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A	quantum	probability	perspective	on	

borderline	vagueness	

Reinhard 	Blutner, 	Emmanuel	M.	Pothos,	and	Peter	Bruza	

 

  

Abstract 

 

The term ‘vagueness’ describes a property of natural concepts, which normally have fuzzy 

boundaries, admit borderline cases and  are susceptible to Zeno’s sorites paradox.  We will 

discuss the psychology of vagueness, especially experiments investigating the judgment of 

borderline cases and contradictions. In the theoretical part, we will propose a probabilistic 

model that describes the quantitative characteristics of the experimental finding and extends 

Alxatib’s and Pelletier’s (2011) theoretical analysis. The model is based on a Hopfield 

network for predicting truth values. Powerful as this classical perspective is, we show that it 

falls short of providing an adequate coverage of the relevant empirical results. In the final 

part, we will argue that a substantial modification of the analysis put forward by Alxatib and 

Pelletier and its probabilistic pendant is needed. The proposed modification replaces the 

standard notion of probabilities by  quantum probabilities. The crucial phenomenon of 

borderline contradictions can be explained then as a quantum interference phenomenon. 
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1	Introduction	

The term ‘vagueness’ describes a property of natural concepts, which normally have fuzzy 

boundaries, admit borderline cases and are susceptible to Zeno’s sorites paradox (as long as 

there is a semi-continuous relevant dimension). For example, consider the concept of a ‘tall 

man’ as applied under usual circumstances. An important characteristic of such concepts is 

that they apparently lack precise, well-defined extensions. Questions such as ‘what is the 

smallest size of man called “tall”?’ do not make precise sense, since the boundary between 

‘tall’ and ‘not tall’ is not clearly defined. Also, predicates like ‘tall man’ admit borderline 

cases. These are instances where it is unclear whether the predicate applies. The lack of 

clarity about whether the chosen instance is tall or not cannot be eliminated by further 

information about the person’s exact height; rather, the underlying issue seems to be 

associated with the lack of a precise definition for the predicate. Such situations are related to 

Zeno’s sorites paradox, which aptly illustrates the problem with vagueness. It derives its name 

from the Greek soros, which means heap. Obviously, we could formulate a rule stating that if 

X is a heap of sand, then removing one grain will still result in a heap. However, when we 

repeat the action of removing grains often enough, one by one, eventually the repeated 

application of the formulated rule gives the paradoxical result that the last grain left must still 

count as a heap.    

 The phenomenon of vagueness has attracted intense interest from philosophers, logicians, 

semanticists and general linguists. Only recently has it become a principal research topic for 

experimental psychologists. There are three main streams in this experimental work on 

vagueness: (1) Research pioneered by Hampton and others concerning the structure of vague 

concepts (Hampton, 1988a, 1988b, 2007; Wallsten et al., 1986; Budescu & Wallsten, 1995); 

(2) The investigation of Osherson and others regarding compositional theories of conceptual 

combination (Osherson & Smith, 1981; Osherson & Smith, 1997); (3) the investigation of 
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borderline cases pioneered by Bonini et al. (1999) and Alxatib and Pelletier (2011). Hereby, 

borderline cases are exemplified by sentences where participants are normally unsure whether 

the sentence is true or false.  

 The present paper is devoted to the last research stream. Our main interest concerns the 

explanation of the acceptance of borderline contradictions, such as ‘X is tall and not tall’, 

where X refers to a borderline case. We will give an explanation of recent data found by 

Alxatib and Pelletier (2011) and some related findings by Sauerland (2010). Though we are 

particularly interested in explaining the data concerning borderline contradictions, we will 

argue that the present model is more general. 

 We are looking for a quantitative model of vagueness. Such an endeavor goes beyond 

purely logic-based approaches, as that by Alxatib and Pelletier (2011). The first model we 

propose employs classical probability theory, and is based on discrete hidden variables 

mimicking Alxatib and Pelletier’s (2011) assumption about the underlying logic and 

pragmatics of super- and sub-valuation. The second model introduces quantum interference 

effects. It is the superposition of ‘tall’ and ‘not tall’ that introduces additional interference 

terms, when we calculate the corresponding quantum probabilities. The details of the 

mathematical treatment are related to earlier work discussing probability judgment errors  

(Aerts, 2009; Blutner, 2009; Busemeyer, Pothos, Franco, & Trueblood, 2011; Conte et al., 

2008; Khrennikov, 2006) 

 In the next	 section, we introduce psychologically relevant theories of vagueness and 

outline the findings of Bonini et al. (1999). Section 3 explains the basic data reported by 

Alxatib and Pelletier (2011) and their theoretical analysis. Based on this theoretical analysis, 

Section 4 presents a classical probabilistic model quantifying vagueness. We fit this model to 

the data presented in Alxatib and Pelletier (2011), but conclude that a fully satisfactory fit is 

elusive. Section 5 develops an alternative probabilistic model, based on interference effects, 
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which can arise in quantum cognitive models. Section 6 concludes the paper with a discussion 

of our main findings and implications.  

2	Psychological	theories	of	vagueness	

We introduce four semantic theories of vagueness, which are taken as relevant for the 

construction of a psychological theory of vagueness (see also Bonini et al., 1999, Alxatib and 

Pelletier, 2011). The semantic theories are gap theory, glut theory, fuzzy logic, ‘vagueness as 

ignorance’, and contextualism.  

2.1 Gap- and glut theories 

According to gap theory (Fine, 1975; Van Fraassen, 1966) a predicate such as ‘bald’ is vague 

because there is indeterminacy between these various ways of picking out a precise cut-off 

value separating bald from not bald. There are many ways of doing this and we have only the 

set of these different possibilities to make it precise. These possibilities are called 

‘precisifications’. In gap theory it is assumed that a sentence such as ‘Peter is bald’ is 

considered true, without qualifications, if the sentence is true independently of the precise cut-

off values, i.e., if the sentence is true for all precisifications. Instead of ‘true for all 

precisifications’ or ‘true without qualifications’, the term ‘super-true’ is used (and the method 

used in gap theory is called supervaluation). In a similar vein, a sentence such as ‘Peter is 

bald’ is considered ‘super-false’ if it is false for all precisifications. Sentences which are 

neither super-true nor super-false for a given system of precisifications are said to be vague. 

They fall into a truth-value gap. 

Glut theory (Hyde, 1997, 2010; Priest, 1989) is analogous to gap theory. Again, there is a 

set of precisifications, and sentences and predicates can be multiply precisified. However, 

instead of ‘super-valuations’, so called ‘sub-valuations’ are considered for determining truth-

values. A sentence is called ‘sub-true’ if there is a precisification that makes it true, and a 



 6 
 

sentence is called ‘sub-false’ if there is a precisification that makes it false. Interestingly, now 

the logical principle of ‘non-contradiction’ can be violated: there can be sentences which are 

both sub-true and sub-false. Such sentences are said to fall into a truth-value glut.  

Gap and glut theories are logical theories. As such they are not directly connected with 

human behavior. An assumption about psychological process is needed to connect logical 

theory with human behavior. Bonini et al. (1999: 379) proposed that: “Speakers typically 

know what truth-value (if any) results from predicating vague adjectives like red, tall, and old 

of common objects. They tend to assent to such predications if they consider them true and to 

dissent from them if they consider them false.” In other words, it is assumed that speakers 

have access to a lexical base that contains the relevant classification of common objects. A 

simple example from Alxatib and Pelletier (2011) should illustrate this point and the idea 

behind gap- and glut theories.  

Assume we have five suspects of differing heights (Fig. 1). In cases like that we can 

assume a fixed comparison class, say the class of adults of a certain population. For some 

suspects X the sentence ‘X is tall’ is clearly accepted (e.g., for X = 3), for others it is clearly 

rejected (X=1 and X =4), and for the remaining individuals (X=2 and X=5) we get the typical 

answer ‘can’t tell’. In adopting this scenario, we somewhat idealize the real situation, since 

we accept a clear separation between accepting ‘X is tall’, rejecting it and declaring it  

unclear. The problem which arises with this idealization is the problem of second order 

vagueness (e.g. Fine, 1975; Williamson, 1994).  
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Fig. 1: Suspects of differing heights (adapted from Alxatib & Pelletier, 2011). The scale 

values shown are heights in feet. 

