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Abstract. How well does a given pitch fit into a tonal scale or key, being either
a major or minor key? This question addresses the well-knownphenomenon of
tonal attraction in music psychology. Metaphorically, tonal attraction is often de-
scribed in terms of attracting and repelling forces that areexerted upon a probe
tone of a scale. In modern physics, forces are related to gauge fields express-
ing fundamental symmetries of a theory. In this study we address the intriguing
relationship between musical symmetries and gauge forces in the framework of
quantum cognition.

1 Introduction

The application of physical metaphors is quite common in theories of tonal mu-
sic. The basic assumption seems to be that our experience of musical motion is
in terms of our experience of physical motion and their underlying forces. For
example, Schönberg speaks of different forces when he explains the direction
of musical forces in cadences where the tonic attracts the dominant [23, p. 58].
In a similar vein, Larson [14] proposed three musical forcesgenerating melodic
completions, which he callsgravity, inertia, andmagnetism, respectively. These
forces should be regarded as conceptual metaphors in the sense of Lakoff and
Johnson [12]. They structure musical cognition in analogy with falling, inert and
attracting physical bodies. Physical forces are represented in our naive (common
sense) physics or folk physics.
In contrast to Larson, Mazzola [18] suggested a quite different analogy between
music theory and modern (non-folk) physics. Modern foundational physics de-
scribes forces as being caused by the “exchange” of particular particles. Forces
are basically connected with certain symmetries of the physical micro-world.
Mazzola was probably the first who saw the analogy between physics and music
in connection with the existence of musical symmetries, especially for the do-
main of modulation. Although Mazzola did not directly applyquantum theory
for his theoretical models, he made use of a simplified framework for handling
the underlying symmetries.
Mazzola’s insights are of highest importance for the present paper, because “ex-
change particles” in the standard model of elementary particle theory emerge
from the quantization of gauge fields mediating symmetry transformations be-
tween localized quantum states. Therefore, we investigatethe central problem
of tonal attraction in terms of quantum symmetries and gaugefields. The term
“tonal attraction” refers to the idea that melodic or voice-leading pitches tend



toward other pitches in greater or lesser degrees. The present conception sees a
close relationship between the phenomenon of tonal attraction and the existence
of tonal forces. After a short discussion of the music-psychological phenomenon
of tonal attraction in the next section, Sec. 3 provides a quantum-cognitive model
based on a qubit representation of tones along the lines developed in [3]. In Sec. 4
we outline a gauge theory of musical forces, presenting firstthe force-free case as
a default model which essentially reproduces the findings ofthe qubit model. Sec-
ond, it is demonstrated how the introduction of local phase factors can improve
the descriptive power of the model. Gauge forces can be regarded as corrections
terms that apply to the force-free (default) case. Section 5, finally derives some
general conclusions and gives an outlook on future works, e.g. the possible rela-
tionship of gauge theory and brain wave models [21] similar to existing proposals
by de Barros and Suppes [1], Large [13], and most recently Friston and cowork-
ers [25].

2 The Phenomenon of Tonal Attraction

In the last twenty years, there has been an enormous progressin the development
of cognitive theories of tonal music. A central issue has been the question of tonal
attraction. How well does a given pitch fit into a tonal scale or tonal key, let it be
a major or minor key? In a celebrated study, Krumhansl and Kessler [11] asked
listeners to rate how well each note of the chromatic octave fitted with a preceding
context, which consisted of short musical sequences in major or minor keys. This
finding plays an essential role in Lerdahl’s and Jackendoff’s generative theory of
tonal music [16] and is one of the main pillars of the structural approach in music
theory.

