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ABSTRACT

In the field of linguistics, compositionality plays a big role. As Freges principle
of compositionality stated: The meaning of a complete sentence must be ex-
plained in terms of the meanings of its constituent expressions. To understand
the meaning of a sentence, all parts of the sentence must be merged to form
one meaning. Attributive modification poses a subdomain of this problem and
focusses on the meaning of a noun and adjective combined.

This thesis will compare two different methods on how to compute attribu-
tive modification in natural language. The first method is developed by Gérden-
fors and states that in a semantic space, a correspondence occurs between two
points and their position towards each other and their own boundaries of the
corresponding concepts. The second method converts the semantic space to a
vector space and uses the reduced tensor product to find the most prototypical
composition of two vectors that form the concepts.

By aligning the two methods, a mathematical correspondence is found. Also,
the conceptual differences are found that are relevant for modeling semantic
spaces and concepts. Based on the mathematical correspondence and the con-
ceptual differences, it is possible to choose one of the two methods based on the
modeling of concepts within semantic spaces.
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1 Introduction

Linguistics in an important part of research within the field of artificial intel-
ligence. Computers understand very little of the meaning of human language.
This profoundly limits our ability to give instructions to computers, the ability
of computers to explain their actions to us, and the ability of computers to
analyse and process text [23].

A big problem within the computational linguistics is the problem of com-
positionality. Freges principle of compositionality states that the meaning of a
complete sentence must be explained in terms of the meanings of its subsenten-
tial parts, including those of its singular terms [11]. This could also be explained
in the following manner: the meaning of the whole is constructed from its parts,
and the meaning of the parts is derived from the whole [12]. This concept is
important within the field of artificial intelligence if we ever want the computer
to understand the global meaning of entire sentences.

The problem of compositionality not only refers to the meaning of an en-
tire sentence, but even the combination of an adjective and noun alone is hard
to describe to a computer. The problem is that the noun, also spoken of as
head, and the adjective, also known as modifier, both affect the meaning of the
combination of the two words. For example, thinking of the colour red, one
might think of the colour of a firetruck. But thinking of a nose, one assumes
this concept has a skin colour. Then, when the terms are combined to red nose,
excluding artificial clown noses, the colour we have in our minds immediately
shifts to a reddish skin colour. This resulting colour however is (probably) not
the most typical red colour, nor the most typical skin colour that springs to
mind.

These cases, in which the head and the modifier together typically mean
something else than the original terms did apart, are called indirect composi-
tion. However, it is also possible for the head and modifier not to affect each
others meanings. These cases are called direct composition [24]. An example of
these concepts could be a yellow circle, where the term yellow and circle are
totally independent, since both terms do not have an overlapping meaning.

This thesis will cover two methods on how to overcome the problem of com-
positionality. The first makes use of radial projection [24] and the second applies
a reduced tensor product [12].

The first method was developed by Géardenfors, proposing an account of se-
mantics as a mapping between individual meaning spaces based on the ”meeting
of minds” [24]. According to this view, people possess an inner world which can
be modeled as a conceptual space. When we communicate, we try to align our
representations of the world, to converge our worlds towards a smaller set of
possible worlds. The moment we achieve, or at least when we believe to have
achieved, mutual understanding, is when we reach a fixpoint in communica-
tion. This fixpoint represents the equilibrium in the communicative intent of
the speaker and the understanding of the receiver; the result of an interactive,
social process of meaning construction and evaluation.

One of the essential assumptions of this theory is the assumption of convex-
ity. Based on earlier work of Gardenfors himself, he assumes inner concepts are



represented as convex regions of mental spaces. Based on this mathematical
propery, Gardenfors and Warglien use radial projection to establish homeomor-
phism between two concepts, both represented by a convex set. Or in their
own words: “Provided that the head and modifier spaces are compact and con-
vex regions of metric spaces, a way always exists of re-scaling the distances
in the modifier space to fit the constraints of the head space in a one-to-one
correspondence.”

There are two applications of this theory about the mapping of meaning
spaces. The first applies to communication, the meeting of minds, where two
mental representations of the same utterance align to reach a fixpoint in com-
munication. The second is when we apply this theory to compositionality, where
the combination of a head and modifier forms one concept.

The second method is based on the prototype theory. The basic idea of the
prototype theory is that some members of a category are more central than
others [23]. For example, a blackbird is a more typical instance of the concept
bird than a penguin. So when a function of typicality assignes values to members
of concepts, a blackbird will have a higher degree of 'birdiness’ than a penguin
[13]. In short, instances have a degree of membership to a concept.

In cognitive science, the prototype theory often makes use of vectors, pro-
viding a natural way for ordering degrees of membership for multiple instances
[23]. Next, when we have two concepts modeled by typicality-vectors, mathe-
matical functions can be applied as means to bind the two vectors. This method
proposes to use the reduced tensor product to find the combined vector. Based
on the two concepts, this combined vector will have combined degrees of mem-
bership for every instance, leading to the most prototypical combination of the
two concepts.

In order to develop methods to solve the problem of compositionality, some
sort, of model is needed to represent the meaning of words. To compare the
two methods in this thesis, both methods are explained seperately and colour
models are used as a meaning space. Subsequently, the two methods will be
compared to each other and these results will be discussed.



2 Composing by Radial Projection

This method of compositionality is based on Géardenfors view on ‘the meeting of
minds,” where thoughts are shaped as convex sets [24]. When we, then, engage
in conversation, we must align our thoughts and find the right point in the
intersection of our individual thoughts. The point on which we then agree to
have found a mutual understanding, is the fixpoint of our communication.
This problem of trying to achieve a mutual agreement between two spaces,
also exists in language. When a modifier and head are merged, they have to find
a combined meaning as well. For instance, the word red implies a red colour
and the most typical one would perhaps be firetruck-red. However a word like
nose implies a skin colour, so when the words are combined to red nose, sud-
denly a reddish skin colour is implied, which, usually, would not be firetruck-red.

To solve this problem of agreement between two spaces, Gardenfors proposes
that these meaning spaces are convex. This assumption is based on empirical
findings of Jager, who revealed that this can be the result of evolutionary dy-
namics of communicative strategies [9]. Moreover, the convexity assumption
also gives a solid foundation for mathematical functions that allow us to map
points existing in only one of the two sets to the intersection.