 

Table 1 (left column) shows the lexical base for the adjective ‘tall’ for the fixed comparison 

class. It generates the classification F for instance #1 (see Fig. 1), null for instances #2 & #4, 

and T for instances #3 & #5.  

 

 

 

 

 

 

 

 

 

 

Table 1: Example illustrating gaps in super-valuation theory and gluts in sub-valuation theory 

 

 Lexical 

base 

Precisificat-

ions 

Super- 

valuation 

Sub- 

valuation 

1 

4 

2 

5 

3 

F 

null 

null 

T 

T 

FF 

TF 

TF 

TT 

TT 

F 

Gap 

Gap 

T 

T 

F 

T/F (Glut) 

T/F (Glut) 

T 

T 



 8 
 

Two precisifications are considered in Table 1; one assigns the value T for instance #4 and the 

value F for instance #2; the other assigns the opposite values to the instances #2 and #4. As a 

consequence, we get the corresponding super- and sub-valuations, as shown in the last two 

columns of the table. 

On the gap hypothesis, speakers take super-true and -false and vague (null) as the relevant 

truth values. On the glut hypothesis, speakers take sub-true and -false as the relevant truth 

values. In the first case the principle of ‘non-contradiction’ is satisfied: there can be no 

sentences which are both super-true and super-false. Since we can have truth value gaps, the 

principle of ‘bivalence’ is violated. In the second case sentences can be both sub-true and sub-

false. Cases where sub-true and -false truth values are concurrently present are called gluts. In 

the second case, hence, the principle of ‘non-contradiction’ is violated, but the principle of 

bivalence is satisfied. Paraconsistent logic (Priest, 2002) can handle the second case.  

It is obvious now how speakers can answer questions such as “who is the smallest person 

who can be called ‘tall’?” or “who is the biggest person where the property ‘tall’ is rejected?”. 

In the first case the answer is #5 for gap-theory and #4 for glut theory. In the second case it is 

#1 for gap-theory and #2 for glut-theory.  

In by Bonini et al.’s (1999) experiment, two groups of subjects were asked to estimate (a) 

the smallest number x of years of age such that the sentence ‘a person is old’ is true (truth-

judgers), (b) the largest number x of years of age such that the sentence ‘a person is old’ is 

false (falsity-judgers). Other conditions involved other properties (Fig. 2). In all cases, there 

was a substantial positive difference between truth-judgers and falsity-judgers. Superficially, 

these data support the predictions of gap theories of vagueness (super-valuation) and they 

contradict glut theories (sub-valuations). For example, there is a clear gap between the age of 

persons participants are willing to call ‘old’ and the age of persons participants reject as being 

called ‘old’  
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Fig. 2 Truth and falsity judgments for ‘person X is tall’ , ‘person X is old’, ‘film X is long’, 

and ‘inflation X (in Italy) is high’ 

 

Interestingly, Bonini et al. (1999) rejected this approach in favor of another account we will 

introduce in the following subsection: epistemic theories. The authors give the following main 

reason for rejecting gap-theories: these theories have problems describing higher order 

vagueness. 

2.3 Epistemic theories 

Epistemic theories of vagueness (‘vagueness as ignorance’) do not treat vagueness as an 

ontological problem, but rather attribute vagueness to lack of knowledge (Sorensen, 1991, 

2008; Williamson, 1992, 1994). Epistemic theories assume the existence of an exact 

definition in each case, but one which is unknown to us. On this account, the indeterminacy 

connected with a vague expression stems from our inability to determine its exact definition.  

 Bonini et al. (1999) argue that their data are best explained by an epistemic theory. How, 

then can one explain the difference between truth judgers and falsity judgers? Why does this 

gap appear? Bonini et al. argue that gaps appear because speakers are more willing to commit 

errors of omission, than errors of commission. In other words, speakers have a tendency to 

prefer type II error over type I. Bonini et al (1999: 387) cite evidence that “people perceive 
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errors of commission as graver than those of omission (Ritov & Baron, 1990; Spranca, Minsk, 

& Baron, 1991)”. 

 If the epistemic approach is correct, then there is no need for a lexical semantics that 

assigns borderline status to some objects. Rather, their ‘borderline status’ becomes an implicit 

consequence of the mechanism that directs errors of omission and commission. We have 

already noted that Bonini et al. (1999) do not present any empirical argument against gap 

theories. Rather they give two theoretical arguments for the departure from gap theory: the 

existence of higher order vagueness and the alleged identity of metalinguistic and normal 

judgments. We will discuss these arguments in connection with new data provided by 

Alxtatib and Pelletier (2011) in Section 3.    

 However, not all logicians find epistemic theories attractive, especially in relation to 

concrete examples. For instance, assume the vagueness of ‘bald’ has an epistemic origin. 

Therefore, a critical cut-off value of the number of hairs does exist, which separates the bald 

from the non-bald, but it is unknown to us. Well before this view originated, Russell (1923) 

criticized this ignorance stance: 

  

“This, of course, is the answer to the old puzzle about the man who went bald. It is supposed that at first he was 

not bald, that he lost his hairs one by one, and that in the end he was bald; therefore, it is argued, there must have 

been one hair the loss of which converted him into a bald man. This, of course, is absurd. Baldness is a vague 

conception; some men are certainly bald, some are certainly not bald, while between them there are men of 

whom it is not true to say they must either be bald or not bald.”   

 

Hence, in the case of ‘bald’, the vagueness of the concept is determined by the end points 

(zero, infinite) and it does not make sense to seek a precise definition.  

2.4 Contextualism 



 11 
 

Contextualism (Åkerman & Greenough, 2009; Bosch, 1983; Kamp, 1981; Raffman, 1996) 

sees vagueness as a result of a particular kind of context-sensitivity. Vagueness is context-

dependence with respect to so-called v-standards (certain standards of application, which are 

distinguished from ordinary contextual elements, such as indexicals etc.). 

 

“The expression ‘here’ is vague, but its vagueness need have nothing to do with the fact that its reference can 

shift depending on the place of use. Equally, the application of the predicate ‘is tall’ can vary as a function of the 

operative comparison class and/or what is taken to be typically tall. But such shiftiness in the extension of ‘is 

tall’ need have nothing as such to do with vagueness. But then just what kind of contextual parameters are 

responsible for the shiftiness in truth-value or proposition expressed which is constitutive of vagueness? … we 

will use the term v-standards as a neutral placeholder for whatever contextual parameters are taken to be 

responsible for the shifts (Åkerman & Greenough, 2009, p.9)  

 

Taking up an idea of Hyde (1997), Odrowaz-Sypniewska (2010) suggested that 

contextualists should choose sub-valuation rather than super-valuation as their logic. This 

agrees with an earlier proposal of Bosch (1983), who sees every precisification as provided by 

a particular definition in a particular context. Looking at Table 1 makes it clear why we get a 

sub-valuation theory in this way. 

2.5 Fuzzy set theory 

According to gap and glut theory, the concept of a vague sentence is itself a sharp concept. 

However, many authors argue that there is no sharp boundary between vague and sharp 

sentences. Similarly, the notion of a borderline case is itself vague. For that reason, 

proponents of fuzzy set theory argue that it is natural to allow for a continuum of intermediate 

truth-values, with a special logic, as proposed by Zadeh (1965). This idea fits nicely with 

treating vagueness as an ontological phenomenon, as is similarly done within gap- and glut-

theories (for an application, see Wallsten et al., 1986; Budescu & Wallsten, 1995). 
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3	Alxatib	and	Pelletier	(2011)	

Alxatib and Pelletier (2011) reported an experiment in which participants were presented with 

a picture of five suspects of differing heights in a police lineup (similar to Fig. 1). The 

suspects in the lineup were identified by the numbers #1 (5’4”), #2 (5’11”), #3 (6’6”), #4 

(5’7”), and #5 (6’2”) and they were shown in the picture not sorted by height, but with an 

ordering based on names. Participants also received a form with 20 questions and had to mark 

one of three check boxes corresponding to three possibilities (true, false, can’t tell). The 20 

questions consisted of four questions for each suspect, as demonstrated below for suspect #4. 

The ordering of the four questions for each suspect was randomized. 