For illustration, Fig. 1(a) depicts the C major scale arranged around the circle of
fifths comprising 12 semitones within one octave. The tonic,indicated with “0”,
defines the origin of the chroma circle [9]. Open bullets are members of the C
major (diatonic) scale, while black bullets do not belong tothe scale. One can
see from Fig. 1(a) that the whole chromatic scale is divided into two connected
subparts: the diatonic part (open bullets) and the remaining (nondiatonic) part.
The empirical results of Krumhansl and Kessler [11] are replicated in Fig. 1(b)
for the C major context. The probe tones are represented as real numbersx= jπ/6
( j = 0, . . .12, with C(0)∼= C’(12) one octave higher) at thex-axis corresponding
to the radian angles at the chroma circle Fig. 1(a). The subjective ratingsy(x)
are plotted at they-axis. The results of this experiment clearly show a kind of
hierarchy: the tonic pitchj = 0 which is mostly attracting received the highest
rating, followed by the pitches completing the tonic triad (third j = 1 and fifth j =
4), followed by the remaining scale degrees, and finally the chromatic, nonscale
tones.
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Fig. 1. Tonal attraction at the chroma circle. (a) The circle of fifths for C major scale as indicated
by open bullets. (b) Rating datay(x) of Krumhansl and Kessler [11] (dashed-bullets) and scaled
quantum models of tonal attraction. Gray bold-solid: unmarked quantum model from Sec. 4.1
[Eq. (9)]. This model makes the same predictions as the qubitquantum model described in Sec. 3.
Black bold-solid: marked quantum model from Sec. 4.2 [Eq. (11)]. Obviously, the nondiatonic
pitches (6 – 10 on the circle of fifth) are the pitches with the lowest attraction values as described
by the traditional, hierarchic model.

3 Qubit Quantum Model of Tonal Attraction

One important model for the Krumhansl and Kessler [11] data was given by Ler-
dahl [15] and recently rephrased by Blutner [3] in terms of optimality theory [22].
In this framework, cognitive representations are described by several constraints
that could either be satisfied of violated. The constraint violation profile of a
construction accounts for itsmarkedness. Unmarked constructions are generally
easier to process in psychological experiments as is reflected by lower processing
times and higher accuracies. On the other hand, marked constructions increase
processing demands in terms of “mental energy” or “cognitive forces”. Therefore
it sounds reasonable to look for a similar relationship between tonal markedness
in the sense of [3, 15] and musical forces.
One of the fundamental ideas of quantum cognition is to applythe mathematics
of the physical formalism to the domain of cognition. For example, we can use
a series of qubit states to represent the 12 pitch classes used in tonal music. In
addition, we can use the probability that one of these qubit state collapses into
another one as a measure for the tonal attraction between thecorresponding tones
(see [3]).
For getting an explicit model of tonal states as states of a Hilbert space, the
concept of symmetry is essential. Mathematically, symmetry is simply a set of
transformations applied to given states such that the transformations preserve the
properties of the states. In music, the most basic symmetry principle is theprin-
ciple of translation invariance. It says that the musical quality of an episode is
essentially unchanged if it is transposed into a different key. That means, the oper-
ations of the cyclic groupZ12 are applied to the chroma circle from Fig. 1(a) [18].
Therefore, we can say thatZ12 is the symmetry group of (Western) music.
More concretely, in the present case of tonal music, the underlying symmetry
group could be represented by certain rotations of vectors in a two-dimensional
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vector space. For instance we can rotate the vectorϕ→ =

(

1
0

)

in n steps to the

original vector. In linear algebra, the elementary rotation steps can be described
by the following rotation matrixγ :

γ =







cos
2π
n

sin
2π
n

−sin
2π
n

cos
2π
n






(1)

Performing a repeated application of the rotation matrix toour vectorϕ→ above,
we can generate the 12 tones of the circle of fifth in the following way:

ψ j = γ j
(

1
0

)

=







sin
π j
12

cos
π j
12






(2)

In the case of pure states, quantum theory defines structuralprobabilities. This
means the probability that a stateψ collapses into another state depends exclu-
sively on the geometric, structural properties of the considered states. How well
does a given tone fit with the tonic pitch? What is the probability that it collapses
into the (tonic) comparison state? The probability of a collapse of the stateψ j
into a stateψl can be calculated straightforwardly:

pψl (ψ j) = cos2
π( j − l)