This section will start by addressing the assumptions of Gérdenfors’ method,
followed by a description of the method itself. Next, to illustrate the advantages
and disadvantages of the theory, the method is applied to colour spaces, first in
the RGB colour space, because this model is widely used, and then in the HSL
model, to render a perhaps more intuitive result.

2.1 Assumptions

Gardenfors makes certain assumptions in his approach:

e Mental spaces. First of all, Gardenfors assumes people have a certain
cognitive representation of the world, which can be modeled as a mental
space.

e Convexity. The second assumption entails that not only we have mental
spaces, but that these spaces are convex as well.

e Euclidean space. The last important feature of this method is that the cal-
culations take place in Euclidean space, making straight lines the shortest
distance between two points.

2.2 Method

Based on the assumptions mentioned in the previous section, and on the con-
vexity assumption in particular, Gardenfors solves both direct and indirect com-
position by using mathematical functions to map two sets onto each other.

Gardenfors proposes that in the case of direct composition, where two asso-
ciated domains are entirely independent - i.e. where there is no intersection -, a
Cartesian product of the two spaces can be used. Or in the words of Gardenfors:



”The meaning of blue rectangle is defined as the Cartesian product of the blue
region of colour space and the rectangle region of shape space.” This means that
the meaning of the concept blue rectangle can be the result of every possible
pairing of the term blue and the term rectangle, which can be calculated by
using the Cartesian product of the two spaces. An important notion of this
mathematical function is that the product of any compact and convex sets will
again be a compact and convex set and thus preserves the structural properties
of the conceptual spaces.

However, direct composition is rare, in most cases the space associated with
the head affects the representation of the modifier. For instance, a white wine
is not really white and a red wine does not have the colour of prototypical red.

In this case, where we have to find the overlapping space in which both the
modifier and head are present, it is necessary to use radial projection. Radial
projection is a mathematical procedure that takes a point in one of the two sets
and calculates a representative replacement for this point within the intersec-
tion and as long as two sets are convex, compact and have a common interior
point (the origo), homeomorphism between the two sets can always be achieved
through radial projection [1]. In other words, as long as two convex sets share
an intersection, one can always apply radial projection to linearly scale the sets
onto the intersection of the two sets.

For instance, the combination of words in red hair; the term red implies
all red colours of the colour space and the term hair only gives all possible
(natural) haircolours. Next, a typical red colour is chosen and is projected onto
the intersection with the possible haircolours. This is done by making a line
from the intersection to the typical red colour, which gives crossings with the
boundaries of both sets. In turn, the ratio of the distances between these four
points render the most representative point for both sets within the intersection,
ergo, this radial projection delivers the best match between the typical red colour
and the possible natural haircolours.

In short, radial projection provides contextual re-scaling effects between two
(partially) overlapping convex sets.

2.3 Radial Projection Applied to Colour Spaces

Physically, colour is derived from the perception of light, which is emitted in
wavelengths. These wavelengths are measured in nanometers, where humans
only percieve the wavelengths within the range of 400 nm to 700 nm. According
to the theory of trichromacy, the human eye contains three types of cones that
are sensitive to different wavelengths of light. These three cones are ordered by
the wavelengths of the peaks of their spectral sensitivity: short, medium and
long, which approximately correspond to blue, green and red lights [3] (shown
in figure 1).

The first major distinction between colour spaces is device dependency.
When the colour model is device independent, the colour coordinates for the
same colour are the same for every output medium. The RGB space is device
dependent, since the space is defined by specific primary colours, which are not
the same on every device [15].
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Figure 1: The normalized response spectra of human cones.

Another distinction is the intuitiveness of the colour spaces, the measure-
ment of whether the global distances between the colours in the model actually
correspond to the psychological distances between the colours. One of the more
intuitive colour models is said to be the HSL colour model, because it is rel-
atively easy to relate to the difference between colours in hue, saturation or
brightness, making the local distances realistic.

Since compositionality is a computational problem, the RGB and the HSL
colour models are chosen to apply Gérdenfors’ method on. First the RGB
model is demonstrated as this model is widely used in computers and therefore
an important model in which the theory of radial projection should work. Next,
the method is applied to the HSL colour space for this space is more intuitive.

2.3.1 The RGB Colour Space

The RGB colour space is defined by three primaries, red, green and blue. Each
of these quantities indicate how much of this individual colour is included in
the composite colour, or, in other words, the RGB colour model is an additive
model. The value of each quantity is a natural number from 0 to 255. When all
variables are set to zero, the outcome is black and when all quantities are set to
255, it will give a white result.

The RGB model also fulfills the principle of trichromacy, which means that
all colours in this model are linear combinations of the three variables. The
graphical model of the RGB colour space is shown in figure 2.

255
G

Figure 2: The RGB colour space.

Though the RGB colour space is a three-dimensional space and the method
of radial projection works for n-dimensions, purely to keep this example easy
to illustrate, the B-value of the RGB space is set to zero. This simplification
allows us to plot a two-dimensional image as shown in figure 3.



When we apply radial projection, we need two convex sets. In this case one
convex set is the entire space shown in figure 3, the second set is illustrated by
the black square. The next step is to take an arbitrary origo in the intersection
of the two convex sets, which we call 0. Then, we select a point that we think is
a typical green, for example, point z. To map this typical greenish colour to the
intersection, we draw a straight line between the origo and this typical colour.
This line crosses two boundaries, the one with the subset, where the crossing is
called yo and the intersection with the outer bound, called x.

Consequentially, radial projection shows a correspondence between the dis-
tance from the origo to the inner boundary and the distance from the origo to
the outer boundary, which gives the following formula:

d(07y0) d(O,ZEo)

i(0.y) ~ d0.) o

leading us to point .

In other words; when two convex sets have a common point, we map one
convex set to another by scaling them linearly to fit one another. So when we
have a point outside the intersection (z) and we map it to the inside of the
intersection, we get the representative inner point (y) to replace the outlier z.

For this particular example, it would mean that the green colour, referred to
by point z, with RGB-values [20, 230, 0], would be represented by point y. This
new colour has the following RGB-values: [100,160,0]. When we look at this
colours side by side, they are not the same shade, but they are definitely both
representing a green colour. If we were to choose a typical green colour from
the inner convex set, it would even be sensible to choose the y-colour.