 

(1) #4 is tall     True �  False � Can’t tell � 

#4 is not tall   True �  False � Can’t tell � 

#4 is tall and not tall  True �  False � Can’t tell � 

#4 is neither tall nor not tall True �  False � Can’t tell � 

 

The results, arranged by increasing height of the suspects, are shown in Fig. 3. The figure 

shows the percentage of true answers to ‘X is tall’ and to ‘X is not tall’ (continuous line) and 

the percentage of false answers to ‘X is tall’ and to ‘X is not tall’ (dotted).  
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Fig. 3: Alxatib and Pelletier’s (2011) data.  —■— stands for accepting a proposition,  

---■--- for rejecting a negation, —— for accepting a negation,  and ------ for rejecting a 

proposition. 

 

One can see that there is a consistent preference for denying a proposition () over accepting 

its negation (). Further, there is a substantial preference for rejecting a negation (■) over 

accepting a proposition (■).  

 Another important finding is that there are cases (about 30%) where ‘X is tall’ and ‘X is 

not tall’ are both considered false but ‘X is tall and not tall’ is considered true (Fig. 4). The 

same applies for ‘X is neither tall nor not tall’. In addition, Fig. 4 illustrates that accepting ‘X 

is neither tall nor not tall’ is preferred over accepting ‘X is tall and not tall’. Intuitively, this 

seems to be plausible. However, it is difficult to find a theoretical argument for it. In fact, 

Alxatib and Pelletier (2011) could not explain the difference. 
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Fig. 4: Alxatib and Pelletier’s (2011) data. —■— stands for accepting ‘and’, ---■--- for 

rejecting ‘and’, —— for accepting ‘neither’, and ------  for rejecting ‘neither’  

 

Moreover, there is no clear preference for either rejecting ‘neither’ or rejecting ‘and’, at least 

not for borderline cases.  

In order to suggest an explanation for their data, Alxatib and Pelletier (2011) proposed the 

following assumptions: 

 

1. Each sentence is ambiguous between a super-, and a sub-interpretation. 

2. A Gricean mechanism applies in order to select the appropriate interpretation in the given 

context. 

3. The Gricean solution conforms to the ‘strongest meaning hypothesis’ of Dalrymple et al. 

(1998). As presently relevant, the logically strongest hypothesis is selected.  

4. a. For ‘X is tall’ and ‘X is not tall’ the result will be a super-interpretation: ‘X is tall’ is 

true if and only if ‘X is tall’ is super-true;  ‘X is not tall’ is true if and only if ‘X is tall’ is 

super-false. Note that the resulting super-interpretation eliminates vagueness completely 

from the truth-conditions. If a sentence is not true, it is assumed to be false (bivalence).  
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b. For ‘X is tall and not tall’ the super-interpretation is semantically empty. This conflicts 

with the maxim of quality. Therefore, the super-interpretation cannot apply, but the sub-

interpretation does and conforms to the borderline cases, where X is neither tall nor not 

tall.  

 

Table 2 summarizes the consequences of these assumptions and illustrates it for a simple 

example. The first row shows the result of the Gricean mechanism in case of ‘X is tall’. The 

underdetermined value ‘null’ assigned by the lexical base (top level) is now replaced by the 

value F. The remaining three rows show the corresponding results of the Gricean mechanism 

for ‘not tall’, ‘tall and not tall’, and ‘neither tall nor not tall’.  

 

 

 

 

 

 

 

 

Table 2: Truth-conditional pragmatics for different expressions.  

 

Hence, Alxatib and Pelletier’s (2011) theory implies that sentences such as ‘X is tall’ are 

either accepted or rejected. Their Gricean mechanism has eliminated the gap. The relatively 

low percentage of cases where subjects say ‘can’t tell’  about 10% in their experiment  is 

ignored in the theory.  

 Consider now the case of negation as in ‘X is not tall’. Table 2 shows that the Gricean 

mechanism leads to truth conditions that conform to the application of intuitionistic negation 

F null T  lexical base for ‘X is tall’ 
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X is tall and not tall 

X is neither tall nor not tall 
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to the baseline ‘X is tall’. This  contrasts with two other possibilities of inner and outer 

negation (as defined in Table 3). For the last two expressions in Table 2, no standard analysis 

is available. Interestingly, both ‘tall and not tall’ and ‘neither tall nor not tall’ result in the 

same truth conditions, using this sketched mechanism of truth-conditional pragmatics.  

 

 

 

 

 

 

 

Table 3: Truth table for inner, outer, and intuitionistic negation  

 

Alxatib and Pelletier’s (2011) analysis has shortcomings, but it does clearly illustrate why 

there is a preference for denying a proposition over accepting its negation: A simple 

proposition can be denied both in the negative and the neutral region, whereas a negation can 

be accepted in the negative region only. Similarly, there is  an explanation for the preference 

for rejecting a negation of a proposition over accepting the proposition: A negation can be 

rejected both in the neutral and in the positive region, whereas a simple proposition can be 

accepted in the positive region only. Further, the theory makes it clear why considering ‘X is 

tall’ and ‘X is not tall’ to be both false is associated with accepting ‘X is tall and not tall’ as 

true. As demonstrated in Table 2, this pattern is realized for borderline cases where the truth-

conditional pragmatics of Alxatib and Pelletier’s (2011) theory results in rejections for simple 

and negated propositions, but predicts acceptance for conjunctions of both expressions. 

 However, there are also important shortcomings of Alxatib and Pelletier’s (2011) scheme. 

The analysis predicts that all instances where ‘X is tall and not tall’ is true are instances where 
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‘X is tall’ is false and ‘X is not tall’ is false. Empirically, this applies to only about 30% of the 

borderline cases (Alxatib & Pelletier, 2011: 315). Further, the analysis predicts that all 

instances where ‘X is tall’  and ‘X is not tall’ are both false are instances where ‘X is tall and 

not tall’ is true. Empirically, this applies to only about half of the borderline cases (p.316).  

4	Quantifying	vagueness:	A	classical	probabilistic	model	

Alxatib and Pelletier (2011) specified their theory in purely logical terms, and this led to 

certain implications, which are hard to reconcile with empirical observation (Section 3). A 

straightforward intuition is to wonder whether these difficulties can be overcome by recasting 

their model in probabilistic terms and we do so in this Section..  

 The basic assumption is very simple. We assume that the lexical semantics, say for an 

adjective such as ‘tall’, does not produce a fixed, static characterization of the involved 

instances. Rather, the assignment of the three truth-values (T, null, F) is stochastic. Obviously, 

the distribution of the three truth values depends on the height x of X and the mean height a of 

individuals in the relevant population (comparison class). 

 Instead of working with one trinary random variable Truth, with the values T, null, and F 

we will work with two binary random variables, with values 0 and 1, called T and F. The 

correspondence between the two systems of random variables is: 

 

(2) Truth = T   iff T = 1 and F = 0  (ࡲࢀ for short) 

Truth = F  iff T = 0 and F = 1  (ࡲࢀ for short) 

Truth = null  iff T = 1 and F = 1  (ࡲࢀ for short) 

 

In this way,  the distribution of the values for the random variables T and F give the values of 

the random variable Truth, assuming the combination T=0 and F=0 (ࢀ	ࡲ for short) is 



 18 
 

excluded. This can be interpreted as the exclusion of gaps. Equally, the correspondence 

between ‘null’ and ࡲࢀ is consistent with the underlying glut-ness: A truth-value glut is 

realized for some proposition if it is true (T=1) and false (F=1) at the same time.  

 In order to assign probabilities for the Boolean combinations of the random variables T 

and F, depending on the height of an observed individual X and the mean height a of the 

individuals in the comparison class, we consider a simple Hopfield network with two output 

nodes for the random variables  T and F. 

 

 

 

 

 

 

 

Fig. 5: Simple neural network with one input node (representing ‘X is tall’) and two output 

nodes (T and F).  

 

Fig. 5 shows a Hopfield network with three neurons (nodes). The input node stands for the 

activation of the target sentence, e.g. ‘X is tall’. The input node is connected with the two 

output nodes T and F with opposite weights, 1 and –1. We assume that the top node is 

activated as a function of the value xa, i.e.  the difference between the height of individual X 

and the mean height a of individuals in the relevant population. If x=a, then the T- and the F-

node get the same (zero) net input. The two output nodes are in inhibitory connection with 

each other. This means that for high values of k there is a strict tendency that they balance 

each other in opposite directions: if T gets activation 1 then F gets activation 0 and vice versa. 

