
The Universe of Hypersets

Set theory from Z to A

In both of our analyses of the paradox we take seriously the intu-
ition that the propositions involved are genuinely circular. Since
we are going to model propositions, situations, and facts with
set-theoretic objects, it is extremely inconvenient to adopt a set.
theoretic framework that precludes circular or nonwellfounded ob
jects. The source of this inconvenience is simple. By far the most
natural way to model a proposition about a given object is to use
some set-theoretic construct containing that object (or its repre-
sentative) as a constituent, that is, where the object appears in the
construct’s hereditary membership relation. But if we carry out
this straightforward approach in a set theory based on Zermelo's
cumulative hierarchy, we find ourselves inadvertently excluding the
possibility of circular propositions. For the model of a proposition
about another proposition will have to contain the latter’s repre-
sentative as a constituent, and the model of a circular proposition,
one directly or indirectly about itself, will have to contain itself as
a constituent. But the axiom of regularity, or foundation, bans sets
that are members of themselves, or pairs of sets that are members
of each other, and so forth, and so would block us from using such
natural techniques of modeling propositions.’

‘The axiom of foundation asserts that the membership relation is well-
founded, that is, that any nonempty collection Y of sets has a member
y E Y which is disjoint from Y. This follows from the iterative conception
by chosing any y E Y of “least rank,” that is, a y that occurs as early in
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There are various ways we could sidestop this problem within
s tandard  set theory, but they would i n v o l v e  u s  i n  complex i t ies Of
considerable magnitude, ones completely irrelevant to the task at
hand. Of course if worse came to worse, we could just give up set
theory entirely as our working theory. If there had been no coher-
ent alternative to the Zermelo conception of sets, one that admits
circularity, we would probably have done just that. But Peter
Aczel has recently developed an appealing alternative conception
of sets, and with it a consistent axiomatic: theory tailor-madc for
our purposes. Aczel’s theory, based on an extremely natural ex-
tension of the Zermelo conception, is quite easy to learn and, once
learned, lets us bring to bear all of the familiar set-theoretic tech-
niques to the problem of modeling circular phenomena. We devote
this chapter to an exposition of Aczel’s theory, one that will allow
the reader to follow the details of the rest of the book, as well as
apply the theory in other domains.

To appreciate the intuitive appeal of Aczel’s conception, let’s
first rehearse a common way of picturing ordinary sets. Consider,
for example, the set CO  = {no,bo}  where (Q = {Claire, Max} and
lo = {a~, Max}. There arc many ways to picture this set, but
one natural and unambiguous way is with the labeled graph shown
in Figure 1. In this graph each nonterminal n o d e  r e p r e s e n t s  a
nonempty set, the set containing the objects represented by the
nodes below it. For exarrlplc  the top rtoclo iI the grapll rttprt!scrlt,s

the set Co, a Set WhOSO Only  IIl(!IIlh~~rS  arc the S&S  q) and b(), &lld
these latter sets are in turn rcpresentotl  by the notlcs inirnc~tliatc!ly
below the top node. Note that the set represented by a node need
not itself be the node, and indeed in Figure 1 we find two different
nodes that each depict, and so are labeled by, the single set Q). The
bottom nodes in this example represent Max and Claire, neither
of whom have elements, and so there are no nodes below them.
The idea of such a graph, of course, is that the arrows represent
the converse membership relation: an arrow from node z to node
y indicates that the set (or atom) represented by J/ is a member of
the set represented by 2.

Notice that one and the same set may well be depicted by many
different graphs. Consider, for example. the graphs in Figure 2.

the cumulative hierarchy as any other member of Y. This rules out circu-
larity. For example, note that if a E a then the set Y = {a} violates this
assumption.
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These are clearly different graphs since they have different graph-
theoretic properties. For example, the three graphs have different
numbers of nodes, and the first is a tree while the others are not.
Still, as we’ve indicated by the labeling, they all depict the same
set, the von Neumann ordinal three. Similarly, Figure 3 gives a
different, and more economical depiction of our original set cc,.
The differences among these graphs, for our purposes amount to
little more than the relative economy of nodes: Figure 3 has four
fewer nodes than Figure 1, but it gives us a picture of exactly the
same set.