20

15 {RGB = [20, 230, 0] RGB = [100, 160, 0]

r4 w

RGB = [250, 250, 0] RGB = [200, 180, 0]

10

y from 0 to 25, where R(y) = 10y

5 10 15
x from 0 to 25, where G(x) = 10x

Figure 3: The RGB colour space, where B = 0, the origo is in the middle of the
subspace, x represents a typical green colour and z a typical yellow colour. On the
right of the plot, the first line shows the colours represented by x and y, respectively
and the bottom two squares show the two colours represented by z and w, respectively.

However, there are a couple of sidenotes to address. First of all, the blue
colour is missing in this example, by setting the B to zero. This might have led



to a different result; maybe the green colour represented by x would not be a
typical green colour if we could add some blue.

Secondly, executing this method, choosing the origo is arbitrary, yet this
does influence the outcome. If we choose the origo at a different location, the
correspondences between the boundaries would differ and the gradient as well.
This issue is illustrated by figure 4.

Still, both the outcome of figure 3 as well as the result of this second example
are green. However, in this second example, the outcome is lighter and more
orange than the first result.

25

20

15 | RGB = [20, 230, 0] RGB = [140, 180, 0]

10

y from 0 to 25, where R(y) = 10y

J
5 10 20 X,
x from O to 25, where G(x) = 10x

Figure 4: On the left the RGB colour space, where B = 0. On the right, the colours
represented by x and y, respectively.

Finally, the distances between the colours in the RGB colour model are not
psychologically intuitive. In the RGB space the distances are differences in the
amounts of red, green or blue. To the naked eye, however, these distances do not
seem natural since not all distances correspond to the same amount of difference
between the colours, which is illustrated in figure 5, where the two colours on
the right seem perceptually closer to one another than the two colours on the
left even though the measured distance is the same.

RGB = [70, 20, 0] RGB =[70, 110, 0] RGB = [70, 200, 0]

Figure 5: These three RGB colours differ only in the amount of green, where from left
to right each colour has an added value of 90.

Nonetheless, it would be natural to say that, in both examples of radial
projection, the colour represented in point y might have more similarity to the
colour of the origo, than the colour represented by z. But it would not intuitively
be said that that precise distance between the origo-colour and the y-colour in
figure 3 is nine steps. Nor would people in general say that the z- and y-colour
where the same colour, only mapped on a different space.



2.3.2 The HSL Colour Space

The abbreviation of HSL stands for hue, saturation and lumination. The hue
is the value to which the colour seems similar to one, or to proportions of two
other colours [3]. In other words, the hue of the colour yellow would be closer
to the hue of orange than to the hue of blue since yellow and orange look more
similar than yellow and blue. The saturation is the degree to which the hue
differs from a neutral gray, running from 0% to 100%. If the saturation is lower,
the colour will be closer to gray. Lastly, the lumination indicates the brightness
of the colour, where at 0% the colour is completely black, 50% gives a pure
colour and turns white at 100%.

The HSL colour space is also referred to as the colour spindle, where the ra-
dius is defined by the value of saturation. The height depends on the brightness
of the colour and the rotation around the spindle depends on the hue. This is
shown in figure 6.

Figure 6: The graphical representation of the HSL colour model.

To easily illustrate this example, the value of the lumination is set to a half.
Again two convex sets are needed, this time two circles. Then, when we take the
centre of the inner circle as origo and a colour in the colour space, the resulting
colour will always be a less saturated version of the same colour, because every
line from the centre of both circles will always make a radius, which represents
the saturation of the HSL colour space (figure 7). Furthermore, when a less
saturated yellow than the displayed yellow in figure 7 would be chosen as starting
point, the result would be even less saturated than the outcome shown in the
picture.

So looking from the origo of the circle, this method seems intuitive; when
we select a bright yellow and map this to grayisch colours, we end up with a
grayish yellow. Also, when we were to choose a less bright yellow, we would
finish with an even grayer form of yellow.

Nonetheless, despite of this intuitiveness, this colour model too, faces the
problem of the origo. Since the origo is not a specified point, not all outcomes
are logical. This problem is illustrated by figure 8, where the origo is not in the
centre of both circles, which directly leads to a very different result.

Concisely, in the case of two circles of which one is placed exactly in de
middle of the other circle and where the origo is chosen in the middle of both

10



X y

HSL = [54° 1, 0.5] HSL = [54°, 0.5, 0.5]

z w

=

HSL = [108° 0.8, 0.5] HSL = [108° 0.4, 0.5]

10

x from -10 to 10, where S(x) = | 0.1x |

Figure 7: On the left the HSL colour space, where L. = 0.5, x represents a typical
yellow colour and z represents a typical green colour. On the right, on top the colours
represented by x and y, respectively and below the two colours represented by z and
w, respectively.

circles, the radius will give the same colour with less saturation, every other line
will directly change the slope and move the representative inlier to a different
colour, since the colours, which we believe are different from each other, are
arranged by hue.

Furthermore, the other two objections mentioned in the previous section also
withstand this colour model. This model too, is incomplete by fixing the lumi-
nation and lastly, although this model is more intuitive than the RGB colour
space, these distances remain psychologically unintuitive. Even though it is in-
tuitive to distinguish between colours based on hue, saturation or brightness,
making the local distances natural, globally, the distances are still unintuitive.
This problem is illustrated by figure 9, in which all colours differ the same
amount in hue. However, the two colours on the right seem more similar than
the two colours on the left even though the measured distance is equal to one
another.

Also, in the HSL colour model, it would be natural to have a special distance
metric since the difference in hue has more impact on the changes between the
colours than the saturation. In figure 10 the first and the second colour differ two
steps in hue and the second and last colour differ two steps in saturation. In this
picture it is clearly shown that the first and second colour have a perceptually
greater difference than the second and the third.

2.4 Points of Discussion

For both colour models the same three problems seem to arise; the fixing of one
value, the psychologically unintuitive distances and the choosing of the origo.
First of all, both colour models are incomplete since in both cases one of the

11



HSL = [90° 0.5, 0.5]

x from -10 to 10, where S(x) = | 0.1x |

Figure 8: On the left the HSL colour space, where L = 0.5. On the right, the colours
represented by x and y, respectively.

HSL = [216° 1, 0.5] HSL =[180°% 1, 0.5] HSL =[144° 1, 0.5] HSL =[108° 1, 0.5]

Figure 9: Four colours from the HSL space, from left to right all 36 degrees apart in
hue.

three values has been fixed. However, the method should provide a solid theory
for all combinations of two (partially) overlapping convex sets, so this should
also be true for two convex sets that happen to lay in a two-dimensional plane
of the colour space.