For lower values of k this contrast effect can disappear. This means that it is possible to get 

T 

‘X is tall’

F 

1 –1 

–k 
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the activations T=1 and F=1 expressing the proposition is true and false at the same time (i.e., 

a glut). In principle, likewise, the output activation T=0 and F=0 is possible, expressing the 

result that the proposition can be neither true nor false (gap). Later in this section, we will 

exclude this last possibility. 

 Taking the standard formalism for Hopfield networks (Hopfield, 1982, 1984), we can 

calculate the energy function of the activation vectors s of our network, 

ሻݏሺܧ ൌ െ∑ ௜௝௜வ௝ݓ .௝ݏ௜ݏ
 1 

 The energy describes how stable a certain activation pattern s is, assuming the activation of 

the input nodes of s is clamped. The lower the energy the more stable is the pattern of 

activation. Unstable patterns normally decay into patterns of lower energy. A common way to 

describe the probability for the distributions of the states of a system is the Boltzmann 

distribution, which was discovered in the context of classical statistical mechanics. According 

to the Boltzmann distribution, the probability of a state is indirectly proportional to the 

exponential of the energy of the system: Pሺݏሻ~݁ିாሺ௦ሻ/. Two characteristics of the Boltzmann 

make it suitable here, first, the 0/1 endpoints, which can be associated with falsity/ truth, and, 

second, the parameter  (called ‘temperature’), which allows us to capture graded distinctions 

between concepts allowing for less and greater degrees of vagueness. Given the activation x–a 

of the top node, we can summarize the corresponding results as in Table 4.   

  

                                                 
1 In Figure 5 we can see ݏଵ as the top node and ݏଶ, ݏଷ as the left and right bottom nodes. In this case, the 
(symmetric) connection weights are ݓଵଶ ൌ ଵଷݓ,1 ൌ െ1, and	ݓଶଷ ൌ െ݇. 
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Table 4: Energies and probabilities for particular activation patterns in the Hopfield network 

of Fig. 5 

 

In order to get numerical predictions for the probabilities, we have to determine the 

normalization factor C. This factor arises from the requirement that the probabilities of the 

available alternatives sum up to 1. For now, let us consider only the two activation patterns 

 This is the case of a binary logic without gluts. Using .(T=0, F=1) ࡲࢀ  and (T=1, F=0) ࡲࢀ

this case to guide normalization, we get the value  ܥ ൌ ݁ିሺ௫ି௔ሻ/ ൅ ݁ሺ௫ି௔ሻ/. We can now 

calculate the following probability for the activation pattern ࡲࢀ, that is the probability for  

accepting the truth of the proposition ‘X is tall’:  

 

(3)  P൫ࡲࢀ൯ ൌ 	 ௘ሺೣషೌሻ/

௘ሺೣషೌሻ/ା௘షሺೣషೌሻ/
ൌ	 ଵ

ଵା௘షమሺೣషೌሻ/
ൌ ሺమሺೣషೌሻߪ	 ሻ 

 

Activation 

of node T 

Activation 

of node F 
 Energy E Probability P 

1 

0 

1 

0 

0 

1 

1 

0 

 ࡲࢀ

 ࡲࢀ

 ࡲࢀ

 ࡲࢀ

(x–a)  

x–a  

k 

0 

 ሺ௫ି௔ሻ/ି݁ܥ/1

 ሺ௫ି௔ሻ/݁ܥ/1

 ௞/݁ܥ/1

 ܥ/1
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The result is a logistic function (also called sigmoid function; Fig. 6). 2 

 

 

Fig. 6: Sigmoid-function ߪሺೣషೌ ሻ for a=6 and  = 0.2, 1.0, and 2.0 

 

 One crucial assumption in most of the theoretical analyses of vagueness discussed so far 

concerns the existence of either gaps or gluts. In the present Hopfield model, gaps can be seen 

as activation pairs (T=0, F=0) and gluts as activation pairs (T=1, F=1). It is easy to see that 

for k=0 gaps and gluts result in the same probabilities.3 Hence, from the present Hopfield 

model perspective, there seems not to be a substantial difference between glut and gap 

theories. However, for the purposes of the following discussion, we prefer to tell the story in 

terms of gluts, since gluts are better grounded philosophically (Odrowaz-Sypniewska, 2010). 

In the following section, we will find another subtle, but crucial argument in favor of glut-

theories: They and only they allow for interference effects, when we look for a generalization 

of the present model in terms of quantum probabilities. As we shall shortly see, such a 

generalization is essential, if one is to achieve a satisfactory quantitative coverage of the 

empirical results.  

                                                 
2 A very similar function is used in the Rasch-model. For a discussion of this model and applications to 
vagueness see Verheyen, Hampton, and Storms (2010) 
 
3 This result is due to the choice of the numbers we have employed for true (1) and false (0); if we had taken true 
(0) and false (1) the converse result would appear. Interestingly, the choice true (+1) and false (1) makes gaps 
and gluts totally symmetric.   
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 Let us consider now the case of a binary logic with gluts which can be described by three 

activation pattern: ࡲࢀ (true); ࡲࢀ (false); ࡲࢀ (glut). The probability for the first activation 

pattern can be calculated as follows: 

 

(4)  P൫ࡲࢀ൯ ൌ ଵ

஼
	݁ሺ௫ି௔ሻ/, where ܥ ൌ ݁ሺ௫ି௔ሻ/ ൅ ݁ିሺ௫ି௔ሻ/ ൅ ݁ି௞/ 

 

This is the probability distribution for ‘X is tall’, noting that the normalization is now 

computed to take into account gluts as well. It is not difficult to see that for		௞

≫ 1, the 

contribution 1/݁௞/ corresponding to the activation (T=1, F=1) can be ignored, and the 

resulting distribution is the logistic distribution given by equation (3) (i.e., the probability that 

a person is tall, ignoring gluts). However, the term 1/݁௞/	 cannot be ignored if the quotient 
௞


 

is close to 1 or smaller than 1. In this case, the predictions of equation (4) will deviate from 

those based on the logistic distribution of equation (3).  

 What is the probability of rejecting the proposition ‘X is tall’? In their theoretical analysis 

based on Gricean pragmatics, Alxatib and Pelletier (2011) say that we can ignore the third 

answer possibility ‘can’t tell’, which accounts for less than 10% of responses. If we accept 

this idealization, then the probability for rejecting the proposition ‘X is tall’ is given by 

1ܲ൫ࡲࢀ൯.  

 The probability distribution for accepting ‘X is not tall’ (see Table 2) can be calculated as 

follows:  

 

(5)  P൫ࡲࢀ൯ ൌ 	 ଵ
஼
	݁ିሺ௫ି௔ሻ/ , where ܥ ൌ ݁ሺ௫ି௔ሻ/ ൅ ݁ିሺ௫ି௔ሻ/ ൅ ݁ି௞/ 

 

The probability for rejecting the proposition ‘X is not tall’ is described as 1ܲ൫ࡲࢀ൯.  



 23 
 

 Now we are ready to demonstrate how this neural network model can fit Alxatib and 

Pelletier’s (2011) experimental data, with the help of three parameters: a (the mean 

expectation for x), k (the strength of interdependence between T and F), and  (the 

temperature). We fit the three parameters (minimizing Pearson chisquare) by using the data 

shown in Fig. 3. The optimal values for the parameters are: a=5.86, =0.24, k=0.29.  As can 

be seen from Fig. 7, the present model fits the shown data fairly well (chisquare(8) =5.34; p 

=.72). Note that for each of five suspects there are two independent questions (accept tall/ is 

not tall and reject tall/ is not tall), so that in total we have 4x2=8 degrees of freedom.  

 

 

 

 

Fig. 7: Fitting the Alxatib and Pelletier (2011) data. ■ stands for accepting a proposition,  

■ for rejecting a negation,  for accepting a negation,  and  for rejecting a proposition. 

 

Given the model fit relative to the frequencies concerning the statements with individual 

predicates, we can evaluate its ability to capture the data for ‘and’ and ‘neither’. As Table 2 

illustrates, in both cases the probability of acceptance of the conjunctive expression with ‘and’ 
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/ ‘neither’ is due to the ‘null’ column in the table. In our simple Hopfield network, this is 

described by the probability for ሺࢀ ൌ 1, ࡲ ൌ 1ሻ: 

 

(6)  Pሺࡲࢀሻ ൌ 	 ଵ
஼
	݁ି௞/ , where ܥ ൌ ݁ሺ௫ି௔ሻ/ ൅ ݁ିሺ௫ି௔ሻ/ ൅ ݁ି௞/ 

 

The probability for rejecting the corresponding expressions is 1 െ ܲሺࡲࢀሻ	(again, the ‘can’t 

tell’ answers are ignored). The distributions for P(TF) and 1–P(TF) were computed using the 

parameters identified before and are shown (together with the actual empirical data) in Fig. 8.  

