a set and that a class is a set if and only

if it closed� we can restate this topological property in a form that does not

mention families of classes�

Proposition ����� The universe of sets U is closed under arbitrary inter�

sections� i
e
 if A is a collection of sets then
T
A is a set


Proof
 Let A be a collection �class� of sets� Its intersection
T
A is a de�nable

class� Its closure
T
A is a set� which by the topological properties of closure

coincides with the intersection of all the closures of the members of A� But

the members of A are sets� so they coincide with their own closures� Hence�

�
A �

�
fa � a � Ag �

�
A�

So
T
A is a set� �

Corollary ����
 The universe of sets U coincides with the family of all its

subclasses that are closed with respect to the topology induced by the deno�

tation function
 As a consequence� U is a complete lattice with respect to
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inclusion
 The in�mum of a collection A of sets in this lattice is its inter�

section inf�A� �
T
A� and the supremum of C is the closure of its union

sup�A� �
S
A�

	�� Characterizations of Sets and Closures

As we have seen above� the operator C �
� C is a topological closure op�

erator� In particular� C is a superset of C� C � C� To unify a collection

you may have to add some objects �the �limits	 of the process that generates

the collection�� The way our system formalizes the incompleteness of proper

classes is by saying they are not closed in this topology� This gives a second

characterization of sets�

A class is a set if and only if it is closed in the topology given by

the denotation function


So the universe U coincides with the family of all its closed subclasses�

Small classes play the role that �nite sets have in topology� �nite sets are

closed in every well�behaved �Hausdor�� topology� while all small sets are

closed in our topology�

The following theorem gives a list of several characterizations for closure�

Theorem ����� The closure C of a class C can be characterized by any of

the following statements�

�
 The closure is the denotation� C � d�C�
 In other words� C is the

unique set observationally equivalent to C
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�
 The closure C is the largest class observationally equivalent to C
 So to

actualize a class you have to realize all its potentialities� out of all the

possible observationally equivalent classes� the actualization function

�closure	 picks up the largest one


�
 The closure C is the least set that includes C
 It is the �best upper

approximation� of C inside the universe of sets


�
 An object is a member of C if it cannot be distinguished from the mem�

bers of C by a modal formula
 i
e
 if it satis�es all the modal formulas

true everywhere on C


�
 An object is a member of C if it cannot be distinguished from the mem�

bers of C at any stage of unfolding�

C � fc � for every� there is some c� � C s
 t
 c �� c�g

Proof


�� By the de�nition of denotation� we see that in order to prove that

C � d�C�� we need to show that C is observationally equivalent to C�

C � C� In other words� we need to show that C and C satisfy the same

modal sentences �� We can prove this by induction on the complexity

of �� The interesting case is when � is of the form ���

Suppose that C j� ��� Then there exists some c � C such that c j� ��

But we know that C � C� by the topological properties of closure� So

c � C� and hence C j� ���

���



Conversely� suppose that C j� ��� Then there exists some c � C such

that c j� �� By de�nition C � Mod�Th�C��� so that we must have

c j� Th�C�� But this means that we cannot have ���� � Th�C� �else

c would satisfy both � and ���� So ���� 
� Th�C�� from which we

conclude� by the de�nition of Th� that not all the members of C satisfy

��� Hence there must exist some c� � C such that c� j� �� But this

implies that C j� ���


� To show that C is the largest class observationally equivalent to C�

let B be any class such that B � C� Then B � C �by SAFA�� But

B � B� so B � C�

�� To show C is the least set observationally equivalent to C� let a be any

set such that C � a� Then� by the topological properties of the closure�

we have C � a � a�

�� This one follows directly from the de�nition of C �� Mod�Th�C���

�� This one follows from the previous one� by observing that an object c

satis�es all the sentences in Th�C� i�� for every ordinal �� c satis�es

all modal sentences of rank � � in Th�C�� But this is equivalent to

saying that� for every � there exists some c� such that c �� c��

�

From this we obtain two new characterizations of sets�

A class is a set if and only if it is maximal among all the classes

which are observationally equivalent to it�
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A class is a set if and only if it contains every object which cannot

be distinguished from all its members at any stage of unfolding�

	�� Limits

The way hypersets in ZFA relate to wellfounded sets has been compared

by many to the construction of the complex numbers from the reals or to

the construction of the rational numbers �as pairs of integers�� The way

we described the sets in STS �as ON �long sequences of unfolding� using

wellfounded sets resembles the construction of the real numbers as sequences

of rationals� The analogy can be pursued by studying the notion of limit

that comes with the topology induced by modal descriptions� I only mention

brie�y some de�nitions and some properties�

����� Convergence	 Compactness and Completeness

Two sets a� b are said to be equivalent with respect to a modal sentence � if

we have� a j� � i� b j� �� In this case we write a �� b�

De�nition ����� Given an On�long sequence of sets indexed by ordinals

ha�i��On and a set a� we write

lim
���

a� � a

if for every in�nitary modal sentence � there exists some ordinal � � On such

that for all � � � we have a� �� a� Equivalently� if for every ordinal � � On

there exists some ordinal � � On such that for all � � � we have a� �� a� In

this case we say the sequence is convergent�
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De�nition ����� The sequence ha�i��On is said to be a Cauchy sequence

if for every modal sentence � there exists some ordinal � � On such that for

all �� 
 � � we have a� �� a�� Equivalently� if for every ordinal � � On there

exists some ordinal � � On such that for all �� 
 � � we have a� �� a��

Examples of convergent sequences are�

lim
���

� �� On � On � f Ong

and

lim
���

V� � WF �
�

V��

where fV�g� is the usual iterative hierarchy�

As a consequence of SAFA� one can show that the universe U is compact�

as a topological space�

Theorem ����� �compactness	 Every On�long sequence of sets ha�i��On

has a convergent subsequence


Proof
 Unlike most others� this proof uses the strong formulation of

SAFA in an essential manner� The theorem is not provable if we only assume

the �weak version	 of SAFA�

Assume as given the sequence fa�g��On� It is enough to show that the

sequence has an accumulation point� i�e� there exists some set a such that

�
�� � 
 a	 �� a� It is easy to construct a subsequence convergent to such

an accumulation point�
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The following should be understood as a recursive de�nition� for each