In the same way, any set can be depicted by a graph
0canonical way to build a graph is to start with the desired st:

n and consider all of its “hereditary” members (members mem-
bers of members, members of members of members, and so on) as

b+Ao*+i.
l 00 l l

1

O* 00

l O
Figure 2

l co

A
aA7’ bo

Figure 3

nodes of a graph. Then draw an edge from any set to each of its
members. The resulting graph will depict the given set a (and in
this case, the nodes actually are the sets depicted). This construc-
tion allows us to build a canonical graph for any set whatsoever.
(And note that this does not presuppose that we are dealing with
sets under the cumulative conception. Under any conception, sets
give rise to graphs in this way.)

Exercise ‘7 Draw two graphs that represent the von Neumann
ordinal four. Make the first graph a tree (on the model of the first
graph in Figure 2), and make the second as economical as possible
(on the model of the third graph in Figure 2).

Aczel’s conception of a set arises directly out of the intuition
that a set is a collection of things whose (hereditary) membership
relation can be depicted, unambiguously, by graphs of this sort.
The liberating element is that we allow arbitrary graphs, including
graphs that contain proper cycles. Of course graphs with cycles
cannot depict sets in the wellfounded universe. 2 Thus, for example,
in Aczel’s universe there is a set R = (01, simply because we can
picture the membership relation on R by means of the graph Gn
shown in Figure 4. Furthermore, on Aczel’s conception this graph

unambiguously depicts a set; that is, there is only one set with Gn
as its graph. Consequently, there is only one set in Aczel’s universe
equal to its own singleton.

2To see this, suppose we have a graph with a proper cycle. Take Y to be the
set containing all the sets depicted by nodes that occur in the cycle. It i s
clear that no member of Y is disjoint from Y, thus violating the axiom of
foundation.
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Figure 4

To take another example, let’s consider the set c = {a, b} when
a = {Claire, Max, b} and b = {Max, a}. The only difference
between this set and our set cs above, is that b is an element OI
a, while bo is not an element of ae (and could not be, according
to the cumulative conception). To get a graph of c, we can simply
modify a graph of CO,  say the one given in Figure 3. Here, we need
only add an edge from the node that represents ae to the node that
represents bo. The result, in Figure 5, is a graph of c.

The sets we get on Aczel’s conception include all those in the
traditional, wellfounded universe. But in addition to these, we get
a rich class of nonwellfounded sets, or as we will sometimes call
them, hypersets. As we’ll see, these sets behave in many respects
just like the ordinary, wellfounded variety. But they permit the use
of straightforward modeling techniques even when the phenomena
modeled involve circularity.

.C
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Let’s flesh out Aczel’s idea in more detail and describe the ax-
iomatic theory explicitly. Actually, we will describe a variant of
Aczel’s theory that allows a collection A of “atoms” like Max and
Claire, instead of just pure sets. This theory, then, will consist
of all the usual axioms of ZFC set theory (modified in the usual
way to admit atoms), except that the axiom of regularity is re-
placed by a strong form of its negation, called AFA, for (Aczel’s)
Anti-Foundation Axiom (with Atoms).

We said that on Aczel’s conception a set is any collection of
objects whose hereditary membership relation can be pictured by
a graph. More precisely, a graph G is a set of nodes and directed
edges, as usual. (Any set X can be a set of nodes, and any set
R C X x X of ordered pairs from X can be used to represent the
directed edges of a graph G. It is customary to write x + y to
indicate that the graph contains an edge pointing from node x to
node y.) If there is an edge x -+ y from node x to node y, then
y is said to be a child of x. A node with no arrow starting from
it is said to be childless. So, for example, in Figure 3 there are
two childless nodes and three “parent” nodes, that is, nodes with
children. In Figure 4, on the other hand, there is only one node,
and it is a child of itself.

A tagged graph is a graph in which each childless node x has
been “tagged” by an object tug(x), which is either an atom or the
empty set. Think of tagging as the process of simply writing the
name of an atom or the empty set next to each childless node to
indicate what it represents. More formally, a tagged graph is a
graph G together with a function tag mapping the childless nodes
of G into A U (8).  (Note that if G has no childless nodes, as with
Figure 4, then the totally undefined function suffices to tag the
graph.) Aczel’s basic idea is that once we have a tagged graph, we
can use the nodes and edges of the graph to picture  sets and set
membership. To make this notion precise, we bring in the concept
of a decoration for a tagged graph.