 

 

 

Fig. 8: Fitting the Alxatib and Pelletier (2011) data. ■ stands for accepting ‘and’, ■ for 

rejecting ‘and’,  for accepting ‘neither’, and   for rejecting ‘neither’. The lower curve is 

the prediction for accepting ‘and’ / ‘neither’, the upper curve is the prediction for rejecting 

‘and’ / ‘neither’ 
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In this case, the calculated predictions are quite different from the empirical finding and the 

result is not satisfying. The observed and predicted frequencies turned out to be significantly 

different from each other (chisquare(8)=167, p<.0005).  

 An alternative fitting approach would be to identify the parameters which minimize 

predictive error for all the available empirical data concurrently (i.e., the data in both Figures 

3, 4). In this case, the optimization procedure led to parameter estimates of a=5.86, =0.22, 

and k=0.01. The predicted frequencies still deviated significantly from the observed ones (chi-

square (16)=33.5, p<.005).  

 The above results indicate that any model based on classical probability theory would 

fail. Therefore, one could employ a model not based on probability theory at all. For example, 

in Fuzzy Trace Theory there is a distinction between verbatim and gist information. As the 

latter can be context/observer dependent, Fuzzy Trace Theory can predict several interesting 

violations of classical probability theory (Brainerd & Reyna, 2008; Reyna, 2008). Such 

approaches are clearly valuable. Our interest presently is to explore whether Alxatib and 

Pelletier’s (2011) data can be captured by a formal probabilistic framework. This has the 

advantage that particular models in different domains all have to obey the same set of basic 

principles. This (often) both makes individual models more principled and offers the promise 

of a unified, coherent account for a diverse range of phenomena. Of course, formal 

probabilistic models are not always possible. In Alxatib and Pelletier’s (2011) case, a model 

based on classical probability did not work. In the next section we will make use of quantum 

probabilities and the idea of interference effects, in order to assess whether the shortcoming of 

the classical model can be overcome. 4  

                                                 
4 Another motivation for abandoning the model based on Alxatib’s and Pelletier’s theoretical analysis is that it 
does not make any distinction between the ‘and’ / ‘neither’ cases.  This is a major problem, but one which goes 
beyond the present paper. The quantum approach shows some promise in terms of addressing this important 
problem, more so than the classical approach. 



 26 
 

5	 Quantifying	 vagueness:	 Quantum	 probabilities	 and	 inter‐

ference	

One of the main arguments for a quantum approach to cognitive phenomena is the existence 

of interference effects in higher cognitive processes such as perception, decision making, and 

reasoning (Aerts, 2009; Aerts, Czachor, & D’Hooghe, 2005; Blutner, 2009; Bruza, 

Busemeyer, & Gabora, 2009; Busemeyer et al., 2011; Conte et al., 2008; Franco, 2007; 

Khrennikov, 2006; Pothos & Busemeyer, 2009; Primas, 2007). In the first subsection, we will 

introduce some basic concepts of quantum cognition, which we will illustrate in relation to 

some puzzling empirical results by Tversky and Shafir (1992). The second subsection applies 

the idea of interference to the problem of vagueness and demonstrates that this idea leads to 

an improved analysis of borderline contradictions. In the third subsection, we discuss the issue 

of compositionality in connection with recent findings by Sauerland  (2010). 

5.1 The disjunction puzzle, quantum probabilities and interference 

The disjunction fallacy (Tversky & Shafir, 1992) occurs when decision makers prefer option 

A (versus ܣ) when knowing that event B occurs and also when knowing that event B does not 

occur, but they refuse A (or prefer ܣ) when not knowing whether or not B occurs. The 

disjunction fallacy is closely connected  to violations of Savage’s (1954) sure-thing principle, 

one of the basic claims made by a (classically) rational theory of decision making. In decision 

making, this principle was described as follows:  

 

A businessman contemplates buying a certain piece of property. He considers the outcome of 

the next presidential election relevant to the attractiveness of the purchase. So, to clarify the 

matter for himself, he asks whether he would buy if he knew that the Republican candidate were 

going to win, and decides that he would do so. Similarly, he considers whether he would buy if 
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he knew that the Democratic candidate were going to win, and again finds that he would do so. 

Seeing that he would buy in either event, he decides that he should buy, even though he does 

not know which event obtains. (Savage, 1954) 

 

In everyday reasoning, however, human behaviour is not always consistent with the sure thing 

principle. For example, Tversky and Shafir (1992) reported that more students would 

purchase a non-refundable Hawaiian vacation if they were to know that they had passed or 

failed an important exam, compared to a situation where the exam outcome was unknown. 

Specifically, (A|B) = 0.54,  (A|ܤ) = 0.57, and (A) = 0.32, whereby A stands for the event  

of purchasing a Hawaiian vacation, B for the event of passing the exam, ܤ for the event of not 

passing the exam, and  for the averaged judgements of probability. With these numbers at 

hand we can calculate the disjunction effect , which is defined as follows: 

 

(7)  (A,B) = (A)[(A|B)(B)+(A|ܤ)(ܤ)] 

 

Assuming that the chances for passing the exam are about 50%, we calculate (A,B)=0.23 (a 

value considerably different from zero).  Note that disjunction fallacies are fairly common in 

behaviour (e.g., see Brainerd et al., 2010, for corresponding results in memory retrieval).  

Assuming a classical (Bayesian) model of probabilities, the law of total probability 

requires that 

 

(8) P(A) = P(A|B)P(B) + P(A|ܤ)P(ܤ). 

 

It is helpful to examine how the law of total probability arises. We require three assumptions. 

First, we assume that the underlying algebra of events is Boolean. That means essentially, that 

we have distributivity. In the present case, distributivity allows us to derive A=ABAܤ. 
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Second, we assume that probability is an additive measure function. In particular, we have 

P(A)=P(AB)+P(Aܤ) for the two disjoint conjunctive events AB and Aܤ. Third, the standard 

definition of conditional probability allows us to write:  

 

(9) P(X|Y) = P(XY)/P(Y) 

 

The above three assumptions readily derive the law of total probability and explain the 

classical requirement that the predicted disjunction effect (A,B) must always be zero.  

 Let us see now how the use of quantum probabilities changes the situation. Instead of 

using possible worlds as the underlying ontology for constructing propositions, quantum 

theory makes use of vectors in a Hilbert space. A Hilbert space ℋ is basically just a vector 

space upon which an inner product (=scalar product) is defined and which makes use of 

complex numbers instead of real ones. Further, one can define linear operators on ℋ. A 

special kind of linear operator is the so-called projection operator, which projects vectors to 

certain subspaces of ℋ. The algebraic structure underlying these projection operators is not a 

Boolean algebra, but an orthoalgebra. An orthoalgebra is similar to a Boolean algebra, but one 

key principle of Boolean algebra can be violated: the principle of distributivity. Recall, this 

principle was necessary for deriving equation (8).   