12
=

1
2

[

1+cos
π( j − l)

6

]

where 0≤ j , l < 12. (3)

For a fixed elementψl the probabilities of the 12 tones indexed byj(0≤ j < 12)
sum up to one. Hence, formula (3) offers a probabilistic attraction profile relative
to a given context toneψl to which we refer to as akernel function. If the context
is not given as a single tone, but rather as a tonal region, a chord, or a series of
chords, then we would consider the mixture of all the states conforming to all the
involved single tonal elements. For simplicity, we could take all tones contribut-
ing to this mixture as being equivalent and give them the common weight 1/N
(assumingN tonal elements are taken into account), thereby computing adensity
operator over different kernel functions [3]. This assumption is rather similar to
Woolhouse’s treatment of the problem of context effects in tonal attraction [26].
Figure 1(b) shows the attraction profile for the C major key asthe kernelpψ0(ψ j ),
obtained from the quantum model, and scales it to the Krumhansl and Kessler
data [11] plotted in gray bold. Note that the quantum model isparameter-free. The
correlation coefficient between the predicted profile and the Krumhansl-Kessler
profile isr = 0.7 in the case of C major. That means that about 50% of the variance
is already explained by the default quantum kernel.
In order to permit the comparison with the symmetric model ofWoolhouse [26],
we fitted a kernel mixture, assuming symmetric phase parameters in the quantum
model (i.e., the phases of the first seven tones of the circle of fifth are mirrored
at the tritone point). The phase parameters were fitted as follows (starting from
the tonic in the circle of fifth):(0,π/2,π,0,0.9,0,0.99,0,0.9,0,π,π/2,0). In the
present case of a symmetric kernel function, the correlation coefficient between
the model fit and the Krumhansl-Kessler profile isr = 0.82 in the case of major
keys. Moreover, an asymmetric distribution of phase anglesimproves the good-
ness of fit tor = 0.95 for major keys [3].
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4 Gauge Theory of Tonal Attraction

In the following, we present an alternative treatment of tonal structures allowing
the introduction of musical forces that is inspired by quantum gauge theory. In
the last paragraph we have seen how the introduction of locally different phase
factors could substantially improve the goodness of fit of the quantum model of
tonal attraction. In modern physics, such phase functions lead naturally to the
emergence of forces as frustrated connections of an underlying spatial structure.
In contrast to the qubit approach explained above, where a tone was represented
by a state in the Hilbert spaceH =C2 subjected to the cyclic groupZ12 as sym-
metry, we strive here for a representation in terms of Schrödinger wave functions.
A wave function is a state in a function Hilbert spaceH = L2(Ω) of complex-
valued (square-integrable) functionsψ : Ω → C over a configuration spaceΩ .
I.e., for a fixed “site”x ∈ Ω , the valueψ(x) belongs to a “local” Hilbert space
Hx = C attached tox. These local Hilbert spaces altogether form a “fiber bun-
dle” over the configuration spaceΩ , which is the appropriate framework of gauge
theory as required for the proper treatment of musical forces.
Our starting point is the chroma circle Fig. 1(a) representing tones as equivalence
classes of pitches over one octave. This is essentially the continuum of the unit
circle S1 = R (mod 2π) which contains the semitone cyclic groupZ12 as a sub-
group. A tone is then given through its radian anglex = jπ/6 ( j = 0, . . .12) as
a spatial site of the unit circle. Therefore, the “tonal configuration space” of our
quantum model will be taken as the chroma circleΩ = S1. A quantum state is
then given as a wave functionψ(x, t) that is dependent on tonal sitex ∈ S1 and
time t solving the one-dimensional Schrödinger equation [24]

Hψ = i
∂ψ
∂ t

(4)

with Hamilton operatorH.3 Finally, the complex value of a wave functionψ(x, t)
for fixed x, t will be regarded as a state in a local Hilbert spaceHx = C allowing
for gauge transformations.