The next point of critique is the unintuitiveness of the colour models, which
is a well-known problem for psychologists. This has led to more intuitive models
like the Munsell colour space, where distances between colours correspond to
real perception thresholds. Perhaps the theory would provide better results for
different colour spaces. Nevertheless, the RGB colour model is relevant as the
problem of compositionality is important in computer sciences. The RGB colour
space is widely used in computers and therefore an important model in which
the theory of radial projection should work.

Also, even though Gardenfors’ method is only tested on colour spaces, the
theory should work for all conceptual spaces. However, the fact that colour
spaces are not perfectly suitable for this theory, does not mean that the theory
in general is faulty for every other conceptual space.

Finally, it might not even be possible to find a globally realistic solution us-
ing the Euclidian metric and maybe a different metric, like Riemannian metric,
would provide more intuitive results.

Lastly, the most important point of improvement this theory needs is the
choosing of the origo and the prototypical colour. When radial projection is

12



HSL = [90° 1, 0.5] HSL =[54°1, 0.5] HSL =[54° 0.8, 0.5]

Figure 10: Three colours from the HSL space, where the first differs two steps in hue
(equal to 36 degrees) from the second, which in turn differs two steps in saturation
(0.2) to the third colour.

applied to colour spaces, the two points of reference are arbitrarily chosen.

For colour spaces it is probably the best solution to have the origo in the
centre of the intersection, this will always generate unbiased results. Or, it
might be a future expansion of the method to try all possible origos and then
take the average over all outcomes. But even so, the point of the typical colour
also remains in the eye of the beholder. For example, figure 11, where an apple
could have all colours within the gray triangle and the colour red could be
represented by all red colours within the blue triangle. Then, taking a red apple
results in the intersection, where the origo is taken in the middle. Then there
are two typical reds chosen, which both give different results, as shown in the
figure, and strangely the darker shade of typical red gives a lighter shade of red
for the apple than the other typical red does. This shows that radial projection
is very subjective and therefore not a general method.

25|

| RGB = [210, 20, 0] RGB = [220, 50, 0]

z w

: RGB = [130, 20, 0] RGB = [210, 70, 0]

y from 0 to 25, where R(y) = 10y

11 ‘
0 5 10 15 20 25
x from 0 to 25, where G(x) = 10x

Figure 11: The red apple example. The gray triangle represents all possible apple
colours and the blue triangle represents all red colours. Then the origo is set in the
middle of the intersection and x and z represent two different typical red colours, after
applying radial projection, resulting in the points y and w, respectively.

13



3 Composing with the Reduced Tensor Product

The theory of the reduced tensor product is based on the vector representation
of concepts. Within this framework, concept similarity is a function of distance,
where semantically related concepts are closer to one another than semantically
less related words, which is also shown in figure 12 [11]. For example, the
concept mammal will be more similar to creature than lamp.

ofish ebird e chair

stable
emammal
ecreature
elamp

salgae

Figure 12: An example of semantic space, where similar concepts are closer than less
similar concepts.

On a more detailed level, every concept is represented by its own vector
of which every component represents the degree to which that component is
representative to the concept, which is also called the cue validity [2]. More
explicitely, the vector contains as many components as there are concepts in
the represented world and the more similar the component is to the concept,
the higher the value of that specific component. This vector is based on the
prototype theory, where an object instances a concept only to the extent that
it is similar to the prototype of the concept [13].

For instance, if our world contains the concepts red, blue and green, the con-
cept green would be a vector with three components, namely the three colours,
where the most similar colour would have the highest value. So the vector of
the concept green, could have a vector like: [0.3,0.7,1], where red is 0.3, and
blue 0.7 representative to the concept green.

This factor of representiveness of every component is based on the distance
between the component and the most prototypical instance of the concept. So,
within a semantic space, mathematically speaking, a distribution is created,
where the peak of the curve lies on top of the most prototypical concept and
the curve fans out in every direction.

Next, these vectors can be used to calculate combinations of concepts. When
two concepts are combined, the reduced tensor product is applied, resulting in
a third vector, having the highest value for the most prototypical instance for
the combination of the two concepts.

Originally, the tensor product representation was used by Smolensky for
the connectionist representation of variable bindings [20]. However, the ten-
sor product provided a growing dimensionality, as when a n-dimensional vector
and a m-dimensional vector are combined through this direct outer product,
the result is a nm-dimensional vector. To avoid this problem, Plate proposed
to use holographic reduced representations, which uses circular convolution to
associate items [16]. Unfortunately, this mathematical operation is, unlike our
application in linguistics - a semantic space -, translation invariant. Several
researchers have also proposed simple multiplication operations (cf. [2],[11]),

14



which is related to earlier proposals by Zadeh and Hajek in fuzzy logic where
the relevant operation is called the product t-norm ([7], [25]).

The next section will describe the properties that are needed to use the
reduced tensor product. Next, the method will be explained with the proper
mathematical background. Also an elaboration on the term reduced tensor prod-
uct will be given in this part.

3.1 Assumptions
There are a couple of properties this method requires:

e Semantic space. This method is applied to a semantic space, where se-
mantically related concepts are more nearby than less related concepts.

e (Proto)typicality. The method is based on the prototype theory, which
assigns a degree of typicality for every instance to a concept based on the
similarity between the instance and the prototype.

e Euclidean space. All calculations take place in the Euclidian space.

3.2 Method

This account of semantics provides a framework for representing the meaning of
word combinations in vector space, where points that are close together in this
space are semantically similar and points that are far apart are semantically
distant [12][23].

Mathematically, the typicality of instance i within concept A, written as
¢i(A), can be calculated using the following distance function:

ci(A) = ne~Td(Pai)* (2)

where the distance function d gives the Euclidean distance between the instance
i and the prototype P4 of concept A. The prototype P4 also is one of the in-
stances of A, resulting in the peak of the distribution. The terms 7" and k are
used to scale the distribution, towards a clearer peak in the resulting curve;
these two variables will be explained in depth in the next section. This cal-
culation of the cue validity is used for every instance, resulting in a vector or
matrix, depending on the meaning space. Finally, the entire concept is normal-
ized, which is indicated by the term n.

When this formula is applied to two concepts, the resulting plot contains
two peaks, which represent the two prototypes and both concepts have their
own density distribution (figure 13). The x-axis represents the instances in
the world, ordered semantically. The y-axis gives the degree of typicallity the
instance holds.