 In the quantum approach, propositions are modeled by projection operators (or, 

equivalently, subspaces of ℋ). If A is a projection operator, then the functional composition 

of it with itself is A again: AA=A. In combining projection operators, order can matter. That 

is, it can be that AB≠BA for two projection operators A and B.  Interestingly, if all projection 

operators relative to a given Hilbert space commute (i.e., AB=BA), then we get a Boolean 

algebra of projectors. The important conclusion is that the algebra of projection operators 

contains the Boolean algebra as a special case (when projectors obey commutativity). 
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 For what follows, it is essential to appreciate two main differences between the treatment 

of classical propositions and quantum proposition (projections). First, instead of union AB 

in the classical case, we consider the sum operation A+B in the quantum case (constructing 

the smallest subspace that contains the two subspaces corresponding to A and B.  The second 

difference refers to complementation. In the quantum case, a negated propositions refers to a 

subspace orthogonal to the original one. We will write ࡭=IA for the orthogonal projection 

operator5 (I is the identity operator mapping any vector to itself). It is easy to see that   

࡭࡭ ൌ  .A=(IA)A=IAAA=AA=0࡭

 Let us see now what happens with equation (8) in the quantum case. Even in the quantum 

case, a probability function is an additive measure function (now assuming that the two 

considered parts are orthogonal to each other). It turns out that the direct translation of 

equation (9) into Hilbert spaces does not work, since XY is not a Hermitian operator, if X and 

Y do not commute (this means that the operator is not associated with real values, an obvious 

requirement when considering behavioral models). A definition that does work is given by the 

following equation (Niestegge, 2008)6: 

 

(10) P(X|Y) = P(YXY)/P(Y) 

 

The operator YXY is also called asymmetric conjunction. Note that P(YXY)=P(Y and then 

X), which is how Busemeyer et al. (2011) modeled conjunction in human decision making 

(see also Blutner, 2009; Bruza et al., 2011). In order to get the quantum version of equation 

(8), we can decompose the projector A in the following way:  

 

                                                 
5 Sometimes the symbol  A  is used for indicating the orthocomplement. Since, from the context, it is always 

clear whether orthocomplementation is meant or the usual set-theoretic complement, we will use  the form ࡭ in 
both cases.  
6 Niestegge follows the theory of Lüders (1951).  
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(11)   A=ࡵ࡭ࡵ ൌ ൫࡮ ൅ ࡮൫࡭൯࡮ ൅ ൯࡮ ൌBAB+࡮A࡮࡭࡮+࡮	࡮࡭࡮+ 

 

The four parts of this decomposition are orthogonal to each other. Using the definition of 

equation (10), we get  

 

(12)   P(A)=P(A|B) P(B)+P(A|࡮) P(࡮)+(B,A), where (B,A)=P(࡮࡭࡮+࡮࡭࡮) 

 

The term (B,A)  is called the interference term. It is zero if B and A commute, in which case 

equation (12) reduces to equation (8).  

 In the general case, by using equation (12), the disjunction effect can be related to the 

interference term P(࡮࡭࡮+࡮࡭࡮): 

 

(13)  (A,B) = (B,A) = P(࡮࡭࡮+࡮࡭࡮) 

 

In order to calculate the interference term, we make use of an explicit rule for calculating 

quantum probabilities, that was first proposed by Max Born. Born assumed that a quantum 

system can be in a so-called pure state described, by a vector of the Hilbert space, say . 

Then, the probability of a proposition A is the squared length of the projection of  into the 

subspace generated by the projector A: 

 

(14)   P(A) = A|A = |A 

 

With the help of this so-called Born rule, we can calculate the following expression for the 

interference term, in the case of pure states:  
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(15)  P(࡮࡭࡮+࡮࡭࡮) =	2ටPሺ࡮|࡭ሻPሺ࡮ሻ ∙ ටP൫࡭ห࡮൯P൫࡮൯		cos(). 7 

 

The phase shift relates to the impact of knowing B or ܤ for assessing the likelihood of A. This 

angle is zero if the subspaces corresponding to the events A and then B (or A and then ܤ) are 

orthogonal. If they are not orthogonal, the subspaces are incompatible. This means that if a 

participant decides A, then he/she must necessarily be undecided regarding B. From a 

psychological perspective, the interference term is the correlation between two decision paths: 

(1) First considering you won’t pass the exam and then considering the trip to Hawaii and (2) 

first considering you will pass the exam and then considering the trip to Hawaii. A negative 

correlation corresponds to a negative interference term ((B,A)<0 in (12)), which will 

negatively impact on the law of total probability (i.e., reduce the probability for the trip, in the 

unknown case), and conversely for a positive correlation.  

 Applying the present formalism to the disjunction fallacy discussed above we get the 

wanted disjunction effect  (A,B)=(B,A)=0.23, if we stipulate that cos()= 0.43. 

5.2 Quantifying vagueness using quantum probabilities 

Now we are prepared to apply the quantum formalism and the key idea of interference to the 

case of vagueness. The first step is to reformulate the approach developed in Section 4 by 

using the formalism of projection operators. Let us assume that the state of tallness of a 

suspect X is described by a state vector X. We have to reconstruct the association between 

the three activation patterns (T=1, F=0), (T=0, F=1), and (T=1, F=1) and the three truth 

values, T, F, and null (=glut). We assume two commuting projection operators T and F and 

                                                 
7 Proof of this equation:  P(BA࡮ +  ࡮AB) = | BA࡮ +  ࡮AB|  = | ࡮AB| * + | ࡮AB|  = 

 2 RE(|࡮AB| ) = 2 RE(A࡮| AB) = 2 || A࡮ || || AB ||  cos() =  

2	ටPሺ࡮|࡭ሻ 	Pሺ࡮ሻ			ටP൫࡭ห࡮൯P൫࡮൯		cos(). Note that P(࡮࡭࡮) = || AB||2 and P(࡮࡭࡮) = || ࡮࡭ ||2. In 

other words, as noted in the text, P(࡮࡭࡮) can be thought of as P(B and then A).  
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consider the three combinations ࡲࢀ  ,ࡲࢀ, and ࡲࢀ. As mentioned in Section 4, we exclude 

gaps (ࢀ	ࡲ). Hence, we require the assumption:  

 

  I=ࡲࢀ+ࡲࢀ+ࡲࢀ (16)

 

Let us stipulate now the probabilities of the three combinations in the state X as follows: 

  

(17)   a. P௑൫ࡲࢀ൯ ൌ 	௑|ࡲࢀ|௑	 ൌ 	
ଵ

஼
݁ሺ௫ି௔ሻ/ 

   b. P௑൫ࡲࢀ൯ ൌ 	௑|ࡲࢀ|௑	 ൌ 	
ଵ

஼
݁ሺ௔ି௫ሻ/ 

   c.  P௑ሺࡲࢀሻ ൌ 	௑|ࡲࢀ|௑	 ൌ 	
ଵ

஼
݁ି௞/ 

  

ܥ  (18) ൌ 	݁ሺ௫ି௔ሻ/ ൅ ݁ሺ௔ି௫ሻ/ ൅ ݁ି௞/ 

 

It is obvious that equation (17a) exactly corresponds to equation (4) if the normalization 

constant C is set as in equation (18). Similarly, (17b) corresponds to (5) and (17c) to (6). As 

expected, we can reconstruct these classical probabilities by using the quantum formalism 

with commuting projections.  

 Let us look now for a quantum solution, assuming that the projection operators T and F 

no longer commute: TFFT. Since we assume a glut theory, the operators T and F are not 

orthogonal to each other, which implies that TF0. This gives the possibility of interference 

between T and F. The crucial mathematical point is that equation (16) is no longer valid in the 

case of non-commuting operators. It has to be replaced by the following equations: 8 

 

                                                 
8 This can be proved by noting that  ࡲ ൅ ࡲ ൌ ࢀand then ሺ ࡵ ൅ ࡲሻሺࢀ ൅ ࢀሻሺࡲ ൅ ሻࢀ ൌ  and finally eliminating all ,ࡵ
expressions that contain ‘gap terms’ (such as ࡲࢀ). 
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(19) a.  ࢀࡲࢀ ൅ ࢀࡲࢀ ൅ ࢀࡲࢀ ൅ ࢀࡲࢀ ൅  I =	ࢀࡲࢀ

  b.  ࡲࢀࡲ ൅ ࡲࢀࡲ ൅ ࡲࢀࡲ ൅ ࡲࢀࡲ ൅  I =	ࡲࢀࡲ

 

Obviously, the last two terms of the sums in (19a) and (b) are the interference terms (similar 

to the last two terms in equation 11). They vanish if T and F commute and each sum reduces 

to  equation (16). 