4.1 Unmarked Behavior

In a first approximation for the unmarked behavior, we study the “movement” of
a free particle with Hamiltonian

H = T = p2

around the chroma circle. HereT denotes kinetic energy withp = −i∂/∂x the
momentum operator. Inserting the latter expressions into Eq. (4) yields

−∂ 2ψ
∂x2 = i

∂ψ
∂ t

(5)

which is solved by plane waves

ψk(x, t) = Akei(kx−ωt) (6)

3Note that we chose a natural unit system with particle’s massm= 1/2 and Planck’s quantum
of angular momentum̄h≡ 1 as necessary for quantum cognition applications.
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and their linear combinations, whereAk denote complex amplitudes. The wave
numberk and circular frequencyω depend on each other through the dispersion
relation

ω = k2 . (7)

The final solution of the Schrödinger equation must obey thegiven initial and
boundary conditions. As initial condition we may setψ(xl ,0) = A for encoding
the tonic of the context as a phase shiftxl with A as maximal attraction amplitude
that is subjected to the normalization constraint

∫

Ω
|ψ(x, t)|2 dx= 1.

Additionally we need Möbius-type periodic boundary conditions on the unit cir-
cleψ(x+4π, t) =ψ(x, t) thus reflecting the double covering from Eq. (2). There-
fore, the chroma circle exhibits the topology of a Möbius tape. Interestingly,
Mazzola [18] has visionarily foreseen the putative relevance of these structures
for mathematical music theory as well. Moreover, Möbius-type connectivities
have been suggested as possible organizational principlesof cortical structure
and brain wave dynamics by Wright and coworkers [27, 28]. Theformer yields
the normalizationA = 1/(2

√
π), while the latter gives a quantization constraint

e4π ik = 1, and hencek ∈ Z/2. Choosing the two fundamental wave numbers
k = ±1/2 yields ω = 1/4 andAk = Ae−ikxl . Finally, the superposition of fun-
damental solutions entails

ψ(x, t) =
1√
π

e
−i

t
4 cos

x−xl

2
(8)

which is a standing wave along the unit circle with probability density

p(x) = |ψ(x, t)|2 = 1
π

cos2
x−xl

2
. (9)

Inserting the semitonesx j = jπ/6 around the circle of fifths forx, confirms the
previous result obtained from the qubit quantum model [3] (Sec. 3).

p j(xl ) = |ψ(x j , t)|2 =
1
π

cos2
π( j − l)

12
. (10)

This default distribution kernel characterizesunmarkedmusic cognition and is
plotted in gray bold after scaling in Fig. 1(b). The correlation with the Krumhansl-
Kessler data [11] isr = 0.7 as reported above.

4.2 Marked Behavior

In order to understand marked behavior as well, we have to develop a theory
of musical forces that complements the metaphoric notions of Larson [14] and
Mazzola [18]. To that aim, we first realize that the distribution (10) simply reflects
the similarity relations between tones along the chroma circle where C, G, and
F are close neighbors and hence similar with respect to theirattraction profiles,
whereas C and the tritone F♯ are maximally distant and thus unrelated [Fig. 1(a)].
A suitable deformation of the distances along the chroma circle could lead to an
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improved description of the empirical data presented in Fig. 1(b). Therefore, we
make the ansatz

ψ(x) = Acos(γ(x)) (11)

for the stationary wave function whereγ(x) is a spatial deformation function and
A a normalization constant. For the sake of simplicity, we focus on the C major
scale withxl = 0 here. Differentiating (11) twice and eliminating trigonometric
terms, we obtain the differential equation

−ψ ′′(x)+
γ ′′(x)
γ ′(x)

ψ ′(x)− γ ′(x)2ψ(x) = 0 (12)

which we compare with the stationary Schrödinger equationHψ(x) = Eψ(x) for
the energy eigenvalueE. With

H = T +M+U

this comparison yields the following operators: The first term T is, as usual, the
operator of kinetic energy

T =− ∂ 2

∂x2 .