A decoration for a tagged graph is a function D defined on the
nodes of the graph such that for each node x, if x has no children,
then D(s)  = tag(x), whereas if z has children, then

D(Z) = {D(y) ( y is a child of x}.
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Each node 2 of G that has children is said to picture the set ‘D(z).
Thus we can think of the process of decorating a graph as simply
continuing the process started by tagging the graph: we write next
to each parent node a name of the set it depicts. We have in fact
decorated all of the above graphs in just this way.

AFA can now be stated quite simply: it asserts that every
tagged graph has a unique decoration. It is clear that this ax-
iom conflicts with the Zermelo conception since, for example the
graphs in Figures 4 and 5 cannot be decorated with sets from
the cumulative hierarchy. For example to decorate the graph in
Figure 4, lJ would have to assign to the single node some set that
contains itself. But there is no such set among the wellfounded sets.

There are two parts to AFA, existence and uniqueness. That
is, part of what AFA asserts is that every tagged graph has a dec-
oration. This guarantees the existence of all the sets we consider.
However, equally important in applications is the uniqueness half
the assertion that no graph has more than one decoration. It is
this part of the axiom that gives us a useful handle on the identity
of nonwellfounded sets.

Consider, for example, the sets a = {Max, a} and b = {Max, b}.
Does a = b? The usual axiom of extensionality is useless in an-
swering this question, for it asserts only that a = b if a and b
have the same members, which boils down to the assertion that
a = b if a = b. However, on Aczel’s conception, it turns out that
a is indeed equal to b since they are depicted by exactly the same
graphs. To see this in detail, suppose we have a tagged graph G
and a decoration D that assigns a to a node x of G, a(x) = a.
Consider the decoration V’ just like 2) except that P(x) = b. A
second’s thought shows that D’ must also be a decoration for G.
But by the uniqueness part of AFA, we must have V = V’  and so
D(z)  = P(z); i.e., a = b .

On Aczel’s conception, then, for two sets to be distinct there
must be a genuine structural difference between them, one that
prevents them from being depicted by the same tagged graph. This
will be important in what follows, since the identity conditions on
sets give rise to identity conditions on the various set-theoretic
models that we construct below.

It’s fairly easy to see which graphs can be decorated with
wellfounded sets. Say that a graph G is wellfounded if for each
nonempty  subset Y of the nodes of G, some node in Y has no
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child in Y, Only wellfounded graphs can have decorations in the
Zermelo universe; indeed the claim that no nonwellfounded graph
can be decorated is just a reformulation of the axiom of founda-
tion. Further, Mostowski’s Collapsing Lemma 3 tells us that every
wellfounded tagged graph has a unique decoration in the universe
of wellfounded sets. So we can think of Aczel’s axiom as extend-
ing this natural relationship between graphs and sets beyond the
wellfounded.

It should once again be noted that under either conception,
a set can in general be depicted by many different graphs. Fig-
ure 2 presented three different graphs of a wellfounded set, the von
Neumann ordinal three. Similarly, Figure 6 gives a few additional
graphs of the nonwellfounded set R. In this case, to see that each
of these graphs depicts R, we need only note that all the nodes

can be decorated with Q, and so by AFA must be, the decoration
being unique.

3  See, for example, Kunen (1980), 105.
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While Aczel’s is quite a different conception from Zermelo’s, i
turns out that all the usual axioms of ZFC are true under this con-
ception,  except, of course, the axiom of foundation. This mean:
that we can use all the familiar set-theoretic operations (intersec-
tion, union, power set, ordered pairs, and so forth) without any
change whatsoever. Only when the axiom of foundation enters (as
with inductive definitions, which we discuss in the last section o
this chapter) do we need to rethink things.

Let’s look at one more example, this time a bit more relevanl
for our purposes. Consider the English sentence

(E) This proposition is not expressible in English using ten words

and the various propositions it can express. Let us use an atom E
to represent the property that holds of a proposition just in case
it is expressible in English using ten words. Suppose we were to
model the proposition that p has the property E with the triple
(E,p, l), and the proposition that p does not have E with the triple
(E,p, 0).4  Recall that in set theory triples (z, y, 2) are taken to be
pairs of pairs (2, (y, z)), that an ordered pair (y, z) is construed as
the set {{Y), {y, .z)l, and that 0 is represented by the empty set.
Then we can see that a graph of our model of the proposition that
p does not have E and a graph G, of p are related as in Figure 7.