ordinal 
� consider the sentence

�� ��
�

	
�

��a� �

where each sentence ��a� is the �above de�ned� modal description of rank 


of the set a	 �

Observe that� for each 
� �� is a modal sentence� despite the fact that it

was de�ned by a disjunction of a family indexed by all the ordinals bigger

than 
� The reason is that there is only a small set of distinct possible

�modal� descriptions of a given rank� Observe also that� in general� we have

a	 j� �� for every 
 	 ��

Now take the theory T �� f�� � 
 � Ong� This theory is weakly con�

sistent� every subset T � � T is small �since T � � T � V and V is closed

under set�formation� so the set T � must be in V �� and so is contained in some

subtheory of the form T� � f�� � 
 	 �g� for some ordinal �� But each such

subtheory is consistent� since it is satis�ed by a��

So� by SAFA� we conclude that T must have a model a� This set a is

easily seen to be an accumulation point� let 
 be a given ordinal� then a is

a model of T � so in particular a j� ��� But by the de�nition of phi�� this

implies that there exists some � � 
 such that a j� ��a� � and hence a �� a	 �

So we have �
�� � 
 a	 �� a� i�e� a is an accumulation point� �

Corollary ����� �completeness�� Every Cauchy sequence is convergent


���



Proof
 Trivial� given the previous theorem� it is easy to see that every

two accumulation points of a Cauchy sequence must be in the relation � ��

for every �� so they must be observationally equivalent� By super�strong

extensionality� they have to be identical� But this means the sequence has

exactly one accumulation point� i�e� it has a limit� �

����� Properties of limits

Proposition ����� Closure is closure under limits�

C � fa � �fa�g��On � Cs
t
 lim
���

a� � ag�

This gives a new characterization of set� A class C is a set i� it is closed

under limits


Proposition ����� �
 The limit operator permutes with the following op�

erations� singleton� powerset� binary union� in�nitary union operator�

Cartesian product
 But not with intersections �

�
 The following relations are preserved under limits� ���� j�������


�
 If fa� � � � Ong is convergent then

lim
���

a� � f lim
���

b� � fb� � � � Ong is a convergent sequence s
t
 b� � a� for every �g


�
 If lim��� a� � a and � is a modal formula then the following are

equivalent�

���



�i�� a j� �

�ii�� ���
 � � a� j� �

�iii�� ���
 � � a� j� �

In the next section� we shall generalize this property of modal sentences

to an important class of in�nitary �rst�order sentences� namely the extended

positive in�nitary formulas �EPF��

Proposition ����
 Suppose lim��� a� � a and ��x� � EPF�� such that

���
 � � ��a��
 Then we also have ��a�


�

	�� Strong Comprehension and Closure Prop�

erties

The so�called Generalized Positive Comprehension Principle is a very strong

comprehension schema� that has been considered by Malitz �in �Malitz ���� �

and Weydert� in �Weydert ���� � and proved to be consistent by Forti �Forti

���� � The model constructed by Forti is a topological structure� which can

be proved to satisfy all our axioms� So our system STS can be considered

an axiomatization of Forti�s model� The axiomatization� though necessar�

ily incomplete� is strong enough to prove the Generalized Comprehension

Principle� Moreover� SAFA is much stronger than this principle and it de�

cides most set�theoretical questions regarding the shape and features of the

intended universe�

���



In this section we shall prove a strengthening of the Generalized Positive

Principle in our system STS�

De�nition ����� The class of in�nitary extended positive formulas �EPF��

is the least class containing all atomic formulas x � y� and closed under the

following operations

�� in�nitary conjunctions and disjunctions� if $ is a set of EPF��formulas

then
V

$ and
W

$ are also EPF��formulas


� existential quanti�ers� if � is an EPF��formula then �x� is also an

EPF��formula

�� bounded universal quanti�ers of three di�erent types� if � is an EPF��

formula� and 
�x� is an arbitrary formula in L�� which has x as its only

free variable� then the following formulas are also in EPF�� �x � y ��

�x � y �� �x�
�x� � ���

����� The Extended Positive Comprehension Theorem

Theorem ����� � EPF��Comprehension	� For every � � EPF�� having

x as a free variable� we have

�y�x �x � y � �� 


As a consequence� the universe of sets U is closed under the following

operations�

� unordered pairs �and singletons�� is a� b are sets then fa� bg is a set

���



� pairs� if a� b are sets then �a� b� is a set

� small unions� if fa�g��� is a small set of sets then
S
��� a� is also a set

� set�unions� if a is some set then
S
a is also a set

� powerset� if a is some set then Pa is also a set

� dual powerset� if a is some set then fx � x � a 
� 	g is a set

� arbitrary intersections� if C is a class of sets then
T
C is also a set

� small Cartesian products� if fa�g��� is a small set of sets then
Q

��� a�

is a set� in particular� if a� b are sets then a� b is a set

� inverse� if a is some set then a�� � f�x� y� � �y� x� � ag is also set

� domain� if a is some set then dom�a� � fx � �y s�t� �x� y� � ag is a set

� codomain �range�� if a is some set then cod�a� � fy � �x s�t� �x� y� � ag

is a set

� �relational� composition� if a� b are sets then a b � f�x� z� � �y s�t� �x� y� �

a and �y� z� � bg� The same goes for functional composition�

� image� projections and permutations�

Another consequence is that the following relations and operations are

sets �in U��

� identity� I � f�x� y� � x � yg

���



� membership� E � f�x� y� � x � yg

� inclusion� C � f�x� y� � x � yg

� singleton operator� S � f�x� fxg� � x is a setg

� pair operator� P � f�x� y� �x� y�� � x� y are setsg

� binary union operator Un� � f��x� y�� x � y� � x� y are setsg

� set�union operator� Un � f�x�
S
x� � x is a setg

� powerset operator� P � f�x�Px� � x is a setg

� dual powerset operator

� �binary� Cartesian product operator�
Q

� f�x� y�� x� y � x� y are setsg

� the domain operator on relations� dom � f�x� dom�x�� � x � U � Ug

� the codomain operator on relations� cod � f�x� cod�x�� � x � U � Ug

� the inverse operator on relations� inv � f�x� x��� � x � U � Ug

� the relational composition operator� comp � f��x� y�� x  y� � x� y �

U � Ug

� the image operator� the projections� the permutations and groupings

of n�tuples�

The rest of this chapter is devoted to the proof of the above Theorem on

EPF��Comprehension�

���



Lemma ����� If � then we have� For all sets a�� � � � � an� b�� � � � � bn �n � N	�

the following are equivalent�

� ai �� bi for every i � �� � � � � n

� fa�� � � � � ang ���� fb�� � � � � bng

� �a�� � � � � an� ���n �b�� � � � � bn�

Proof
 Easy� using the recursive conditions satis�ed by the relations ��� �

De�nition ����� For every class �unary formula � C and every ordinal ��

de�ne a class

C� �� fx � �y �� x s�t� y � Cg�

More generally� for every n�ary formula ��x�� � � � � xn� � L��� and every

ordinal �� de�ne a formula

���x�� � � � � xn� �� �y� �� x� � � ��yn �� xn ��y�� � � � � yn��

Lemma ����� For every class C� every n�ary formula ��x�� � � � � xn� � L���

and every ordinal �� we have the following�

�
 the class C� is a set� which moreover is de�nable by a single modal

sentence
 More generally� the formula �� is �essentially modal�� in

the following sense� there exists some modal sentence 
� such that the

formula ���x�� � � � � xn� is equivalent to the formula �x�� � � � � � � � � j� 
�

�
 C � C�
 More generally� � implies each ��


�
�



�
 C �
T
��OnC�


�
 C is a set i� C �
T
��OnC�
 More generally� f�x�� � � � � xn� � ��x�� � � � � xn�g

is a set i� the formula ��x�� � � � � xn� is equivalent to the conjunction of

all ���s �i
e
 with the theory f�� � � � Ong	


This suggests the following

De�nition ����� A formula � � L�� is called comprehensible if it is equiv�

alent to the theory f�� � � � Ong�

Corollary ����
 Let ��x�� � � � � xn� � L��� be a formula having all its free

variables among x�� � � � � xn
 Then the following are equivalent�

�
 � is comprehensible

�
 there exists some set a such that we have

�x�� � � � � xn��x�� � � � � xn� � a �� ��x�� � � � � xn���

So to prove the above Theorem� it is enough to prove the following

Lemma ����� Every formula ��x�� � � � � xn� � EPF� is comprehensible


Proof
 We need to show that each � is implied by the conjunction of all the

���s �since the converse implication is always true�� We do it by induction

on the complexity of formulas in EPF��

�
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� For formulas ��x�� � � � � xn� � xi � xj� The interesting case is when

i� j � f�� � � � � � ng� Fix some sets b�� � � � � bn� Suppose that all the

formulas ���b�� � � � � bn� are true� But this means for every � there

exist some b��i �� bi� b��j �� bj such that b��i � b��j � In particular� for

every � # �� we have b��j ���� bj� By the bisimulation�like recursive

conditions for ���� and from the fact that b����i � b����j we conclude

that there exists some c��i � bj� such that c�� i �� b����i� So� by

transitivity� we have c��i �� bi� Hence we have�

���c��i � bj s�t� c��i �� bi�

This means there exists a sequence fc��ig� � bj such that lim��� c��i �

bi� But bj is a set� and so it is closed under limits� hence bi � bj� i�e�

the formula ��b�� � � � � bn� is true� as desired�

� The inductive steps for in�nitary conjunctions and disjunctions are

trivial�

� The step for formulas of type �xi��x�� � � � � xn�� The interesting case

is when i � f�� � � � � ng� By induction hypothesis� we assume � is

comprehensible� So� by the above Corollary� there exists some set a

such that

�x�� � � � � xn���x�� � � � � xn� �� �x�� � � � � xn� � a��

Fix some sets b�� � � � � bn and assume that all formulas �����b�� � � � � bn�

are true� This means that for each � there exist some b��� �� b�� � � � � b��n ��

�





bn� such that we have �xi��b���� � � � � xi� � � � � b��n�� So there must exist

some c� such that the formula ��b���� � � � � c�� � � � � b��n� is true� By the

above hypothesis for �� it follows that �b���� � � � � c�� � � � � b��n � a� Let

now c be an accumulation point of the sequence �c���� This means

there exist arbitrarily large � such c �� c�� So we obtain that� for

arbitrarily large �� we have

b��� �� b�� � � � � b��n �� bn and also c� �� c�

hence �b���� � � � � c�� � � � � b��n� �� �b�� � � � � c� � � � � bn�� So �b�� � � � � c� � � � � bn�

is a limit of a sequence of tuples in a� and hence it must belong to a

�since a is a set�� By the above hypothesis on �� this implies that

��b�� � � � � c� � � � � bn� is true� and so we have �xi��b�� � � � � bn��

� The steps for formulas of types �xi � xj��x�� � � � � xn�� �xi � xj��x�� � � � � xn�

and �x �
 � �� are similar� but easier� since we do not need an accu�

mulation point�

�

This �nishes the proof of the Extended Positive Comprehension Theo�

rem� As mentioned above� this a strengthening of the Generalized Positive

Comprehension Principle� proposed by Malitz and Weydert� and proved to

be consistent by Forti ��Forti���� �� using a topological model�

Corollary ����	 Every unary formula in EPF� is equivalent in STS to

some in�nitary modal theory


�
�



The converse of this corollary is trivially true� every de�nable modal theory

T has the form T � f��x� � x � Cg� where C is a de�nable class and � is a

formula such that each ��a� is a modal sentence� for each a � C� Let 
�x� be

the unary formula that de�nes the class C� Then the theory T is equivalent

to the formula �x�
�x� � ��x���

Corollary ������ The converse of the Extended Positive Comprehension

Principle is also true� every set is de�nable by a formula in EPF�


Proof
 Use the Converse of Modal Comprehension and the above observation

about the converse of the above corollary� �

����� Relations and Functions

We turn now to the study of those relations and functions that are sets� We

skip the proofs for the results in this section� all of them are easy applications

of EPF �Comprehension and of the above topological characterizations of

sets�

De�nition ������ An nary relation is an element of P�Un�� An nary class�

relation is a class of n�tuples� i�e� a subclass of Un�

Not any class�relation is a relation� All the small ones are� of course� But�

as observed above� the Generalized Comprehension Principle implies that

many other natural set�theoretical class�relations are relations� in particular�

we have the membership relation�� the inclusion relation � and the identity

relation ��

�
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Proposition ������ Let R � Un be a class�relation
 The following are

equivalent�

�
 R is a relation �i
e
 a set	

�
 R is de�ned by a EPF��formula ��x�� � � � � xn�

�
 R is closed as a class with the set topology on U

�
 R is closed in the product topology induced by the set topology on U�U

�
 R is closed under limits� if lim��� a�i � ai for every i � f�� � � � � ng

and R�a��� � � � � a�n� holds for every �� then R�a�� � � � � an� holds

�
 R is closed under approximation� if a�i �� ai for every i � f�� � � � � ng

and R�a��� � � � � a�n� holds for every �� then R�a�� � � � � an� holds

Proof
 Easy consequence of the corresponding results for sets� �

As an application� we get another important example of relations�

The indistinguishability relations �� are sets�

Another application is�

Proposition ������ The universe of relations Rel �
S
n�N P�Un� is closed

under the following operations� composition� inverse� restriction to a set�

cylindri�cations� small unions� arbitrary intersections
 the domain and codomain

of a relation are sets
 Given an equivalence relation R� any equivalence class

�x R is a set
 For every relation R and every object a� the class of all prede�

cessors fx � xRag and the class of all successors fx � aRxg of a are sets


�
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Also� observe that the class Reln � P�Un� of a given arity is a set� The

class Rel �
S
nReln of all relations is a set�

Functions and Operators

De�nition ������ An operator is a class�function� i�e� a binary class re�

lation R which is functional� if Rab and Rac then b � c� A function is an

operator which is a set in U � An operator is total if its domain is the universe

U � i�e� if for every set a there exists some b s�t� aRb�

We use the functional notation for operators and functions�

Examples
 From the results on EPF��Comprehension above� it follows

that the following operators are functions� powerset P� union� singleton�

identity� pairing� Cartesian product� domain� codomain� relational composi�

tion are all functions� We denote by id the identity relation �� seen as a

function�

id�x� � x for every set x�

Examples of non�functions
 As we shall prove later �in the section on

L�Extended Comprehension�� the intersection operator a �
�
T
a is not a

function� Moreover� the binary intersection operator �a� b� �
� a � b is not a

function�

Proposition ������ Let % be an operator
 The following are equivalent�

�
 % is a function

�
�



�
 the domain of % is a set and % is continuous in the set topology� i
e
 for

every x � dom�%� and every ordinal � � On there exists some ordinal

� � On such that for all y � dom�%�� if x �� y then %�x� �� %�y�

�
 the domain of % is a set and % is sequential�continuous� i
e
 if lim��� a� �

a and all a��s are in the domain of %� then lim��� %�a�� � %�a�

�
 the domain of % is a set and % is uniformly continuous� i
e
 for every

� � On there exists some � � On such that for all x� y � dom�%�� if

x �� y then %�x� �� %�y�


Corollary ������ The composition of two functions is a function
 The in�

verse of a bijective function is a bijective function


Proposition �����
 Relational composition between binary relations

�R�R�� �
� R  R�

is a function with domain Rel� � Rel� and codomain Rel�
 The relational

inverse operator on binary relations R �
� R�� is a function
 Similarly for

relations of arbitrary arity


If F is a set of functions then the restrictions to F of the functional

composition and functional inverse operators are �possibly partial	 functions


The problem with the last result is that we don�t know yet what classes

of functions are sets�

�
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De�nition ������ The degree of an operator % is an operatorDeg� � On 
�

On on ordinals� de�ned by�

Deg���� �� the least � � On s�t� �x� y�x �� y �� %�x� �� %�y���

Observe that an operator % has a degree i� is uniformly continuous in the

set topology� As a consequence we have�

Proposition �����	 Every function f has a degree operator Degf 
 More�

over� an operator has a degree i� it is a function
 The degree operator Degf

is always monotonic and continuous in the order�theoretic sense� i
e
 it per�

mutes with supremum �union	
 Hence� the degree operator has arbitrarily

large �xed points


We consider degrees with the natural order given by

De�nition ������ For operators F�G � On 
� On� we write F � G if we

have F ��� � G��� for every ordinal ��

De�nition ������ Given some operator F � On 
� On� we say that a

function f is bounded by F if it has degree Degf � F �

A function f is non�expansive if it is bounded by the identity operator

id� i�e i�

x �� y implies f�x� �� f�y�

for all sets x� y�

A function is said to be bounded if it bounded by the operator id # ��

where

�id # ����� �� � # ��

�
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So a function is bounded i�

x ���� y implies f�x� �� f�y��

for all sets x� y� One can check that this is equivalent to the condition that�

x ���� y implies f�x� ���� f�y��

for all sets x� y� Clearly� every non�expansive function is bounded�

Proposition ������ The following functions are non�expansive�

� identity

� singleton

� powerset

� binary union �a� b� �
� a � b

� Cartesian product �a� b� �
� a� b

� all permutations of n�tuples are non�expansive

Also� the composition of two non�expansive functions is non�expansive
 The

restriction of a non�expansive function to a set is non�expansive


Proposition ������ The following functions are bounded�

� all the above

� union a �
�
S
a

�
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� domain a �
� dom�a� � fx � �y s
t
 �x� y� � ag

� codomain

� projections

� transitive closure

The composition of two bounded functions and the restriction of a bounded

function to a set are bounded


Moreover� the composition operator restricted to bounded functions is

bounded


De�nition ������ A bounded function f is said to be boundedly injective

if it has a bounded inverse� i�e� it exists some bounded function g such that

g  f � iddom�f�� Equivalently� f is boundedly injective i�

f�x� ���� f�y� implies x �� y�

for all sets x� y�

A function is a bounded bijection if it is bounded� surjective and boundedly

injective� A function is a bounded permutation of some set a if it is a bounded

bijection from the set a onto itself�

����� The Problem of the Exponential

De�nition ������ Given two sets a� b� the exponential ab is the class of all

functions having b as domain and a as codomain�

ab �� ff � f is a function � b 
� ag�

���



Theorem ������ �Forti� ab is a set i� b is small�

So� unlike most other set�theoretical operations� the exponential is not

always de�ned� our universe of sets U is not closed under this operation�

There is no set UU of all total functions� moreover� there is no set U � U

of all partial functions� Even worse� the exponential does not exist except in

the trivial case in which the exponent is small�

So we have to look for substitutes for exponentiation� An obvious can�

didate would be the denotation �closure� of the exponential d�ab� � ab� Of

course� this would also contain some non�functional relations between b and

a� But one might hope these relations are somehow �quasi�functional	 or

particularly well�behaved� Unfortunately� this is not the case in general� and

in perhaps the most important example� d�UU��

Proposition �����
 Every binary set�relation r � P�U�U�� whose restric�

tion to VAFA is functional� belongs to the closure UU � d�UU� of the class of

all total functions


So �anything goes outside VAFA	� with the proviso that we need to ensure

sethood �so our relation r cannot be an arbitrary class�relation� but needs

to be continuous�� This is very bad� for instance� d�UU� is closed under

in�nitary unions� Hence there is no way to think of them as being �functions	

in any reasonable sense�

Observe though that there are cases in which the closure of the exponen�

tial works better� One such nice example is d�OnOn� � OnOn� Its members

���



are relations in P�On�On�� which are functional except maybe for the point

� � On� and they are are always non�functional for a reason� namely the

multiple small values at � express the fact that the function takes those

values for arbitrarily large ordinals �while the presence of in�nite value � at

in�nity expresses the fact function takes arbitrarily large ordinal values��

But we are looking now for a more general solution to the exponential

problem�

Theorem ������ Let F be a monotonic� order�continuous operator on or�

dinals such that F � id �i
e
 F ��� � � for every �	
 The class of all total

functions �on U	 that are bounded by F is a set
 Similarly� the class of all

partial functions that are bounded by F is a set
 More generally� for all sets

a� b� the class of all total �or partial	 functions from a to b which are bounded

by F is a set


Proof
 We prove it for the most general case� that of the exponential ab� and

the others will follow� We show the mentioned class is closed under sequential

limits� For this� let �f����On be a convergent sequence of functions from a to

b that are bounded by F � Let r be the limit of this sequence� We can safely

assume that we have f� �� r for all � �else� we can take a subsequence�� It

is easy to see now that this implies that r is a relation in P�b� a��

Fix some arbitrary ordinal �� Let �a� b�� �a�� b�� � r such that a �F ��� a
��

We shall prove this implies that b �� b� Observe that would give both

functionality and boundedness by F �

��




Since fF ����� ���� r� we can match the pairs �a� b�� �a�� b�� � r by some

�a�� b��� �a��� b
�
�� � f��� such that �a�� b�� �F ����� �a� b� and �a��� b

�
�� �F �����

�a�� b��� But this implies that we have� a� �F ��� a� b� �F ��� b� a
�
� �F ��� a

��

b�� �F ��� b
�� But� by the way chose our pairs in fF ������ we have fF ������a�� �

b��fF ������a
�
�� � b��� By the fact that all f �s are bounded by F � we obtain

that

b �F ��� b� �� b
�
� �F ��� b

��

Using the fact that F ��� � �� we conclude that b � b�� �

In particular� there is a set of non�expansive functions and a set of

bounded functions� We propose the latter as a good enough approximation

of the exponential�

De�nition �����	 For sets a� b� de�ne the bounded exponential to be the set

of all bounded �i�e bounded by id#�� functions from b to a� We use both the

set�theoretical notation expbd�a� b� and the domain�theoretic notation b �bd a

to denote the bounded exponential�

We also consider the set of all bounded partial functions from b to a and

we denote it by b �bd a�

Also� de�ne the bounded symmetric group Sbda of a set a as the set of all

bounded permutations of the set a�

The set Bdf �� U �bd U �
S
a�b expbd�a� b� is the set of all bounded

functions� It coincides with the set of all restrictions to sets of the functions

in U �bd U �

The �bounded� exponential operator exp � U � U 
� U is de�ned by�
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exp�a� b� �� b �bd a�

The bounded application operator app is a partial function on Bdf � U �

such that app�f� x� �� f�x�� whenever x � dom�f��

We have seen that a lot of set�theoretical functions are bounded� Now we

can add more�

Proposition ������ The �bounded	 exponential operator expbd is bounded

�and hence is a function	
 The bounded application operator is bounded �and

hence is a function	
 The composition operator restricted to bounded func�

tions Comp � Bdf � Bdf 
� Bdf � given by Com�f� g� � f  g� is bounded


The inverse operator restricted to boundedly injective functions is bounded


The bounded symmetric group Sbda of any set a is indeed a group� if consid�

ered with the composition and inverse operators


So the notions of �bounded function	 and �bounded exponential	 seem

to be very well�behaved approximations of their unbounded versions� The

bounded exponential contains most natural set�theoretical functions� More�

over� as we shall see in the model theory section� one can show that all the

functions used outside set�theory will have bounded �copies	� every �rst�

order structure is isomorphic to a �bounded	 structure �endowed only with

bounded functions��

One can observe though that� in case one�s preferred function f happens

to be unbounded� the above theory can be easily extended to cover it� just

replace the above notion of �bounded exponential	 with �the set of all func�

tions bounded by F	� where is any monotonic� order�continuous operator

���



on the ordinals� which takes as values only limit�ordinals� �One can take�

for instance F � degf # �� to include our desired function f in our new

exponential�� All the results above hold in this more general context�

	�	 Further Extension of the Comprehension

Theorem

In this section� we extend our 	Extended Comprehension Theorem	 to allow

de�ned terms and relations in the comprehensible formulas� We only state

here the theorem and present some examples� The proof is an easy applica�

tion of the Extended Comprehension Theorem above and of the above results

on functions and relations�

Let L be a vocabulary� given by a set Const of constant symbols� a set

V ar of variables� a set Funct of function symbols and a set Rel of relation

symbols� Each of the function and relation symbols comes with an arity�

which is a natural number� We denote by Functn �Predn� the set of function

�relation� symbols of arity n�

The terms of L are de�ned in the usual recursive manner� variables and

constants are terms� if t�� � � � � tn are terms and f � Functn� then f�t�� � � � � tn�

is a term�

The class of set�theoretic in�nitary formulas of L is de�ned in the metathe�

ory by the usual conditions� if t�� � � � � tn are terms and R � Reln� then

t� � t�� Rt� � � � tn are formulas� if $ is a set of formulas then
V

$ is a for�

mula� if � is a formula and x is a variable� then �� and �x� are formulas�
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One de�nes inclusion �� disjunction
W

� implication and logical equivalence�

existential quanti�er �� bounded quanti�ers �x � y� �x � y� �x � y as ab�

breviations� in the usual way� One can also de�ne the notions of occurrence

of a variable in a term or formula� free occurrence� bounded occurrence etc�

As usually� we restrict ourselves to formulas having only �nitely many free

variables and we denote the class of all these formulas by L���

An interpretation for L is an operator I such that� for every c � Const�

I�c� is de�ned �as a set I�c� � U�� for every function symbol f � Functn�

I�f� is de�ned and is an n ary function� i�e� a set I�f� � U �Un�� for every

relation symbol R � Reln� I�R� is de�ned and is an n ary �set�	relation� i�e�

a set I�R� � P�Un��

A valuation for L in the universe of sets is a function v � V ar � U �

Given a valuation v� we can extend any interpretation I to an interpretation

function vI de�ned on all the terms of L� in the following way�

vI�x� � v�x� for x � V ar�

vI�c� � I�x� for c � Const�

vI�f�t�� � � � � tn� � I�f��vI�t��� � � � � v
I�tn�� for f � Functn and t�� � � � � tn terms�

The truth of a formula �� relative to a given interpretation I and to a

given valuation v� is de�ned in the usual manner�
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t� � t� is true i� vI�t�� � vI�t��

R�t�� � � � � tn� is true i� �vI�t��� � � � � v
I�tn�� � I�R�

�� is true i� � is not true �for the same I and same v�

�
$ is true i� every formula in $ is true

�for the same I and same v�

�x� is true i� � is true for the same I and for every

v� s�t� v��y� � v�y� for all y 
� x�

A formula is valid if it is true for every interpretation I and every valua�

tion v�

The class of L�extended positive formulas is de�ned by recursion in the

metatheory� as the least subclass of L�� that contains all the atomic sen�

tences and is closed under in�nitary conjunction and disjunction� existential

quanti�er and the following three kinds of bounded universal quanti�ers�

�x � t�� �x � t�� �x�
�x� � �� �where t is a term in which the variable

does not occur� 
�x� is an arbitrary formula having x as its only variable and

� is some L�extended positive formula��

Theorem ����� �L�Extended Positive Comprehension�� Let varphi

be some L�extended positive formula and t be some term� both having the

variables x�� � � � � xn free and not containing any occurrence of the variables

x� y
 Then the formula

�y�x�x � y � �x� � � � xn�x � t � ���
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is valid


This theorem allows us to introduce the notation ft � �g to denote the set

z above� for every L�positive formula �� every term t and every interpretation

I� So� once we have checked that some operators are functions and some

relations are set�relations� we can use them to build terms that are allowed

to appear in comprehensible formulas� So� in particular� one can introduce

terms of the form Pt�
S
t� ft� t�g� �t� t��� t � t�� t � t�� dom�t�� cod�t�� TC�t�� t  

t�� expbd�t� t
�� and relations like �������

Examples


f�x� y� � Px � yg

fPx � �y �
S
x �y� x� � Pyg

f�f� g� f  g� � �x� y� z�f � expbd�x� y� and g � expbd�y� z��g�

Using this theorem� we can also prove that some classes are not sets�

Corollary ����� The intersection operator a �
�
T
a is not a function


Moreover� the binary intersection operator �a� b� �
� a � b is not a function


Proof
 Suppose that the binary intersection operator were a function�

We know that the singleton operator is also a function� Then it would follow

that the term x � fxg can be allowed in extended positive formulas� so that

one can form the set

fx � x � fxg � 	g�
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But this cannot be a set� since it coincides with the Russell class fx � x 
� xg

�which is not a set� by Russell�s Paradox�� This contradiction shows binary

intersection is not a function�

Similarly� one can show the in�nitary intersection operator is not a set�

since the class fx �
T
fx� fxgg � 	g coincides with the Russell class� �

Similarly� one can show that

Corollary ����� The di�erence relation D � f�x� y� � x 
� yg is not a set


In general� no Frege cardinal fx � jxj � �g is a set� for any � � 



Proof
 We only show D is not a set �the proof for Frege cardinals is

similar�� Suppose� towards a contradiction� D were a set� Then� by the

Extended Comprehension Theorem� the class f�x� y� � �y � x�x� y� � Dg

would be a set� But it is easy to see that this coincides with the Russell�s

class� �
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Chapter �

Applications


�� Solving Equations


���� Flat Systems of Equations

One of the goals of our theory is to be able to solve systems of equations

involving set operations� We start with the simplest possible case�

De�nition ����� A �generalized	 �at system of equations is a triplet E �

hX �A� Ei of classes� such that X and A are disjoint classes and E is a class�

function E � X 
� P�X �A�� In the context of a �at system� the elements

of A are called atoms and the elements of X are called variables For every

x � X� we denote by Ex the image E�x�� We also put� Bx �� Ex � X and

Cx �� Ex � A

A weak solution to the �at system E is a class�function S with domain

dom�S� � X� such that for all x � X we have�

Sx � fSy � y � Bxg � Cx�
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A strong solution is de�ned similarly� by requiring equality � instead of