Next, to combine two concepts, the two distributions are merged to a new
distribution. In other words, the reduced tensor product is applied as means of
binding one distribution to another to produce structured representations [12]:

(A® B); = A;iB; (3)
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Figure 13: An example of vector space, where concept A has its prototype at (2),

shown in blue, and the other concept, B at (12), shown in green. Also, the variables
are set: T'=2 and k = 1.5.

However, the dimension of the tensor product is the product of the dimen-
sions of the original spaces, so, in the case of the two vectors the resulting
product gives a matrix. Because a growing dimensionality is not welcome, a
reduced tensor product is taken. This means we do not use the entire resulting
matrix, but only the diagonal of this matrix. This has the advantage that the
dimensionality will stay equal. Then, this new vector will be normalized as well.
This resulting vector also shows a peak, which represents the prototypical com-
bination of the two previous prototypes, which we will call the target. When the
two distributions shown in figure 13 are combined through this reduced tensor
product, the following distribution arises (figure 14).

0.4

20

Figure 14: An example of vector space, where concept A has its prototype at (2)
(blue) and the other concept, B, at (12) (green). Also, the variables are set: T = 2
and k = 1.5. The reduced tensor product then gives a third distribution, shown in
red, which gives a prototypical combination, t, at (7).

3.3 Mathematical Background
3.3.1 Three Aligning Peaks

A very important property of this method is that the three peaks of the disti-
butions are aligned (figure 15).

Figure 15: The vector space, where concept A has its prototype at (3,5) and the other
concept at (10,15), T = 2 and k = 1.5. The reduced tensor product then gives a third
distribution, of which the maximum is aligned with the two prototypes and indicated
by the letter t.
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When a line is drawn between the two prototypes and we were to look for
the local maximum on this line, the point would have to lie in between the two
prototypes, since the highest correspondence of both distributions lies there
based on Euclidean distances. Next, if we were to deviate from this line, the
distance to the prototypes will only grow bigger due to the triangle inequality,
making the cue validity smaller and smaller. Therewith concluding that the local
maximum on the line actually is the global maximum, because every movement
off the line will only shrink the value of the cue validity.

Nevertheless, this feature does rely on a couple of properties of the distribu-
tions. The first property is the Euclidean geometry, where the shortest distance
between two points is a straight line. Secondly, both distributions have to be
symmetrical and monotonically decreasing. Fulfilling these properties cause the
combined distribution to be on a straight line between the two prototypes of
the concepts.

3.3.2 The Variables Explained

In the formula for calculating the distributions, two variables occur, namely T'
and k. The T-variable is a scalar, when the value increases the distribution will
spread out more (figure 16).

In other words, the variable T defines the decay of the distribution. In effect,
the higher the value of variable T', the lower the peak of the distribution. So
when the value of T' differs between concept A and B, the distributions will
differ in height and decay, and the target will move towards the distribution
with the higest decay (figure 17). However, it should be noted that T needs to
have a positive value to conserve the properties of the distribution function.

The second variable used is the variable k, which is needed to make a dis-
tribution with a peak, which is necessary to point out the combined prototype.
When £k is set to one, the third distribution will be a constant instead of a
distribution with a peak. Mathematically, the following formula is used when
k=1

(A ® B)Z,Z =MNA*NpB * Cid(PA’i) * eid(PB’i) (4)

where there are two concepts, A and B, which both have their own prototypes,
P4 and Pg, respectively. Then, for every instance i the product of the normal-
ization factors and the exponential distance functions are taken.

This function can be rewritten as:

(A & B)i,i =NA*NpB * €_d(PA’i)_d(PB’i) (5)

However, since the distance between the two prototypes P4 and Pg is constant,
the movement of ¢ will only move the ratio between the two prototypes, but will
not affect the outcome:

—d(Pa,i) —d(Pp,i) = —(i— Pa) = (Pp —i) = Pa — Pp (6)

This problem can be solved by adding a power to which the distances are
taken. This causes a difference between the distance from 7 to P4 and the
distance from ¢ to Pp, which makes for a distribution with a peak (figure 18).
Also, if k differs between the two distributions, the target will move towards
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Figure 16: Examples of the vector space, where one concept has its prototype at (2)
and the other concept at (8), k = 1.5 and T variates. The reduced tensor product
then gives a third distribution, shown in red, which gives a prototypical combination
at (5).
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(a) T4 =2 and T = 4. (b) T4 =2 and T = 8.

Figure 17: Examples of the vector space, where concept A has its prototype at (2)
(blue) and the other concept, B, at (12) (green). Also, the variables are set: k is equal
for both distributions and set to 1.5, the value of T' differs. The reduced tensor product
then gives a third distribution, shown in red, which gives a prototypical combination,
with its peak at t.
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Figure 18: Examples of the vector space, where one concept has its prototype at (2)
and the other concept at (8), T = 2 and k variates. The reduced tensor product then

gives a third distribution, shown in red, which should give a prototypical combination
at (5).

the distribution with the highest value of k, since the placement of the target
depends on the difference between the distributions and the distribution with
the highest power will have the highest outcome (figure 19). Furthermore, k
should have a positive value as well. When k is negative, the distribution is
upside down, meaning the cue validity of the prototypes will become zero, in-
stances with normally the highest values suddenly have the lowest values and
vice versa, resulting in a valley instead of a peak.

Another property of the two variables is that if 7' and k are equal for both
distributions, the peak of the combined prototype will always lie in the middle
of the two peaks. This can be explained with the following equations, where ¢
stands for target, the combined prototype:

t = maz;(na *np x e~ TIPAD =1 d(PpD)") (7)

As discussed in the previous section, the three peaks are aligned, so P4 can be
used as origin of the line, which entails that P4 can be replaced by zero and the
distances can be rewritten as ¢ and Pp — 4 (figure 20).

t:ma;vi(nA*nB*e_%ik_%(PB_i)k) (8)

To find the value of ¢, the derivative of this formula should be equal to zero.
The instance ¢ for which this formula is zero, will be the ¢ with the maximum
value, named target t:

5
ﬁ(nA*nB*ef%tkf%(PBft)k):0 (9)
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Figure 19: Examples of the vector space, where concept A has its prototype at (2)
(blue) and the other concept, B, at (8) (green). Also, the variables are set: T is equal
for both distributions and set to 2, the value of k differs. The reduced tensor product
then gives a third distribution, shown in red, which gives a prototypical combination,
with its peak at t.
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Figure 20: The graphical representation of the line between Pa and Pg.