 For convenience, let us introduce the following abbreviations for arbitrary projectors X 

and Y: 

 

(20)   a. X.Y  =def  ½ (XYX+YXY)  (symmetric conjunction) 

   b. (X, Y)  = ࢄࢅࢄ+ࢄࢅࢄ  (interference term) 

 

Summing up (19a) and (19b), we get the following decomposition: 

 

.ࢀ (21) ࡲ ൅ .ࡲ ࢀ ൅ .ࢀ ࡲ ൅½	ሺࢀ, ሻࡲ ൅½	ሺࡲ,  = I	ሻࢀ

 

Again, if T and F commute the interference terms vanish and we obtain the noted 

correspondence with equation (16). This fact and a comparison with the stipulations in 

equations (17)(a-c) justifies the following assumption:  

 

(22)   a. P௑൫ࢀ. ൯ࡲ ൌ 	௑|ࢀ. 	௑|ࡲ ൌ 	
ଵ

஼
݁ሺ௫ି௔ሻ/ 

   b. P௑൫ࡲ. ൯ࢀ ൌ 	௑|ࡲ. 	௑|ࢀ ൌ 	
ଵ

஼
݁ሺ௔ି௫ሻ/ 

   c.  P௑ሺࢀ. ሻࡲ ൌ 	௑|ࢀ. 	௑|ࡲ ൌ 	
ଵ

஼
݁ି௞/ 
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However, because of the existence of the two interference terms in the sum (21), the 

normalization constant C is different from the earlier result in (18) and contains two 

additional terms, ݁ሺ௫ି௔ି௞ሻ/ଶ	cos(1) and ݁ሺ௔ି௫ି௞ሻ/ଶ	cos(2), as shown in (23). These 

additional terms express the probability relating to the interference terms, and have been 

computed using equation (15).  

 

ܥ  (23) ൌ 	݁ሺ௫ି௔ሻ/ ൅ ݁ሺ௔ି௫ሻ/ ൅ ݁ି௞/	+	݁ሺ௫ି௔ି௞ሻ/ଶ	cos(1) +	݁ሺ௔ି௫ି௞ሻ/ଶ	cos(2) 

 

The treatment is entirely analogous to that in Section 4, and so the probabilities for accepting 

the truth of the propositions ‘X is tall’, ‘X is not tall’, and  ‘X is tall and not tall’, are given by 

equations (22a), (22b), and (22c), respectively. The only difference compared to the classical 

case is that in the quantum case the normalization factor is given by Equation (23). It is this 

factor that contains the two interference terms. Further, the treatment of rejecting the 

corresponding propositions is again in exact correspondence to the classical case.9   

 As in Section 4, we fitted the relevant data of Fig. 3 and 4, now by using the quantum 

model. The optimal parameter values we identified were a=5.86, =0.24, k=0, and 

cos()=0.35 (assuming 1=2=). We received a good confirmation of the quantum model: 

chisquare(16) =5.3; p>.99. Fig. 9 shows the result for the ‘and’ data. Further, we did not find 

a significant difference when fitting the parameters for the data of Fig. 3 separately and 

applying the found values for describing the ‘and’ data of Fig. 4 (chisquare(8)=2.98, p>0.9).  

 

                                                 
9 For calculating the corresponding probabilities for rejections we have generally assumed a proportion of 15%  
for the ‘can’t tell’ answers, which is the mean value reported by Alxatib and Pelletier (2011) for the 
‘and’/’neither’ conditions. Thus, the probability for rejecting a proposition plus the probability for accepting it 
should sum up to .85 (instead of 1).  
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Fig. 9: Fitting the Alxatib and Pelletier (2011) data (both in Fig. 3 and 4).  ■ stands for 

accepting ‘and’, ■ stands for rejecting ‘and’. The curves show the corresponding predictions 

of the probabilistic model using interference.  

 

In Fig. 10 we show the sum of the probabilities for accepting ‘X is tall’, accepting ‘X is not 

tall’ and accepting ‘X is tall and not tall’. The classical model predicts that these three 

probabilities should sum to 1. Further, the classical model predicts that the probability for 

rejecting ‘X is tall’, plus the probability for rejecting ‘X is not tall’, minus the probability for 

accepting ‘and’ should give 1. Fig. 10 shows that empirically this is not the case 

(chisquare(4)=95.5; p<.005, testing against the null hypotheses that the proportions for all 

cases add up to 100%). 
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Fig. 10: Sums of probabilities. ▲ stands for the sum of the measured probabilities for 

accepting ‘X is tall’, accepting ‘X is not tall’ and accepting ‘X is tall and not tall’; ■ stands  

for the probability for rejecting ‘X is tall’ plus the probability for rejecting ‘X is not tall’ 

minus the probability for accepting ‘and’. The curves show the corresponding predictions of 

the quantum interferences model, with the same parameters as those employed in Fig. 9.  

 

In contrast to the classical model (which has to predict a uniform 100% probability for all 

cases in Fig. 10), the quantum model produced a fairly satisfying prediction: chi-

square(4)=5.47; p=0.24.  

 Note that the present version of the quantum model does not explain the difference 

between ‘X is tall and not tall’ and ‘X is neither tall nor not tall’. Both reduce to the logical 

expression ‘X is tall and X is not tall’ vs. ‘X is not tall and X is tall’ (assuming the law of 

double negation).  

 Finally, note that the quantum model appears to have one more parameter, than the 

classical one. In practice this was not the case. When fitting the quantum model, it proved 

difficult to identify the optimal solution, without fixing either k or , as the two parameters 
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appeared to strongly interact.10  Thus, the quantum model fits were obtained after having set 

k=0 and so the quantum and the classical model both had the same number of parameters 

(note that equally good fits can be obtained if we fix  and optimize k instead). Interestingly, 

the choice of k=0 corresponds to the case where the three probabilities defined in equation 

(22) are equal for borderline cases (x=a). Hence, the decision k=0 corresponds to a kind of 

entropy maximization. 

5.3 Compositionality and quantum probabilities 

In Section 2.5, fuzzy logic was mentioned as a formalism that allows for a continuum of 

intermediate truth-values, between totally true (=1) and totally false (=0): 1X(A)0. The 

symbol A stands for a particular concept (such as ‘chair’) and X stands for a particular 

instance. A special logic was proposed for combining concepts A and B. For example, in the 

original literature (Zadeh 1965) the min-function was proposed for the conjunction of two 

concepts: X(A&B) = min(X(A), X(B)). In subsequent work, other functions were proposed, 

for instance the so-called product T-norm (Hájek, 1998): X(A & B) = X(A)X(B).  

 A common characteristic of all the different approaches within fuzzy logic concerns 

compositionality. In the present case, we can express the requirement from compositionality 

by demanding the existence of a two-place function f such that X(A&B) = f[(X(A),X(B)]. 

This function takes the values X(A) and X(B) to form the value for X(A & B). Osherson and 

Smith (1981) have famously argued that this is not possible for reasons of psychological 

adequacy (see also Hampton, 2007, and Osherson & Smith, 1997).  

 Recently, Sauerland (2010) has discussed the potential of fuzzy logic for modeling 

borderline contradictions. He suggested that several arguments against fuzzy logic – including 

the arguments put forward by Kamp (1975), Fine (1975), Kamp and Partee (1995) – are based 

                                                 
10 This strong interactions do not mean that the parameters are not mathematically independent. Though we do 
not have a mathematical proof that the parameters are fully identifiable, simulations suggest that the parameters  
k and  are not functions of each other.  
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on the claim that a sentence of the form ‘A and not A’ is always logically false, even if A does 

not have a definite truth value. It goes without saying that philosophers and logicians have not 

sought an empirical verification of this claim, but have taken this as self-evident. Sauerland 

(2010) concluded that the results by Alxatib and Pelletier (2010) and others “show that the 

argument against fuzzy logic for linguistic semantics by Kamp (1975) and Fine (1975) is less 

clear-cut than it was previously made out to be” (p. 9). Especially when we take the product 

T-norm and introduce a normalization factor (Zadeh, 1982), we can get a good fit for the data 

on borderline contradictions (Uli Sauerland, personal communication).  

 However, this does not mean that we can adopt fuzzy logic for understanding vagueness 

and the interpretation of borderline characterizations. Sauerland (2010) gives an argument in 

support of this view based on violations of compositionality. Consider two properties A (say, 

‘being tall’) and B (say, ‘being rich’) and a particular instance X (say ‘a 5’ 10’’guy who has 

$100,000’). Let us assume that the instance X is a borderline case for both the property A and 

the property B. Let us further assume that X(A) X(B)50%. Assuming compositionality, we 

are led to predict that X(A&A)X(A&B), i.e., that the membership values for borderline 

contradictions and non-contradictory conjunctions should be approximately the same. This 

hypothesis was falsified empirically. Sauerland (2010) found on average 47.3% agreement to 

the contradictions X(A&A) and only 34.4% agreement to the non-contradictory 

conjunctions X(A&B), which is a substantial difference. This example makes it clear that 

fuzzy logic cannot provide a complete account of human judgments, concerning such 

conjunctions.   