observational equivalence �� in the above system�

Proposition ����� Every �at system with no atoms has a unique weak so�

lution
 If the system is small �i
e
 if X and A are small	 then the weak

solution is also a strong solution


Proof
 De�ne a binary relation �system� R by�

yRx if y � Ex � for x � X� and

yRx if y � x � for x � A�

We can immediately see that the restriction of the decoration function dR

to the set A of atoms is the identity function� Then it easily follows that the

restriction of the decoration function dR to the set of variables X gives the

solution function� Uniqueness follows from super�strong extensionality� If

the system is small� we can use Replacement to show that� for every x � X�

the class fSy � y � Bxg � Cx is a set� But Sx is also a set� and they are

observationally equivalent� so they have to coincide�


���� Fixed Point Theorems� the Greatest Fixed Point

Proposition ����� If % � U � U is a monotonic operator then % has a least

�xed point %� � U and a greatest �xed point %� � U 


Proof
 We know that �U��� is a complete lattice� One can easily check

that Tarski�s proof of the existence of �xed points in a complete lattice still
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works in our setting �despite the fact that U is a large lattice�� This is the

proof that constructs the least �xed point %� as the greatest lower bound of

the %�sound points inffx � x � %xg and the largest �xed point as the least

upper bound of the %�correct points supfx � x � %xg� �

Note that the usual� more �constructive	� proof of the existence of �xed

points� using recursion on the ordinal does not work in general� for an arbi�

trary monotonic operator� But we shall see that it does work for functions

�i�e� operators which are sets�� But �rst� let us compare our �internal	 �xed

points �which are sets� with the �real	 or external class��xed points�

Proposition ����� If % � U � U is a monotonic operator� then�

�� % can be extended to classes� by de�ning

% ��
�

f%�x� � x is a set � U and x � Cg�

and the resulting operator is still monotonic�


� % has a least class��xed point lfp�%� and a greatest class��xed point

gfp�%��

�� %� �
T
fx � %x � xg

�� %� � gfp�%� �
S
fx � x � %xg�

This means that the largest �xed point inside our universe of sets is the

real one�

��




Corollary ����� The largest �class�	�xed point of a monotonic operator is

always a set


This is not true for least �xed points� e�g� for the powerset operator�

lfp�P� � WF � while P� � WF 
� WF � So� in general� the greatest �xed

point is better�behaved than the least �xed point


For monotonic functions� one can construct both the least and the greatest

�xed points in On steps�

Theorem ����� Let % � U � % � U � U be a monotonic set�function
 De�ne

by recursion on ordinals�

%� ��
�

���

% �%�� �

%� ��
�

���

%
�
%�
�



Then�

�� lfp�%� �
S
� %�


� %� � lfp�%�

�� %� � gfp�%� �
T
� %��

We can see that� for monotonic set�functions� the natural recursive process

of approximation of the �xed points converges in On steps� The reason this

recursive process converges to a �xed point is not that the recursion would

close o� at some ordinal �as in ZFC�� Our set�function % might be large
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�e�g� the powerset function P�� in which case no ordinal will su
ce� But� as

long as % is a set� the recursive process will reach a �xed point in On steps�

Another interesting thing is that� unlike in the case of ZFC and ZFA� our

theory relates recursion and corecursion in a simple� symmetrical manner�

given a monotonic operator on sets� one can approximate the greatest �xed

point by a descending sequence� dual to the one that approximates the least

�xed point� This is only possible because of the presence of very large�

�over�comprehensive	 sets� which nevertheless remain �well�behaved	 from

a set�theoretical point of view�


���� Domain Equations

In the semantics of programming languages� one needs to solve re�exive do�

main equations of the following form�

X � F �X��

Usually� F is assumed to be built by composing elementary operations� like

union� Cartesian product� powerset� exponential etc�

There are several known approaches to this problem� Scott domains� de

Bakker�Rutten metric domains etc� In all of them� the �real	 operations of

powerset and exponentiation are replaced by �internal	 operators� This is

because of the size barrier imposed by Cantor�s theorem� in ZFC �and ZFA�

we always have jAj 	 jPAj and jAj 	 jBAj �for jBj � 
�� This barrier has

been lifted from our theory� which makes possible to �nd �real	 solutions to

re�exive equations� �This has already been observed by Forti� in the frame
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of his �hyperuniverses	��

Indeed� our �xed point above can be used to solve equations of the form

X � F �X�� for functions F composed of� binary �and small� unions� set�

unions� powersets P� dual powersets Pdual� inverse X��� domain dom�X��

codomain cod�X�� relational composition X  Y � projections� image opera�

tor� bounded exponentiation with a �xed base B �bd X� bounded partial

exponentiation X �bd Y � All these operators are monotonic functions in

our universe� and so their compositions are also monotonic functions�

Some Examples
 If A�B are sets then the following equations have

solutions X that are sets�

X � PX �both WF and U are solutions�

X � Pdual X �the set NWF of all non�wellfounded sets is the largest solution�

X � A � �B �X�

X � A � P�B �X�

X � P�A�X���

X � A � �B �bd X�

X � X �bd X

X � A � �X �bd X�

X � A � dom�X � B� � �X �bd B�

X � �cod�X� � �X � A���� � PX

X � X  �A � �B �X��
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�� Model theory

In this section we explore some elementary notions of model theory inside

STS� We plan to develop the subject in a future paper�


���� Tarski�s Paradox� The Universal Model

We proceed to formalize model theory inside our system STS� Let L �

�V ar� Pred� Funct� Const� � V be some signature� where V ar is a set of

variables �usually assumed to be countable�� Pred is a set of predicate sym�

bols� Funct a set of function symbols and Const a set of constants� All these

sets are assumed to be in V �which is our variable universe in STS� which

can denote either WF or VAFA�� This doesn�t make any di�erence� apart

from the smallness assumption� since our symbols are actually 	codes	 of

the linguistic ones� The elements of Funct and Pred come equipped with

some natural number� called their arity� We denote by Functn� and Predn�

the set of function �relation� symbols of arity n� One can de�ne inside STS

the �codes of� the sentences of the �rst�order language with signature L� in

the usual way�

A model for the language L is de�ned in the usual way� as a pair M �

�M� d�� where� M is a set and d is a function mapping each R � Predn

into some relation d�R� � P�Mn�� each f � Functn into some function

d�f� � M �Mn� and each c � Const into some d�c� � M �

A valuation on M is a function v � MV ar�

We have some degree of freedom� as is usually done� we considered val�
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uations as being external to the model� we could have included the in the

de�nition of a model� or we can consider the function d as external to the

model and instead include in the model a set Rel of relations� in bijective

correspondence �via d� with the set Pred� etc� We shall sometimes use sub�

scripts dM � RelM etc�

The problem is to de�ne the satisfaction relation� As we shall see� there

cannot be a unique formula in STS� to de�ne truth or satisfaction of an

arbitrary sentence in an arbitrary model� But we can de�ne a formula Satn

that de�nes satisfaction for formulas of complexity length n� Satn is a ternary

relation between models� formulas and valuation� which we shall usually write

as M j� ��v � The de�nition is by induction on n� with the obvious inductive

clauses� starting with�

�M� j� R�x� � � � xn��v ��� �v�x��� � � � � v�xn�� � dM�R��

for formulas of complexity �� etc�

We write informally M j� ��v � and that �� is satis�ed �or true� in the

model M by the valuation v	� whenever we have M j�n ��v for n � lh���

being the complexity length of �� But we should keep in mind that this is

not a �rst�order formula in STS� but a metatheoretic device to refer to a

disjunction of in�nitely many formulas� For particular classes of models �e�g�

small models�� this is actually equivalent to some �rst�order formula� But

not in general� One can check that all the usual ways to make this inductive

de�nition into a single formula fail in our setting� because of the failure of
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Separation and Replacement for �large	 models� Moreover� we shall soon