Suppose we want to represent the (intuitively false) circular
proposition expressed by (E) when “this proposition” is given the
reflexive reading. This will be the proposition q that claims, of
itself, that E does not hold. That is, we want q = (E,q, 0). By
what we have just said, it suffices to take the special case of Figure 7
where the graph GP is the whole graph. This is shown in Figure 8.
Thus, the proposition we are after is modeled by the set assigned
to the top node in Figure 8. There is exactly one such set in the
universe of hypersets.

Exercise 8 Label the unlabeled nodes of the graphs in Figures 7
and 8.

Exercise 9 Show that 0 is depicted by all the graphs in Figure 9.

4To  keep the graph simple, we are suppressing the atom Prop introduced in
Chapter 2, page 28.
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Exercise 10 Using AFA. show that there is a unique set a satis-
fying the equation

a = {a, 0).
Show that a # s2.

Exercise 11 Show that the graph shown in Figure 5 is nonwell-
founded. That is, find a nonempty  set Y of nodes of the graph
such that every member of Y has a child in Y.

Exercise 12 Say that a graph is transitive if for each pair of edges
I 4 y and y --t  t there is an edge LC - t. Similarly, say that A

set a is transitive if c E b E a irnplies c E o. Show that a set is
transitive if (but not only if) it is depicted by a  transitive graph.
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Figure 8

The transitive closure of a set a is the smallest transitive set
containing a as a subset. Suppose that a node x of a graph pictures
the set a. Show that the transitive closure of a is the set of all
decorations of nodes appearing “below” 2. (By “y is below 2” we
here mean that there is a path of arrows from z to y.)

The consistency of ZFC/AFA

There w e r e  really two sorts of set-theoretic paradoxes that threat-
ened early, intuitive set theory: paradoxes of size and paradoxes
like those engendered by the Russell set, the set z of all sets that
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are not members of themselves. The Zermelo conception killed
two birds with one stone. On the one hand, it gave us a way to
conceptualize classes that are never collected into sets, and, on the
other, it ruled out sets that are members of themselves. But as a
reaction to the paradoxes, this latter move was really unnecessary.
On Zermelo’s conception the Russell “set” is actually the universe
of all sets. And since this is a proper class, not a set at all, the
familiar reasoning that derives a contradiction from the definition
of z is blocked. But the set/class distinction is the key here, not
the banning of self-membership.

On Aczel’s conception, we still have the set/class distinction,
only now there is a proper class of sets that do contain themselves,
as well as a proper class that do not. (See Exercise 14.) In both
cases there is no Russell set, only a Russell class. To obtain sets
using the Russellian definition, the comprehension schema does not
allow the earlier definition of t:

z={x(x~x)
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but rather requires that we introduce a parametric version of the
definition:

.& = {X E a ) Ic $2 z}.

What the Russell argument now shows is just that z, can never be
in the set a, whether or not a is wellfounded. The set za is said to
“diagonalize out” of the set a.

Since we are working in the realm of the paradoxes, both set-
theoretic and semantic, it is obviously important to be sure that
our metatheory, ZFC/AFA,  is consistent. Aczel has shown that it
is.5 Indeed, he has shown more. Working in ZFC- (ZFC with-
out the axiom of foundation), Aczel shows how to canonically
embed the universe of wellfounded sets into a universe satisfying
ZFC/AFA,  what we have been calling the universe of hypersets.
We call this result the Embedding Theorem. Since the construction
yields a model of ZFC/AFA, it shows that the theory is consistent,
assuming of course that ZFC is. But it also shows that we can think
of the universe of hypersets as a mathematical enrichment of the
universe of wellfounded sets. Thus we can depict the relationship
between the two as in Figure 10.

The situation here is entirely analogous to any number of sim-
ilar cases in mathematics. For example, consider the relation be-
tween the real numbers and the complex numbers. The familiar
model of the complex numbers as equivalence classes of pairs of
reals yields a consistency proof of the theory of complex numbers

5See  Aczel (1987).
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relative to the theory of real numbers. But it also does something
more: it shows us that the complex numbers can be thought of as
an expansion of the reals.