 Violations of compositionality demand alternative models. Models based on quantum 

probabilities have the potential to solve the raised problems. They are clearly non-

compositional, and they are able to solve the conjunction/disjunction puzzle and other puzzles 

of human behavior (cf. Busemeyer & Bruza, 2012). One approach taken is to adapt general 

probabilistic methods developed in quantum physics to determine whether a system is 
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compositional, or not (e.g., Aerts & Sozzo, 2011; Bruza et al., forthcoming). These analytic 

methods build on formal results that imply non-compositionality equates with not being able 

to model the system in a single probability space. If such results carry across to cognitive 

science, then non-compositional conjunctions cannot be modeled in a single probability space, 

a surprising result with potentially significant modeling consequences, as modeling usually 

proceeds under that assumption that a single, appropriately defined probability space is 

sufficient. 

6	General	discussion	and	conclusions		

In a recent paper, Aerts (2009) points out that “there is a well-established corpus of literature 

in theoretical physics describing methods to prove the presence of quantum structures by 

‘only looking at experimental data’...” (p. 315). There are some fields of research within 

cognitive science where the situation is similar to theoretical physics. First, there is a long and 

established empirical literature showing deviations from set theoretic rules in conceptual 

combination (Hampton, 1988a, 1988b; Storms, De Boeck, Van Mechelen, & Ruts, 1996; 

Storms, Ruts, & Vandenbroucke, 1998). The relevant empirical results include violations of 

the conjunction and disjunction rules, the famous ‘guppy effect’, and cases of ‘dominance’, 

‘over- and underextension’, which were all successfully described on the basis of quantum 

principles (Aerts, 2009; Aerts & Gabora, 2005). Second, in one of the most impactful 

empirical traditions in psychology, Tversky, Kahneman and their colleagues demonstrated 

how naïve observers often produce judgments at odds with many of the key axioms of 

classical probability theory, such as the law of total probability or the requirement that a 

conjunction can never be more probable than individual constituents (Tversky & Kahneman, 

1983; Tversky & Shafir, 1992; see also, Brainerd et al., 2010). Such and related results also 

have natural and intuitive explanations with quantum schemes (e.g., Busemeyer & Bruza, 

2011; Busemeyer et al., 2011; Pothos & Busemeyer, 2009; Trueblood & Busemeyer, 2011). 
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Finally, recent analyses have revealed many non-classical effects in areas as diverse as 

memory (Bruza, Kitto, Nelson, & McEvoy, 2009), perception of bistable figures 

(Atmanspacher, Filk, & Römer, 2004), and concepts (Blutner, 2009, 2012; Busemeyer & 

Bruza, 2012; Khrennikov, 2010).  

 The present paper considers the linguistic phenomenon of vagueness, especially in 

relation to borderline contradictions. In this domain, quantitative models are rare. Of course, 

there is fuzzy set theory and supervaluation theory, and some authors  (including Kamp & 

Partee, 1997) have tried to model quantitative judgments of vagueness by elaborating on these 

models. However, such attempts have not been very successful. A real breakthrough, both 

empirically and theoretically, was made by Alxatib and Pelletier (2011), as we discussed in 

Section 3. Empirically, their paper reports data showing that the same participants, who 

consider the sentences ‘X is tall’ and ‘X is not tall’ as false, consider the apparently 

contradictory sentence ‘X is tall and not tall’ as acceptable. Theoretically, their proposed 

combination of logic, semantics and pragmatics is exciting and it suggests a qualitative 

analysis of the data. 

 Unfortunately, the analysis of Alxatib and Pelletier is not sufficient for a quantitative 

model of the data. This shortcoming was overcome in Section 4, where we proposed a 

probabilistic model for vagueness, based on Alxatib and Pelletier’s (2011) ideas. Note that by 

‘classical’ we mean an approach based on Kolmogorov probabilities and ordinary set theory. 

Also, the various statistical assumptions (Boltzmann distributions) are all classical, in the 

same sense. We have shown that this classical model can lead to a satisfying quantitative 

description for the data of the distributions for accepting and rejecting the clauses ‘X is tall’ 

and ‘X is not tall’. However, the classical model was not able to fit the additional data for 

borderline contradictions, such as ‘X is tall and not tall’. 

 A reformulation of the classical model in terms of commuting projection operators was 

given at the beginning of Section 5. This reformulation gives the term ‘classical model’ a 



 41 
 

formal expression: classical models are models based on commuting operators. Consequently, 

the notion of ‘classical’ we are using and the notion of ‘classical’, as used in theoretical 

physics, are one and the same. The proposal to look for quantum effects then is the proposal 

to look for models based on non-commuting operators. A consequence of such an approach is 

the possibility of interference effects. Such interference terms are completely analogous to 

those arising in quantum models in physics. In the present case of treating vagueness, these 

interference terms introduce the right corrections to the probability estimates for different 

statements, which are necessary to account for borderline contradictions.  

 Intuitively, it is the superposition of ‘tall’ and ‘not tall’ which can lead to interference 

effects. An interference effect can appear, since the superposed terms are not ‘orthogonal’, i.e. 

there is some overlap between ‘tall’ and ‘not tall’, as required by the assumed glut theory (cf. 

Hahn & Oaksford, 2007). This is an interesting point, since a formulation in terms of gap 

theory would have excluded the potential of interference effects (without some overlap, there 

can be no interference). While in the classical case (Section 4) and the framework of Hopfield 

networks, gap-theories and glut theories can be seen as ‘notational variants’, this is not true if 

a quantum approach is adopted. Hence, the quantum approach can help to resolve the old 

philosophical issue of how to decide between gap and glut theories (cf. Odrowaz-Sypniewska, 

2010). 

 The present model of quantifying vagueness is restricted in several respects. First, it only 

considers unmarked gradable adjectives like ‘tall’, which involve an ordering along a 

dimension of linear extent and which have relative (context-dependent) standards (Kennedy, 

2007; Toledo & Sassoon, 2011). We did not consider adjectives like ‘full’, ‘open’, ‘closed’, 

‘wet’, ‘dark’ etc., which have absolute (maximum/minimum) standards, but still allow for 

graduation. Further, we did not consider the distributional details of the comparison class 

(Solt, 2011). The extension of the present work to other types of gradable adjectives is an 

important task for future research. Second, we did not consider the observed differences 
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between the acceptance/rejection data for ‘X is tall and not tall’ and ‘X is neither tall nor not 

tall’. From a quantum modeling perspective, such discrepancies suggest that the subspace 

corresponding to the concept “tall and not tall” is not orthogonal to the subspace 

corresponding to the concept “neither tall nor not tall”. The quantum model presented in this 

paper could, in principle, be generalized to model the interference term generated by the 

incompatibility of these two subspaces. 

 A third limitation is that we formulated a symmetric model for borderline contradictions, 

i.e. ‘X is tall and not tall’ is assumed to be behaviorally equivalent to ‘X is not tall and tall’. 

So far as we can see, this assumption has never been tested empirically. While conceptual 

combination in general can be asymmetric (Hampton, 1987; Hampton, 1988b; Storms et al., 

1996), a symmetry assumption appears reasonable in the case of characterizing borderline 

contradictions like ‘X and not X’, as we have done. A fourth limitation is that our way of 

modeling borderline contradictions can potentially be applied to the conceptual combination 

data of Hampton (1987, 1988a, 1988b; see also Storms et al., 1996), but we have not pursued 

this direction in this paper. We think that an adaptation of the present model may well be able 

to account for these data. This is an interesting task, which could possibly be contrasted with 

Aerts’ (2009) thesis of the need of introducing ideas from quantum field theory, in order to 

deal with the Hampton data. 

 It is somewhat remarkable that in 1982, just as John Hopfield proposed his model of a 

recurrent neural network with content-addressable memory (Hopfield, 1982), Richard 

Feynman published his first paper on quantum computation (Feynman, 1982). In Section 4, 

we made an attempt of quantifying vagueness by using a simple Hopfield network. It would 

be an interesting task to look for a quantum version of the original Hopfield model, following 

the line of quantum-inspired neural architectures (e.g. Menneer & Narayanan, 1995; Ventura 

& Martinez, 1998). Possibly, a powerful generalization of the present approach can be 

developed in this way.  
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