prove that this is not an accident� since the �real	 satisfaction relation is not

de�nable in STS�

Given a theory T � i�e� a set of �codes of� sentences in �rst�order logic� we

say that �M is a model of the theory T� if M j� � for every � � T � Again�

this is not a de�nable formula in STS� but a metaformula� Nevertheless� we

can still use it�

In particular� we can take now the language of set theory L � �V ar���

and we can write the set of �codes of� axioms for STS� We shall also denote

this theory by STS� Notice that STS is an in�nite system of axioms� since we

have stated it using axiom schemes� This is similar to the case of Zermelo�s

ZFC� We can consider models M � �M�R� of this language� with M some

arbitrary set and R � P�M��� And then we can prove the following�

Theorem ����� Strong Re�ection Theorem for STS� The theory STS

has a model
 Namely the set �U��� is a model of our theory


This seems to contradict Tarski�s theorem� In reality� it does not� we cannot

use it to de�ne truth inside the system as �satisfaction in �U���	� because

we have not de�ned any single satisfaction relation� But then what is the

content of the Strong Re�ection Theorem�

Recall that ZFC had also in�nitely many axioms� In ZFC there is a

single de�nable �satisfaction relation	� but no single internal model� by the

Re�ection Theorems� there were in�nitely many �partial internal	 models�

for any given �nite subset of the axioms� The situation in STS is completely
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dual� there is a single internal model for all the axioms� but no de�nable

general notion of satisfaction� but for every n we can de�ne a formula Satn�

which gives the satisfaction relation for all formulas of complexity less than

n� as we saw� the de�nition looks pretty uniform from outside the system

�it is an induction�� and it is clear that it agrees with the external� meta�

theoretical� notion of satisfaction for all formulas of lower complexity� But

there is no way to write it in a uniform way inside the system�

So the actual content of the above Theorem is a schema saying that�

For each �nite subset T of the axioms of STS� let n be some

�externally given	 natural number� larger than the complexity of

all the sentences in T 
 Then we have �U��� j�n

V
T 


So we conclude that the system STS has the amazing property that it

provides a de�nable model for itself� This model can be seen to be a model

from inside the theory� the system can prove that each of its axioms holds

in the universal model �U���� What the system cannot do is to say that

the universal model is a model of all its axioms� and this is because there

is no uniform notion of �satisfaction �truth� of an arbitrary formula in a

model	� The non�existence of such a uniform de�nition can be shown as an

application�

Corollary ����� Satisfaction is not de�nable in STS
 More precisely� let

��x� y� be some formula such that� for every �external	 natural number n� we

have

�x� y�Satn�x� y� �� ��x� y���
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Then there exists some pair a� b such that ��a� b� is true� but for every given

n the formula Satn�a� b� is false


The proof uses Tarski�s Theorem and the above Strong Re�ection Theorem�

Another application is the following�

Corollary ����� If consistent� the system STS is not �nitely axiomatizable


Proof
 If it were� we could de�ne satisfaction by the formula Satn� for some

n larger than the complexity of all the axioms� �


���� Sets of Models of a Given Theory

We would like to have the classes of models Mod�T � of important �rst�order

theories T as sets in our universe� For purely relational languages� this is

possible�

The class of all models of a relational language �no functions� is

a set�

But it is clear that we cannot expect the functional languages to have the

same property� because of the problems with the exponential operator� So

we need to restrict ourselves to bounded models�

De�nition ����� A model is bounded if the interpretations of all the function�

symbols are bounded functions� We denote by Modbd�T � the class of all

models of the theory T �
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It is easy to see that� by restricting ourselves to bounded models� we do

not lose anything from the model�theoretic point of view� as far as small

models are concerned�

Proposition ����� Given a small model M � there exists a bounded model

isomorphic to M 
 Moreover� there exist many such isomorphic copies� the

class of all bounded models which are isomorphic to M is large


Proposition ����� By EPF��Comprehension� the following classes of mod�

els are sets�

�
 the set of all bounded models of an arbitrary �rst�order language


�
 the set of all bounded models of an equational theory


�
 the set of all bounded models of a positive theory
 Here a �positive

theory� is a theory whose formulas are built from atoms of the form

Rt� � � � tn and t� � t� �equations	� using conjunction� disjunction� quan�

ti�ers �� � and bounded universal quanti�ers of the form �x� � � � xn�Rx� � � � xn �

� � � � �but no negation	


Examples


� the set of all bounded monoids

� the set of all bounded groups

� the set of all bounded rings

� the set of all bounded vector spaces
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� the set of all bounded lattices �de�ned in terms of join and meet� not

as partial orders�

� the set of all bounded distributive lattices

� the set of all bounded Boolean algebras

� the set of all binary �pointed� graphs �Kripke structures�

� the set of all �labelled� transition systems

� the set of all pairs �A�R�� such that R is a re�exive binary relation on

the set A

� the set of all pairs �A�R�� such that R is a re�exive symmetric relation

on A

Observe that these sets of models contain copies of all the small models

of the given type� but also large natural models� the model �U��� belongs

to the last set above� the models �U���� �U��� are bounded monoids etc�

Unfortunately� transitivity and antisymmetry are not expressible by EPF��

formulas� and so the class of all partial orders and the class of all equivalence

relations are not sets� �But one can de�ne notions of �bounded partial order	

and �bounded equivalence relation	 for which these classes are sets��

Similarly� the de�nitions of important notions like ��eld	 and �integral

domain	 involve negative assertions �e�g� �� 
� �	�� But in such cases�

the negativity is eliminable� by simply �xing some of the constants� If� for

instance� we agree to consider only �elds or integral domains having the empty
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set 	 as the zero element �� then the classes of these algebraic structures are

sets�

We plan to pursue the study of model theory in STS in a future paper�

An interesting subject is �nding analogues for the classical model�theoretical

constructions for arbitrary �possibly large� models in STS� e�g� one can de�

�ne a notion of �bounded ultraproduct	� by replacing functions with bounded

functions in the classical de�nition�

Other sets of mathematical structures�

One can consider natural classes of mathematical structures which are

not �rst�order de�nable� Usually� these structures involve functions� and the

corresponding class will not be a set� But its bounded version will usually

be a set� An important example is�

The set of all bounded topological spaces� De�ne a bounded topological

space to be a pair �S�C�� such that C � P�S� �bd P�S� is a bounded func�

tion� called the closure operator and satisfying the well�known Kuratowski

conditions�

�� A � C�A� for all A � S


� C�A� � C�C�A�� for all A � S

�� C�	� � 	

�� C�A� � C�B� � C�A �B��

It is easy to see� by EPF��Comprehension� that the class of all bounded

topological spaces is a set�
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���� Circular Model Theory and Semantical Paradoxes