1 k k
e PPt (et 2 (P — )P = 0 (10)

Since the exponential part of the formula can not be zero, the second part
of the equation needs to be equal to zero:

koo K

—=t —(Pg—t)f 1 = 11
S (P -0t =0 (11)
These derivations lead to the following equations:
k1 K k—1
—t =—(Pg—t 12
2t = (P - 1) (12)
1
QtZPBEtZEPB (13)

This last equation tells us that, if the variables T' and k are the same for
both distributions, the distance from the prototype of concept A to the target
is half the distance from the prototype of concept A to the prototype of concept
B. So the target lies exactly in the middle of the line between P4 and Pg.

3.3.3 Variating the Variables

The previous section showed that the target always lies in the middle of the line
between the two prototypes. However, this only happens when the variables T
and k are equal for both distributions.
To broaden the scope of the reduced tensor product, it is more general to
rewrite the formula:
t= OéPB (14)

Where « represents the ratio between the two concepts, causing the target to
move from or to one of the two concepts. Right now, the ratio is fixed to
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the middle of the line, causing a to be equal to a half. But if the variable T
differs between the two prototypes, the target would still align with the two
prototypes, but would also move towards the concept with the highest decay
(the lowest value of T'). The derivation of o can be calculated starting with the
formula for ¢, also defined by equation (8), but now the values of T4 and T
are defined seperately:

Tk Nk
t =max;(na*xnp we Tal —Tp (e ) (15)

Then, the derivative of the formula should be set to zero to find the maximum
value for 7, namely the target:
_ 14k 1 (pn_p)k k k
e At TP (Ll (P — )b =0 (16)
Ty Ts
Since the exponential expression at the beginning of the formula can not be
equal to zero, the second part of the formula must be zero in order to solve the
equation:

ko e1 k k—1
——1 — (P —t = 1
Tt (Pa =) =0 (1)
This simplification leads to the following equation:
L ora 1 k-1
— 1= _—(Pg—t 1
Tt = (P =) (18)

Next, the target can be isolated in the formula:

P
t=— 2 (19)
L+ (78)77

This equation gives us the formula for «, depending on the values of Ty, T
and k: 1

a=— (20)
L+ (75)77

So if the value of T differs between the two distributions, the reduced tensor
product still provides a linear function. Furthermore, if the value of Ty were to
grow and the value of Tg would remain the same, the value of the denominator
of @ would have its limit at one and the target will end up at Pg. Because: the
higher the value of T4, the lower the decay of distribution A and the target will
move towards the prototype of concept B. In short, the value of a depends on
the ratio between Ty and T and when T4 grows to infinity or when T’g shrinks
towards zero, the limit of « is one and when T4 shrinks towards zero or when
Tp grows to infinity, the limit of « is zero. This means « will always have a
value between zero and one, where zero represents the point of the prototype of
concept A and one is equal to the position of the prototype of concept B. Or
in other words, when T differs between the two distributions, the decay of the
distributions differs, causing the target to move towards the distribution with
the highest decay - i.e. the lowest value of T.
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Another possibility is to differ the value of k instead of T'. To make it easier
to read, the k of the distribution of concept A will be called k£ and the power of
concept B will be called m:

t:maxi(nA*nB*e*%ik*%(PB*i)m) (21)
Then, to find the maximum value of ¢, its derivative has to be equal to zero:
1 k

_lik_1(pa_pm _ m
e~ 1t —7(Pp—t) *(_7tk 1, m

T 7 (Ps—t)"") =0 (22)

Similar to the previous calculations, only the second part needs to be equal to
Zero:

k.1 m -1
=t + = (Pr—t)" = 2
T T( B ) 0 (23)

However, unlike the previous calculations for a differing 7', the equations for
differing the value of k lead to a complicated formula:

k 1 k—1
(m) itm=1 +¢= Pp (24)
Unfortunately this equation can not be solved in a general matter. So, in
summation, differing 7" between the two distribution gives a linear function
that can be compared to the method of radial projection. However, differing
the value of k between the two methods leads to an unsolvable formula and is
therefore unwanted for the comparison of the two methods.

3.4 Points of Discussion

A couple sidenotes should be addressed using this method. Generally, there are
two main problems: the initialization and the intuitiveness of the method.

Before the method can be executed, the variables have to be set and the
prototypes need to be chosen, which can be very subjective. This is also shown
in the colour models discussed in de previous chapter. So in order to make this
method work, a consensus should be made regarding the prototypes and the
variables as well, since they define the slope of the distribution.

Next, the intuitiveness could be improved. Modeling concepts to a intuitive
space is a very difficult issue to solve. Even though it seems intuitive that seman-
tically related concepts are more nearby than semantically unrelated concept,
the precise distances between the concepts remain an obstacle.

Also, using this method, the distributions have two properties that might
not intuitively be accurate. The first property is that the distributions fan
out through the entire space, meaning that there are no boundaries between
concepts. So even if two concepts are totally unrelated, if they both lie within
the same conceptual space, they will still have a measure of typicallity. For
example, in figure 21 the distribution of the concept orange would still provide
a chance for the orange colour itself of being a green colour.

Finally, these distributions fan out equally in every direction. Figure 21
shows the flaw of this assumption; not all equal distances have the same equal
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(un)relatedness semantically. Besides, if both 7" and k are equal for both dis-
tributions - i.e. both prototypes have the same weight -, the prototypical com-
bination of two concepts always ends up in the middle of the two concepts. Of
course it is also possible to differ the variables T' and k, to move the outcome
from or to one of the prototypes. However, a Boltzmann distribution, where the
slope is not the same for every direction, would seem more natural. Or perhaps
the Rasch model should be applied, where every concept is modeled according
to the responses of subjects.
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Figure 21: An example of the colour space, where the square represents a typical
orange colour and both circles are at the same distance from the square.
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4 Results and Discussion

4.1 Conceptual Comparison

Although the method of radial projection and the method of the reduced tensor
product seem to be very different, there actually are just a few dissimilarities.
The major difference between the two methods is that Gardenfors’ method is
based on a meaning space in which concepts are convex sets and have bound-
aries. Whereas the method of the reduced tensor product uses distribution
functions to formulate concepts throughout an entire semantic space. However,
it should be noticed that this causes a similar constraint on both methods; to
achieve radial projection, all concepts must be modeled using convex sets, but
the reduced tensor product also knows a convexity assumption. When there are
several prototypes in the same semantical space and we were to look at every
instance seperately to see to which prototype they belong - i.e. to look for which
prototype they have the highest cue validity -, and then assign the instances to
one prototype, a Voronoi tessellation occurs. Since every cell of a Voronoi di-
agram is a convex set by definition, the reduced tensor product creates convex
concepts as well [24].