The second term could be interpreted in the context of electromagnetism where
the velocity-dependent contribution to the Hamilton operator is regarded as mag-
netic interaction energy

M =
γ ′′(x)
γ ′(x)

∂
∂x

Finally, the last term, which is simply a scalar multiplication operator, receives
its usual interpretation as potential energy

U = E− γ ′(x)2

which might be seen either as electrostatic or gravitational potential. Note that
the constant

E = γ ′(0)2 (13)

can be interpreted as the total energy of the tonal dynamics.
The marked Schrödinger equation obeys conservation of energy, as unveiled by
multiplication with the adjoint solutionψ∗ from the left. Introducing energy den-
sities

t(x) = −ψ(x)∗ψ ′′(x) (14)

m(x) = ψ(x)∗
γ ′′(x)
γ ′(x)

ψ ′(x) (15)

u(x) = ψ(x)∗(E− γ ′(x)2)ψ(x) (16)

yields
t(x)+m(x)+u(x) = Eψ(x)∗ψ(x) = E p(x)

with p(x) = |ψ(x)|2 the resulting probability distribution. Interestingly, this dis-
tribution describes the original Krumhansl-Kessler data [11] which therefore re-
ceive a straightforward interpretation astotal energy densityof tonal attraction.
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From the general deformation ansatz Eq. (11) for the marked case we retain the
unmarked wave function by the choice

γu(x) =
x
2

rendering the force-free dynamics withU(x) = E− γ ′u(x)2 = E−1/4, i.e.U =
0 andE = ω = 1/4. For the marked attraction profile we assume a symmetric
polynomial of fourth order

γm(x) = a0+a4(x−π)4 ,

with boundary conditionsγ(0) = 0, i.e. the tonic should not be deformed, and
γ(π) = π/2, i.e. the tritone receives maximal deformation. This leads to the
parameter-free model

γm(x) =
π
2
− (x−π)4

2π3 . (17)

Interestingly, the terms higher than linear order can be interpreted as spatially
dependent phase shifts of the unmarked wave function which depends on the
linear term only. From (17) we obtain the total energy (13) asE = 4 which is
sixteen times larger than the energy required to the unmarked dynamics.
Inserting the deformation (17) into the wave function (11),yields the marked
attraction kernel for the tonic context, plotted as the boldblack curve in Fig. 1(b).
The correlation with the Krumhansl-Kessler data [11] isr = 0.89, i.e. our fit
accounts now for 79% of the data’s variance. Computing the mixture over the C
major tonic triad context, improves the fit tor = 0.97, covering 95% of the data.
Finally, we compute the three energy densities (14 – 16) and also the density of
potential energy alone

d(x) = m(x)+u(x) . (18)

The results are presented in Fig. 2.
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Fig. 2. Emergent energies of tonal attraction. (a) Energy densities: Solid: “inertia” i(x), dashed:
“gravity” u(x), dotted: “magnetism”m(x). (b) Density of potential energiesd(x) [Eq. (18)].

Figure 2(a) shows the three densities “inertia” (solid), “gravity” (dashed), and
“magnetism” (dotted). Both, “inertia” and “gravity” clearly indicate that the tonic
at x = 0 (mod 2π) acts as a center of gravity, where the gravitation potential
(16) approaches minus infinity while the kinetic energy (14)tends toward plus
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infinity. Therefore, the gravitational force which is the negative gradient of the
potential is negative in the tonic’s vicinity, i.e. the tonic is attracting, leading to
high acceleration (14). The tonic is also attracting with respect to the “magnetic”
force (15) which also has positive slope for smallx-values. However, for tones in
the interval 0.4< x < 5.8, corresponding to G – F, “magnetism” prevents tones
from being attracted by the tonic. This makes the tritone F♯ a “magnetic trap” in
this region.
Even more instructive is Fig. 2(b) depicting the summed potential energy density.
Here again, the tonic appears as a center of force. Extrema ofthe potentiald(x)
are equilibrium points which are either unstable for local maxima or stable for
local minima. On the one hand, there are two unstable equilibria aroundx= 0.8
(D) andx= 5.4 (B♭). On the other hand, the only equilibrium atx= π is stable,
which is precisely the tritone. Because the total energy density is low in this
region, tones are trapped by the tritone.