Why would one be interested in whether or not a natural class of models

is a set� One particular reason for this is re�exivity or circularity � there

are special �rst�order theories� for which the class of all their models can be

informally seen to satisfy the theory� If this class is a set� then it will be itself

a model of the theory� namely a circular model � one whose domain contains

itself�

Example� The ��bounded� monoid of all �bounded� monoids	 Mon� on

the above�mentioned set of all bounded monoids� one can de�ne Cartesian

product or direct sum� and check that both these operations are bounded�

Hence� for each of these operations� we obtain a circular monoid of all

monoids� Mon� and Mon�� We have both Mon��Mon� � Mon� and

Mon��Mon� � Mon�� Moreover� other natural monoids belong to these

models� e�g� the monoid �U �bd U�  � of all total functions with composi�

tion�

One can �nd other interesting algebraic examples� in which we do not

have re�exivity� but �cycles	 of length bigger than �� take the set Grp of all

bounded groups� take the group Aut�Grp� of all the bounded automorphisms

of the group Grp� with functional composition and inverse as its operations�

Obviously� Grp is in the transitive closure of Aut�Grp� �since we consider

a homomorphism f � G � Has a triplet �G�H� f�� so in particular an au�

tomorphism of Grp has the form �Grp�Grp� f�� But Aut�Grp� is itself a

bounded group� so it is a member of Grp� This gives rise to cycles of length
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�� e�g�� if we denote by IdGrp the identity automorphism on Grp� we have

Grp � IdGrp � Aut�Grp� � Grp�

Circular models have been used in the context of ZFA to give new insights

into the classical semantical paradoxes �see Barwise and Etchemendy �����

Barwise and Moss ������ We plan to explore in a future paper the natural

analogues of their results in our frame�


�� Category Theory

A well�known problem in the foundations of category theory is to �nd a way

to make sense of �large categories	 �e�g� the category of all sets� and of

�super�large� re�exive categories	 �e�g� the category of all categories�� Both

are forbidden by the limitation�of�size assumption built into ZFC and ZFA�

The second case �re�exive categories� is completely intractable in ZFC�

The �rst case �large categories� is tractable in an indirect way� by using

classes� nevertheless� this treatment makes impossible some natural catego�

rial constructions on large categories� e�g only for small categories A�B� we

are able to de�ne the exponential category �A�B �having as objects all func�

tors F from A to B� as morphisms from F to G all natural transformations

from F to G� as identities the identity natural transformations� and as com�

position the composition of natural transformations�� For large categories�

the exponential category is said to be illegitimate�

Sometimes� these problems are solved by adding to ZFC one more layer

of objects ��families	� on top of �classes	 and �sets	� A natural thing to
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do would be to add trans�nitely many more layers� and assuming they also

satisfy the axioms of ZFC� this is equivalent to asserting the existence of

an inaccessible cardinal in ZFC� But of course� this only lifts the problem�

without actually solving it� In particular� there will be no re�exive categories

in any such set theory�

The above�mentioned discussion on circular models suggests that our the�

ory is strong enough to deal with these problems� The resulting category the�

ory will be universal with respect to its objects� but it will be restricted with

respect to its morphisms� only bounded functions are allowed as morphisms

and functors�

De�nition ����� A bounded category is a sextuple A � �O� hom� id�  � dom� cod��

consisting of�

�� a set O� whose members are called A�objects�


� a bounded function hom � O�O � U � the members of each hom�A�B�

are called A�morphisms from A to B�

�� a bounded function id � O � U � such that id�A� � hom�A�A� for every

object A � O� the morphism id�A� will be denoted by idA and called

the A�identity on A�

�� a bounded binary partial function  �composition�� such that� for all A�

objects A�B�C and for allA�morphisms f � hom�A�B�� g � hom�B�C��

the function  is de�ned and g  f � hom�A�C�� the morphism g  f is

called the composite of f and g�
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�� bounded partial functions dom and cod� de�ned on all A�morphisms

into the set O of objects� the object dom�f� is called the domain of f �

while cod�f� is called the codomain of f �

The above sets and functions are required to satisfy the following equations�

�a� composition is associative� h  �g  f� � �h  g�  f � whenever both are

de�ned�

�b� A�identities act as identities with respect to composition� idB  f � f

and f  idA � f � for every f � hom�A�B��

�c� dom�f� � A and cod�f� � B� for every f � hom�A�B��

Observation
 By EPF��Comprehension� the class of all bounded cate�

gories Cat is a set�

Important Examples

�� The �bounded	 category of all sets Set has� sets as objects O � U �

bounded partial functions as morphisms hom�A�B� � expbd�B�A� �

A �b dB� functional composition as composition  � the identity func�

tion on A as the identity idA� the functional domain and codomain as

its dom and cod functions� Notice that the function hom is just the

bounded exponential function expbd�


� The category of all bounded groups Grp has bounded groups as objects

and bounded group homomorphisms as its morphisms�
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�� The category of vector spaces Vect has vector spaces as objects and

bounded linear maps as morphisms�

�� The category of bounded topological spaces Top has bounded topologi�

cal spaces as objects and bounded continuous functions as morphisms�

All these �large	 categories are members of the set Cat of all bounded cate�

gories�

De�nition ����� IfA and B are bounded categories� then a bounded functor

from A to B is a bounded function F that assigns to each A�object A some

B�object F �A� and to each A�morphism f � hom�A�A�� some B�morphism

F �f� � hom�F �A�� F �A���� in such a way that�

�� F preserves composition� F �f  g� � F �f�  F �g�� and


� F preserves identities� F �idA� � idF �A��

The identity functor and the composition of functors are de�ned in the usual

way�

Most natural functors between bounded categories are bounded functors�

e�g� the forgetful functor� the identity functor� the �covariant and contravari�

ant� hom�functors� the �covariant and contravariant� power�set functors etc�

De�nition ����� The category of all bounded categories Cat has as objects

all the bounded categories� as morphisms from A to B all the bounded

functors from A to B� and as composition the usual composition of functors�
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Proposition ����� The category Cat contains as objects all the above�mentioned

categories Set�Grp�Vect�Top�Cat
 In particular� Cat is a re�exive cate�

gory� Cat � OCat is an object of itself


One can go on and de�ne a notion of bounded natural transformation be�

tween bounded functors� and de�ne the bounded exponential category �A�B �

for any two bounded categories A�B�
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Chapter �

Conclusions

This paper is an attempt to build a set theory on a purely structural view on

the concept of set� I make a distinction between a potential structure and its

actualization into a set �via decoration or closure�� I propose an analytical

picture� in which objects are analyzed in stages and all we can know about

them are their unfoldings or partial descriptions� A set is what is left from

this process of analysis� it is the trace of unfolding of some possible object�

its pattern of analytical behavior� I have a notion of observational equiv�

alence between structures� de�ned as identity of analytical behavior� Sets

can be understood as arbitrary structures modulo observational equivalence�

As collections� sets are closed� completed classes� which are as large as their

pattern of unfolding allows them� They contain every object which cannot

be separated from all their elements at any stage of unfolding� This gives

them well�de�ned boundaries and a clear�cut identity�

I explore the connection between this notion of set and modal logic� Sets

can be identi�ed with the maximally consistent theories that characterize
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them� Sets can also be understood as modally de�nable classes� This provides

a proof �and so a justi�cation� for the Power Set axiom on di�erent grounds

than the ones of the classical conceptions�

The universe of sets described has nice �xed�point and closure properties�

Recursion and corecursion are related in a simpler manner over this universe

than over Aczel�s hyperset universe� Some category�theory notions can be

stated as objects �sets�� not just as classes� The topological aspect comes

from the underlying presence of a notion of observational approximation

�structures can be �almost bisimilar	 up to any ordinal depth�� This universe

provides models for many recursive and corecursive domains� which could be

used as uniform frameworks for giving denotational semantics� This universe

of sets seems also to be a good candidate for a general framework to study

semantical paradoxes�
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