The biggest semantic difference between the two methods is the notion of
concepts having or not having boundaries. When we take the RGB colour space
as an entire meaning space it seems logical to give the colour-concepts bound-
aries, because the concept red should not intervene with the concept gray. How-
ever, it is not possible to make a neutral gray colour without using some red
and secondly, both concepts indicate a colour so they should be connected on
some semantic level. On the other hand, looking at a colour model, the se-
mantic definition that all instances within this model are indeed colours, was
already established by choosing this meaning space. So perhaps the biggest se-
mantic boundary was already chosen. Nevertheless, perhaps concepts indicated
within colour spaces should have boundaries, whereas concepts within different
meaning spaces should not have boundaries, or vice versa.

This notion actually leads to a psychological issue, whether concepts have
boundaries and whether semantic models can be intuitive. Radial projection
requires two points, an origo and a typical instance in one of the two concepts,
both chosen subjectively. The second method also requires two subjectively
chosen points, the two prototypes. Even if all people were to choose the same
points for each method, the question of intuitiveness would still remain. This
problem remains, because semantic models translate the difference in meaning
into distances. The distances between meanings are not psychologically intu-
itive and perhaps Euclidean metric should only be used as a first approximation.

However, apart from these differences between the methods - the convex
regions versus the distance distributions and concepts modeled with our with-
out boundaries - the Euclidean distances along a linearly ordered line are used
in both methods. Where the reduced tensor product uses distributions that
result in a composed concept on the line between the two prototypes, radial
projection draws a line between an arbitrary origo, through a prototype, to the
outer boundary. Next, Gardenfors’ method uses the correspondence between
the length of the line from the origo to the outlying prototype and outer bound-

24



ary and the length of the line from the origo to the inlying composed concept
and the inner boundary. So basically, the placement of the composed concept
on the line between two prototypes is either defined by the ratio of the bound-
aries of the concepts or by the ratio in weight of the prototypes of the concepts.
The next section will cover the mathematical correspondence between the two
proportions.

4.2 Mathematical Comparison

To compare the two methods, they both need to be reduced to a comparable
form. Fortunately, both methods can be easily reduced to a straight line. In the
method of radial projection, this line goes from the origo to the outer boundary
of the entire space, crossing the target concept, the inner boundary and the
typical outlying concept. Using the reduced tensor product, this line starts at
the prototype of one concept and ends in the prototype of the second concept.

Because of the steady ratio between the two concepts and the combined
concept caused by the reduced tensor product, this section will first recall the
formula for this method. Next, this formula will be compared to the mathemat-
ical foundation of radial projection.

To compare the two methods, both lines need to be aligned. Firstly, the
reduced tensor product can be described by a linear function, as explained in
section 3.3.3, with the following formula:

t= aPB (25)

However, it is important to repeat that this formula only has a differing T’
for both distributions, but that the k is equal, because we need a linear function
to compare the two methods. Next, to align the method of radial projection
with the proposed line of the reduced tensor product, it seems natural to replace
the origo of radial projection with the prototype of concept A and the typical
second concept, z, with the prototype of concept B (figure 22 and figure 23).
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Figure 22: The RGB colour space, where blue = 0, the origo (Pa) is in the middle
of the subspace and x (Pg) represents a typical yellow colour. Above the line are the
terms that are replaced by the terms below the line.

Radial projection makes use of the following equation:
d(OvyO) d(OaxO)

1(0.y) ~ d(0.2) (26)
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Figure 23: Representation of the line.

When the methods are aligned, and if the line of both methods begin in the
same point, namely P4, every distance from P4 to an arbitrary point on the
line can be replaced by simply the placement of the arbitrary point on the line

itself:
Yo _ To

= 27
t = Py (27)
This leads to the following equation, ending in a simple formula for ¢:
P
;= BYo (28)
Zo

Now formula (28) can be compared to the equation for ¢ in for the reduced
tensor product, given in equation (25):

P
BY0 _ opg (29)
Zo
Resulting in the following equation:
0 _q (30)

o

This last formula shows the correspondence between the ratio of the inner
and outer boundary and the ratio of the two concepts. So if the target lies in
the middle of the two concepts - i.e. when « is equal to a half -, the inner
boundary must be half the distance to the prototype of concept A compared
to the distance from the outer boundary to the prototype of concept A. With
this equation the results of the reduced tensor product can be used to calculate
the boundaries for radial projection. Or, in short, the ratio between the inner
and outer boundary in radial projection is equal to the ratio between the two
prototypes of the concepts, depending on the values of T4, T and k.

4.3 Discussion

The results regarding the comparison of the two methods bring the conclusion
that, if attributive modification is calculated using Euclidean metric, the meth-
ods actually are interchangeable. In other words, starting with the reduced
tensor product, the parameters of Gardenfors’ model can be reconstructed to
find the same combined prototype and starting with radial projection it is possi-
ble to reconstruct the ratio in weights between the two prototypes of the reduced
tensor product model. However, this is only possible under the assumption that
the origo and typical instance of the model for radial projection are chosen at
the same locations as the two prototypes from the reduced tensor product.
Then, the only remaining obstacles are the choosing of the prototypes or the
origo and typical instance, the potential boundaries of the concepts and the in-
tuitiveness of the semantic model itself. The choosing of all these points depend
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on the individual and would require psychological research to achieve a common
answer. Furthermore, if the prototypes were chosen based on popular opinions,
a normal distribution with a mean and a deviation seems natural. However,
people might still need boundaries for every concept instead of a distribution
covering the entire meaning space.