The proof of the Embedding Theorem, while a bit tricky in
detail, is simple enough to describe. First Aczel isolates an equiv-
alence relation =_A on graphs which holds between two graphs just
in case they represent the same set. For example, all the graphs
in Figure 2 are =_A,  as are the four graphs from Figures 4 and 6.
This allows each set in Aczel’s universe to be represented by an
equivalence class of graphs from the wellfounded universe. There
is a slight hitch, though, since each set is actually depicted by a
proper class of graphs, and to carry out the proof in ZFC- one
has to work with sets. To do this Aczel borrows a trick of Dana
Scott’s, and represents each set b by the set Gb of those graphs
of minimal rank in the cumulative hierarchy that depict it. Since
every graph is, by the axiom of choice, isomorphic to a graph on
some set of ordinals, Gb will always be nonempty.  Then, using the
class of sets of the form &/=A, Aczel is able to show (1) that all
the axioms of ZFC/AFA  are true (using the natural interpretation
of membership), and (2) that every wellfounded set is uniquely
represented in the resulting model.

Aczel’s proof shows that there is a sense in which AFA does not
give rise to any new mathematical structures. One could always
replace talk of the nonwellfounded sets in the AFA universe with
talk of the structures Gb/ __A, just as one could replace talk of
complex numbers with talk of equivalence classes of pairs of real
numbers, or replace talk of real numbers with talk of equivalence
classes of Cauchy  sequences of rationals. You could do any of
these in principle, but it would be completely impractical, and
ultimately misguided. As mathematical objects, the complexes are
as legitimate as the reals, and the AFA universe is as legitimate
as the universe of wellfounded sets. The fact that we can mode1
one with the other does not make the latter more basic or more
legitimate than the former.

Exercise 13 Recall the definition of the parametric Russell set
z, given above. What is zo ? Let c be the nonwellfounded set

6 Notice that this observation also shows that we get the same AFA universe
whether our graphs are drawn from the wellfounded universe or from the
full AFA universe.



48 Introduction

depicted in Figure 5, page 38. What is zc? Let a be the set
defined in Exercise 10, page 43. What is z,?

Exercise 14 Show that for any set a, there is a set b = {u b}.
Show that distinct sets n thereby give rise to distinct sets b. Con-
clude that there is a proper class of sets which are members of
themselves.

Solving equations

In addition to standard set-theoretic facts from ZFC, there is one
simple consequence of AFA that we will use over and over in what
follows, a result that allows us to assert that various sets exist
without first depicting them with graphs.

Consider an “indeterminate” x and the equation

x = {x}.

This equation has a solution’ in the universe of hypersets, namely
fl. Furthermore, since any solution to this equation would be de-
picted by the graph GQ, this equation has a unique solution in the
universe.

Similarly, consider the following three equations in the indeter-
minates x, y, and z.

x = {Claire, Max, y}
y = {Max, x}
2 = {X,Y>

AFA tells us that these equations have a unique solution in the hy-
peruniverse, the sets x = a,y = b, and z = c pictured in Figure 5,
page 38.

Aczel has a general result which allows us to find, for any system
of equations in indeterminates x, y, z, . .

x=a(x,y,...)

Y = b(x,y,...)

say,

‘We use the term “solution” in exactly the same way as it’s used in algebra.
Below we will represent a solution to a system of equations as a function
that assigns objects to each indeterminate and satisfies all the equations in
the system.
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a unique solution in the universe of hypersets. This result, which
we call the “Solution Lemma,” is used repeatedly throughout the
book. The remainder of this section (to page 51) is devoted to a
precise formulation of this lemma, and can be skipped by anyone
who finds the formulation just given precise enough.

Given a collection A of atoms, let us write VA for the hyper-
universe of all sets with atoms from d, assuming ZFC/AFA, of
course. Given some larger collection d’ > d of atoms, we may
also consider the hyperuniverse VA! of all sets with atoms from A’.
Since the sets in VA are those depicted by arbitrary graphs with
tags chosen from A, and likewise for VA’ and A’, it is clear that
VA C vdt. (See Figure 11.)

Let us write X = A’ -A and call the elements x E X indetermi-
nates over VA.  Think of these indeterminates as unknowns ranging
over the hyperuniverse VA.  By analogy with ring theory, we write
VA!  = vd[r]. Then given any set a E vd[x],  we can construe it
as a “term” in the indeterminates that occur in its transitive clo-
sure, that is, the indeterminates in UU (Uu) U (Uuu)  . . . . By an
equation in X we mean an “expression ” of the form

x=u

where x E x and a E vd(x]  - x. By a system of equations in x
we mean a family of equations { x = ax 1 x E X}, exactly one
equation for each indeterminate x E X.
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In the first of the examples above, we considered X = {x}   and
the system of equations was simply the single equation

x = {x}.