4.3 Gauge Invariance

Finally, we have to prove the local gauge invariance of our music quantum model.
To that aim, we first realize that the probabilitiesp(x) do not change under a shift
of the wave functions’s phases. Letψ be an arbitrary wave function solving the
Schrödinger equation (4) andϕ ∈ R a real phase value. Then the operationψ 7→
ψ̃ = eiϕ ψ yields another solution of the Schrödinger equation simply obtained
by multiplying Eq. (4) with eiϕ . However, thisglobal gauge transformationdoes
not affect the observable probabilities ˜p= |ψ̃|2 = p.
Yet, things get much more involved when the phase shift becomes a function of
space,4 ϕ(x), describing alocal gauge transformation. Writing

ψ̃(x) = eiϕ(x)ψ(x) (19)

we have to take the spatial derivatives in (12)

∂ψ̃
∂x

= i
∂ϕ
∂x

eiϕ ψ +eiϕ ∂ψ
∂x

= eiϕ
(

∂
∂x

+ i
∂ϕ
∂x

)

ψ .

Repetition of the derivation yields the Laplacean

∂ 2ψ̃
∂x2 =

∂
∂x

[

eiϕ
(

∂
∂x

+ i
∂ϕ
∂x

)

ψ
]

= eiϕ
(

∂
∂x

+ i
∂ϕ
∂x

)2

ψ .

For the operator appearing in round brackets we introduce the notation

Dx =
∂
∂x

+ i
∂ϕ
∂x

(20)

which is calledcovariant derivative, thereby alluding to the curved space of gen-
eral relativity which was the historically first formulatedlocal gauge theory. The
gradient of the phase functionϕ(x) is called thegauge fieldin this connection.
The Schrödinger equation (12) is calledlocally gauge invariant, if the trans-
formed wave function obeys a structurally equivalent equation with transformed
coefficients

−ψ̃ ′′(x)+
γ̃ ′′(x)
γ̃ ′(x)

ψ̃ ′(x)− γ̃ ′(x)2ψ̃(x) = 0. (21)

4For the sake of simplicity, we neglect time-dependence of the gauge field in our exposition.
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Using covariant derivatives instead of the conventional ones (which emerge as
limiting cases forϕ = constant) yields

−D2
xψ(x)+

γ̃ ′′(x)
γ̃ ′(x)

Dxψ(x)− γ̃ ′(x)2ψ(x) = 0,

which gives after some rearrangements

−ψ ′′(x)+
(

γ̃ ′′(x)
γ̃ ′(x)

−2iϕ ′(x)
)

ψ ′(x)−
[

γ̃ ′(x)2−ϕ ′(x)2+ i

(

ϕ ′′(x)− γ̃ ′′(x)
γ̃ ′(x)

ϕ ′(x)
)]

ψ(x)=0.

This expression is invariant under the constraints

γ̃ ′′(x)
γ̃ ′(x)

−2iϕ ′(x) =
γ ′′(x)
γ ′(x)

(22)

γ̃ ′(x)2−ϕ ′(x)2 = γ ′(x)2 (23)

ϕ ′′(x) =
γ̃ ′′(x)
γ̃ ′(x)

ϕ ′(x) , (24)

which restrict the freedom of choice for the local phase function ϕ(x). Thus, our
musical gauge theory has a broken symmetry that is not the full U(1) symmetry
of quantum electrodynamics.