Concisely, two domains can be further explored. The first is the modeling
of a semantic space. It is possible that colour spaces are a bad example for
attributive modification, or perhaps different colour spaces than the ones used
in this thesis should be used, like the more intuitive model of Munsell. When
attributive modification is tested on semantic models, the model should contain
intuitive distances between its instances. To achieve this goal, the notion of
using a different metric than the Euclidean metric system should be explored
as well. However, when people do decide to use colour models for attributive
modification, psychological research must be done to find more similarities be-
tween people in finding two prototypes and their combined colour. Also, if the
prototypes are chosen based on votes, a distribution seems natural. However,
if boundaries turn out to be a very natural mold as well, perhaps it is advanta-
geous to combine the two methods.

The second domain that needs exploring is the mathematical point of view,
which metric system should be used or which distribution functions would ren-
der the best results. Whether concepts do or do not have boundaries, both
methods make use of convex sets and linearly ordered instances. Perhaps the
two could be combined to distributions within convex regions with boundaries.
Or perhaps a different distribution function, not being symmetrical or mono-
tonically decreasing, would generate more intuitive results.
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5 Conclusion

To understand language, pasting the meanings of seperate words together is not
enough. When words are merged into a sentence, or even a part of a sentence,
their meanings are merged as well. Focussing on the combination of a modifier
and a head, multiple methods have been developed to solve attributive mod-
ification. Though there are two kinds of attribution modification; direct and
indirect modification, most methods focus on the latter.

One of the most recent methods is the method of Gardenfors. This method
is based on the property that Gérdenfors ascribes to inner concepts of men-
tal spaces: convexity. Based on this mathematical property, homeomorphism
between two concepts can always be achieved through radial projection.

Making use of three assumptions - the existence of mental spaces, the con-
vexity and Euclidean space -, two convex concepts with an overlapping part can
be mapped into the intersection with a one-to-one correspondence. When two
concepts overlap, an arbitrary origo is taken in the intersection and a typical
instance is taken in one of the two concepts. Next, the distance from the origo
to the typical instance with respect to the outer boundary of the correspond-
ing concept is taken as a ratio for the distance from the origo to the resulting
combination with respect to the boundary of the intersection.

To test this method, radial projection was applied to colour spaces, because
these are the only modeled meaning spaces. Unfortunately, for both the RGB
and the HSL colour space the method did not seem to render intuitive results.
This problem could be due to the colour models, because in both cases one value
of the model was fixed. Even though this should not cause a problem, perhaps
using the entire colour spaces would provide different results. The second prob-
lem caused by the colour models is the unintuitiveness of the distances between
colours, which might be solved by using different colour models or a different
metric system. However, the perception of colours remains very subjective and
therefore might not be suitable as an example for meaning spaces. Perhaps
colour adjectives should even have its own behavioural class.

Finally, the most relevant problem this method encountered is the place-
ment of the origo. Although the one-to-one correspondence between two sets
with an overlap is possible for every arbitrary placement of the origo within the
intersection, it does influence the placement and slope of the line from the origo
to the typical instance. Furthermore, this typical instance is also subjective. In
short, since both the origo and the typical instance are subjective, the result
differs per person, making the method subjective instead of general.

The second method is based on the prototype theory and represented by a
vector space. The prototype theory originates from the cognitive sciences and
states that every concept has one member that is more characteristic than the
others. When a concept is represented by a vector, this vector contains a degree
of typicality for every instance of the concept. So if this representation is used in
a semantic space, all instances will be ordered based on their meanings and the
degree of typicality, called the cue validity, is defined as a function based on the
distance between the instance and the prototype of the concept. Then, plotting
the vectors, this will give a distribution with a peak on top of the prototype of
the concept.
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The next step is to find the prototypical combination of the two concepts,
which is achieved by combining the two vectors that represent the concept of
the head and the concept of the modifier. This method states that this should
be done by taking the reduced tensor product between the two vectors. To stop
the growing dimensionality of a regular tensor product, only the diagonal of this
product is taken, hence the name reduced tensor product. The resulting vector
also shows a peak, representing the prototypical combination of the two original
concepts.

Nevertheless, this method depends on two variables; the cue validity is not
only based on the distance between the prototype of the concept and every
instance of the semantic space, but also influenced by the two parameters T
and k. Whereas T represents the decay of the distribution, causing a higher or
lower peak, the variable k represents power to which of the distance between
the prototype and the instance is taken, which causes a bigger difference in
magnitude of the cue validity.

The most important feature of this method, based on the symmetrical and
monotonically decreasing distributions, is that the resulting peak aligns with
the two original prototypes. Furthermore, when the parameters T and k are
equal for both distributions, the combined vector has its peak exactly in the
middle of this line between the prototypes.

However, this method also depends on subjectivity. First of all, the proto-
types and the variables need to be set, which can differ between individuals.
Next, the distance between semantically related and unrelated concepts forms
an obstacle. Because the distributions are symmetrical and monotonically de-
creasing, an equal distance from the prototype means to have an equal semantic
difference from the prototype, which is not an universal property of meaning
spaces, as shown in the colour spaces. Also, however likely it seems that seman-
tically similar meanings are closeby, exact distances are subjective as well. And
finally, every instance in the semantic space will have a chance of having the
same meaning as the prototype, because the distributions fan out through the
entire space, without any boundaries.

Since both methods use Euclidean metric and are based on linearly ordered
instances, they can be aligned mathematically. When the two points of radial
projection, the origo and the typical instance, are chosen at the same location
as the two prototypes of the reduced tensor product, a correspondence can be
found between the two methods. This correspondence entails that the ratio
between the inner and outer boundary of radial projection is equal to the ratio
between the weights of the two prototypes. So if both prototypes have the same
weight, the target lies in the middle of the two prototypes and for Géardenfors’
method the outer boundary of the concepts should be twice as far from the origo
as the inner boundary.

Using this correspondence, only one difference between the methods remains:
the modeling of concepts. The difference is the existence of boundaries; whereas
the reduced tensor product uses the entire meaning space for every concept,
radial projection chooses a convex region within the semantic space for every
concept. The notion of each concept having boundaries or being related to
every other concept is a psychological question and maybe even depends on the
individual. Perhaps some concepts should have boundaries while others should
not. Also, when a meaning space is already specialized to one aspect, like the
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colour models, the biggest semantical boundary is already set.

In short, when the mental space is convex and ordered semantically, and
two prototypical points are chosen, using Euclidean metric, both methods can
be used and by adjusting the ratio between the boundaries of radial projection
or the variables T" and k of the reduced tensor product, the same result can be
found. The only remaining difference would be the existence of boundaries of
the concepts, which would depend on the psychological modeling of the concepts
and thus would be in the eye of the beholder.
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