In the second example, we had X = {x, y, z} and the following
three equations.

x = {Claire, Max, y}
y = {Max, x}
z={x,yI

In both of these examples, the sets on the right-hand side of the
equations are actually wellfounded, but we could also consider
equations like

x = (0,x)

where the nonwellfounded set (a, x) occurs on the right-hand side.
We next define what we mean by a solution to a family oi

equations, in the natural way. By an assignment for X in VA we
mean a function f : X --$ VA which assigns an element f(x) of VA
to each indeterminate x E X. _Any such assignment f extends in
a natural way to a function f : vA[x] + VA. htuithely, giVen

SOme  a E vA[x] one simply replaces each x E X by its value f(x).
(To make this rigorous, one has to work with a canonical graph
depicting a, replacing any childless nodes tagged by an indeter-
minate x E X with a graph depicting the set f(x).) Rather than
write j(a), we write u[f], or even more informally, a(x, y, . . .) and
Wx), f(Y), * * *I.

An assignment f is a solution of an equation x = a(x, y, . . .) if

f(x) = a(f(x),  f(Y), *. ->-

More generally, f is a solution of a system of equations in X if it
is a solution of each equation in the system.

Theorem 1 (Solution Lemma) Every system of equations in a col-
lection X of indeterminate3 over VA has a unique solution.

This lemma is illustrated in Figure 12. Again, we stress that the
lemma has two aspects, existence and uniqueness, both of which
are crucial to what follows. The proof, while not difficult, is some
what tedious, largely for notational reasons. It can be found in
Aczel (1987). The following example, though, will illustrate the
main idea.
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Example 1 Let X = {x, y} consist of two indeterminates and
consider the following equations.

x = {fl, {x)>
Y = W=,X,Y)

The sets on the right-hand side of the equations are depicted in
Figure 13. To depict the solutions to the equations, we simply alter
these graphs by replacing all edges terminating in a node tagged
with x by an edge terminating in the top node of Gx, and similarly
for y and GY. This gives us the graphs in Figure 14.

By AFA, these graphs have unique decorations, and the sets
assigned to the top nodes are solutions of our equations. Further-

Mix ' 'X Y

Figure 13
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more, any solutions of the equations would give rise to a decoration
of these graphs, so there is only one solution.

Exercise 15 Show that in the above example, the unique solution
is just the assignment f(x) = R and f(y) = a, where a is the set
depicted in Figure 15.

Exercise 16 Construct a graph depicting the set f(x) where f is
the solution of the following system of equations.

.

/I
Figure 15
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x = {Claire, y}
y = {Claire, 2)
z = {Max,x}

Show that f(x) # f(y). In contrast, show that if the third equation
had been

2 = {Claire, x}

we would have f(x) = f(y) = f(z).

Exercise 17 Working in ZFC- (i.e., without AFA or the axiom
of foundation), show that the Solution Lemma implies AFA. Thus,
in the presence of the other axioms, the Solution Lemma is really
a restatement of AFA.

Inductive and coinductive  definitions

One final matter before we apply ZFC/AFA  to model circular
propositions. In set theory, a frequent technique for defining a
set or class is to take the desired class to be the unique fixed point
of some “monotone operator.“s But when we work with ZFC/AFA,
it often happens that there is no longer a unique fixed point,
but rather many. For reasons closely connected with the Solution
Lemma, it is usually the largest fixed point that is needed.

Let’s look at a very simple example. Assume for simplicity that
our collection ,4 of atoms is finite, and consider the operator l? that
assigns to each set X the set I’(X) of all its finite subsets. Then
if our set theory incorporates the axiom of foundation, there is a
unique fixed point for this operator, the set HF of all hereditarily
finite sets. That is, if we assume foundation, then HF is the unique
set such that I’(X) = X. However, in the hyperuniverse of sets,
there will be many distinct fixed points, a smallest, a largest, and
others in between.

The smallest fixed point HFo  can be characterized as the small-
est set satisfying the condition:

l If a C HFo U A and a is finite, then a E HFo.

The above is called an inductive definition of HFo.  By contrast,
the largest fixed point HFl can be characterized as the largest set
satisfying the converse condition:

8An operator r is monotone if X C Y implies r(X) c I’(Y). X is a fied
point for r if r(x)  = X.
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l If a E HFI,  then a C HF1 u A and a is finite.