5 Discussion and Outlook

In this study we have discussed the phenomenon of tonal attraction in a quan-
tum cognition framework. After reviewing a previous approach based on a qubit
representation of the essential musical symmetry group [3], we formulated an
alternative description in terms of wave functions. Solving the Schrödinger equa-
tion of a “free particle” over the circle of fifths as musical configuration space,
we were able to reproduce the results of the unmarked qubit quantum model for
the experimental findings of Krumhansl and Kessler [11]. In asecond step we ad-
dressed the important issue of gauge symmetry of the Schrödinger equation and
derived three expressions for musical forces which might berelated to similar
concepts discussed in the literature [14,23]. The introduction of gauge forces led
to a spatial deformation of the circle of fifths that we approximated by a poly-
nomial of fourth order, for which we could explicitly derivethe musical forces
of tonal attraction of the marked quantum model, in good agreement with the
Krumhansl and Kessler data.
Sofar, our approach accounts for the effect of “static forces” which determine the
center(s) of a series of tones or chords by means of stationary wave functions. Yet,
there are also “dynamic forces” affecting melodic or harmonic progression and
predictability, investigated, e.g. in [10]. The most interesting dynamical aspect of
music theory is, notably, modulation, the dynamic transition from one scale or key
into another one. Inspired by Schönberg’s modulation theory [23], Mazzola [18]
developed a sophisticated mathematical account based on musical symmetries
and cadences. Its most important ingredient is, what he calls the “modulation
quantum”, a collection of chords mediating the dynamic transition from one key
into another. It will be a challenging endeavor to further develop our gauge theory
of musical forces into these fascinating directions.
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In the recent literature of explaining tonal attraction, the spectral pitch class
model [20] plays an essential role. In this model, the pitch perception of any
musical sound is described by using spectral pitch class vectors. There are close
similarities between this Helmholtzian model [8] and the present quantum ap-
proach which should be pursued in a later publication. At this point we only note
that Schrödinger’s idea of “quantization as eigenvalue problem” [24] was cru-
cially influenced by Helmholtz’ idea of oscillating strings.
Next, let us speculate about the putative relevance of our approach in the neuro-
sciences. Partial differential equations are well-known in the discipline of neu-
ral field [5] and dynamic neural field theory [7, 17] within computational neu-
roscience where they appear as brain wave equations [5, 21].In the latter, fields
are regarded as functions overabstract feature spacesand we might consider the
chroma circle in our approach as such a feature space. These neural fields are
clearly real-valued functions in contrast to the generically complex wave func-
tions solving the Schrödinger equation. However, according to Bohm [4], the
Schrödinger equation for one complex field is equivalent totwo coupled real
fields describing the motion of a classical particle in a “quantum mechanical po-
tential” and its respective field dynamics. In quantum theory this leads to dis-
putably nonlocal representations. Yet in neural field theory, nonlocal interactions
are ubiquitous due to long-range synaptic connectivity. Thus, our gauge theory of
musical forces may find its neurophysiological counterparts in the organization
of cortical areas [25,28].
Finally, let us remark on the relationship between the process of musical per-
ception and the musical composition process. A very naive understanding of the
composition process is that it is nothing else than looking for the most probable
continuation of a starting sequence of tones. Of course, this is simply to realize
with the help of neural networks (e.g. [2]). A composer normally aims to generate
emotions in the mind of the listener. Emotions are deeply connected with subjec-
tive expectancy [19]. However, it is crucially surprise that generates great musical
effects. Hence, the process of composition cannot be described as a mechanism
for finding the most probable continuation. If one insists toview the process of
composing as an optimization algorithm, then one has to considering higher rules
of optimization. These rules are directed to resolving conflicting aims in follow-
ing particular emotional goals, optimally separating different voices and, at the
same time, pursuing certain restrictions of a particular style.
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