Thii is called a coinductive definition of HF1.  It is obvious from
these definitions that HFo C HF1.  But in the hyperuniverse, the
converse does not hold.

Exercise 18 Prove that every member of
particular, 0 @ HFo.

Exercise 19 Prove that R E HFl.

HFo is wellfounded. In

Since it seems that s2 should certainly count as a hereditarily

finite set, this suggests that the coinductive definition will be the
more natural one to use when working with hypersets. And indeed
it is. HF1  is just the set of those sets which can be pictured by
at least one finitely branching graph. It will contain fl and all the
other examples we have given.

This is a typical phenomenon in working with hypersets. A
pair of inductive and coinductive definitions which characterize
the same set or class in the universe of wellfounded sets often yield
distinct collections in the universe of hypersets. The smallest fixed
point, specified by the inductive definition, usually consists of the
wellfounded members of the largest fixed point, specified by the
coinductive definition. It is usually the latter that is needed in
applications.

Aczel has a theorem, the Special Final Coalgebra Theorem,
which explains why coinductive definitions are so important. While
the formulation of this theorem is too technical to present in detail
here, we can explain the basic idea. We begin with a couple of
examples to illustrate the main feature of the result.

In ZFC/AFA the Solution Lemma frequently takes the place of
the Recursion Theorem of ZFC, the theorem which lets one define
some operation by E-recursion. To do this same sort of thing in
ZFC/AFA,  you show that some operation F on sets is well-defined
by obtaining it as the solution to a system of equations. But then
you want to know that certain properties of the equations carry
over to their solutions. As long as these properties are defined by
coinductive definitions, this usually works out. For example, we
have the following.g

gWe number theorems, propositions, and lemmas with a single numbering
scheme, restarting the numbers in each of the three parts of the book.

Proposition 2 Suppose that E is a finite system of equations of
the form

x = ax(x,  y, . .)
where each ax is in HF 1. If f is the unique solution to this system,
then for each indeterminate x, f(x) E HF1.

Proof: The basic idea is that if you eliminate the indeterminates
from a finite set of finitary equations, in the way suggested by the
proof of the Solution Lemma, you end up with a finite graph, which
must then depict a set in HFI. To do this in detail, first note that
by introducing more indeterminates, we can assume each equation
is of one of the following simple  forms:

.  x = 0 ,

l x = a (for some atom n E A),

l x= {Yl,.. . , y,}, where the yi are other indeterminates with
their own equations in the system.

Let f be the solution. Since it is obvious that HF1  u rng(f)
still satisfies the defining equation of HFI, rng(f) 2 HF1, as de-
sired. 0

Exercise 20 Use the above proposition to show that the unique
set a = (a, a) is in HF1.

Exercise 21 Assume the axiom of foundation, and show that
HFo = HF1.  (Hint: Prove by induction on the rank of the well-
founded set a that if a E HFI  then a E HFo.)

To give a second illustration of the basic notion, let’s use hypcr-
sets  to provide a model of what are called ‘*streams” in computer
science.  The basic idea is that a stream is a possibly irlfirlite  SC’-
quence  of elements. But rather than think of streams as functions
from natural numbers to elements, the computer scientist thinks
of them as ordered pairs, the first element of which is an atom. the
second a stream. So for example, the following would be a stream.

(Max, (Claire. (Max. (Claire.. .))))

To provide an interesting illustration of the Special Final Coal-
gebra Theorem, let’s model not just streams but arbitrary nestedd



sequences. Given some set A atoms, let A, be defined inductively
as the smallest set containing A and closed under the rule: if
2, y E A, then (z, y) E A,. Similarly, let A* be defined coinduc-
tively as the largest set every member of which is either a member
of A, or else of the form (z, y), where 2, y E A*. We will call the
members of A* nested sequences on A, and the members of A, the
finite nested sequences on A.

Exercise 22
A, = A*.

1. Show that the axiom of foundation implies that

2. Show that AFA implies that A, is a proper subset of A’.
Then, show in particular that there is a nested sequence
(1, (2, (3,. . .))) on the set of natural numbers.

3. Show that the unique solution to the following equations
yields elements of A* - A,. Give an intuitive description
of those elements.

To illustrate the Special

x = (Max, y)
y = (Claire, x) ’

Final Coalgebra Theorem once more,
. .we present an analogue of Proposition 2 for nested sequences. Let X

be a collection of indeterminates, and consider the class of nested
sequences on A U X. That is, we allow elements of X as well as
elements of A as basis elements in the definition. Thinking of these
indeterminates as parameters, we call the nested sequences on AUX
parametric nested sequences on A. The Special Final Coalgebra
Theorem shows that if we use parametric nested sequences in the
Solution Lemma, then the resulting solutions are themselves nested
sequences.

Proposition 3 Suppose E is a system of equations of the form

x=ax(x,y,...)

for x E J, where each ax is a parametric nested sequence on A.
Let F be the unique solution of this set of equations. Then for
each x E X, F(x) is a nested sequence on A.

Exercise 23 Prove Proposition 3.

The general case of Aczel’s Special Final Coalgebra Theorem
goes roughly as follows. Suppose we are given some monotone

operator I’. We can use I’ to define a largest fixed point in the uni-
verse VA. Call this collection the collection of r-objects. However,
we can also use r to define the largest fixed point in the universe
VA[X], where we adjoin indeterminates. Call this the collection
of parametric r-objects. Aczel’s Theorem shows that under very
general conditions on l?, equations involving parametric I’-objects
have I’-objects as their unique solutions. While the general formu-
lation of Aczel’s result is somewhat complicated, the proof of this
consequence in any particular case is quite straightforward. We
will not use the general theorem, though we will have occasion to
prove special cases of it in what follows.

A final remark on Aczel’s terminology, just for the curious.
From the point of view of category theory, a system of equations is
dual to the notion of an algebra, and hence is called a coalgebra.
Final coalgebras  are final in the sense of category theory, and exist
under very general conditions. AFA shows that these can often be

taken to be largest fixed points of monotone operators.

Exercise 24 Consider the smallest class B, containing Max as
an element and closed under the rule: if z E B, then {z} E B,.
Similarly, define the largest class B” satisfying: if 2 E B”, then z
is Max or z = {y} for some y E B.

1. Show that the axiom of foundation implies that B, = B”.

2. Show that a E B”.

3. Formulate and prove a version of the Special Final Coalgebra
Theorem for B”.

Exercise 25 Inductive definitions are used to define classes as well
as sets. For example, the class of (wellfounded) ordinals can be
defined inductively as the smallest class ON such that

1. 0 E ON,

2. if (r E ON then a U {a} E ON, and

3. if a C ON then (Uu) E ON.

Give a corresponding coinductive definition of a largest fixed point
ON* and show that R E ON*. Thus one might consider the set 0

a hyperordinal. However, this is a good example of a case where
one would want to use the inductive definition, since the point of
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defining the ordinals is as representatives of well-orderings. Hy-
perordinals like 52 are of no use for such purposes. Formulate and
prove a version of the Special Final Coalgebra Theorem for hyper-
ordinals.

Historical Remark: The history of AFA, and other work on non-
wellfounded sets, is far more complicated than we have suggested.
In particular, the axiom AFA was studied independently, and ear-
lier, by Forti and Honsell, who called it axiom X1. Other axioms
have been proposed by Finsler, Scott, and Boffa, among others.
Also, the proof of consistency of ZFC/AFA is not original with
Aczel, but goes back to Forti  and Honsell, Gordeev, and others.
The reader is invited to consult Aczel (1987) for the history of
this work. We have presented it in the way we have since, to our
knowledge, Aczel was the first to see that AFA could be obtained
from a coherent, intuitive conception of set, rather than just be-
ing a formally consistent axiom, and to demonstrate that it is an
important mathematical tool for the modeling of various kinds of
real-world circularity, not just a mathematical curiosity.

The introduction of a new sort of mathematical object has al-
ways met with considerable resistance, including such now mun-
dane objects as zero, the negative numbers, the irrationals, the
imaginary numbers and infinitesimals. We realize that some set
theorists feel a similar reluctance to admit hypersets as legitimate
mathematical objects. While this reluctance is perhaps under-
standable, it is also somewhat ironic. After all, many set theorists
prior to Zermelo were working with a conception which admit-
ted circularity, as is apparent from the formulation of Russell’s
paradox. Furthermore, the axiom of foundation has played almost
no role in mathematics outside of set theory itself. We must ad-
mit, though, that we initially shared this reluctance, having been
raised within the Zermelo tradition, But our own experience has
convinced us that those who take the trouble to master the tech-
niques provided by AFA will quickly feel at home in the universe
of hypersets, and find important and interesting applications.


