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Abstract. How well does a given pitch fit into a tonal scale or key, beiitgez
a major or minor key? This question addresses the well-knaitsenomenon of
tonal attraction in music psychology. Metaphorically,dbattraction is often de-
scribed in terms of attracting and repelling forces thatexerted upon a probe
tone of a scale. In modern physics, forces are related toegéialgls express-
ing fundamental symmetries of a theory. In this study we esklithe intriguing
relationship between musical symmetries and gauge forcteeiframework of
guantum cognition.

1 Introduction

The application of physical metaphors is quite common ities of tonal mu-
sic. The basic assumption seems to be that our experiencesi€ah motion is
in terms of our experience of physical motion and their ulyiteg forces. For
example, Schonberg speaks of different forces when heaigrpthe direction
of musical forces in cadences where the tonic attracts thardot [23, p. 58].
In a similar vein, Larson [14] proposed three musical fogeserating melodic
completions, which he callgravity, inertia, andmagnetismrespectively. These
forces should be regarded as conceptual metaphors in tke sérakoff and
Johnson [12]. They structure musical cognition in analogh ¥alling, inert and
attracting physical bodies. Physical forces are representour naive (common
sense) physics or folk physics.

In contrast to Larson, Mazzola [18] suggested a quite diffeanalogy between
music theory and modern (non-folk) physics. Modern fouimthatl physics de-
scribes forces as being caused by the “exchange” of paati@alrticles. Forces
are basically connected with certain symmetries of the ighysnicro-world.
Mazzola was probably the first who saw the analogy betweerighwand music
in connection with the existence of musical symmetriesgeisfly for the do-
main of modulation. Although Mazzola did not directly apgjyantum theory
for his theoretical models, he made use of a simplified fraonkvior handling
the underlying symmetries.

Mazzola’s insights are of highest importance for the prepaper, because “ex-
change particles” in the standard model of elementary gartheory emerge
from the quantization of gauge fields mediating symmetrpdfarmations be-
tween localized quantum states. Therefore, we investitjggecentral problem
of tonal attraction in terms of quantum symmetries and gdigdés. The term
“tonal attraction” refers to the idea that melodic or voleading pitches tend



toward other pitches in greater or lesser degrees. Thergresaception sees a
close relationship between the phenomenon of tonal attraahd the existence
of tonal forces. After a short discussion of the music-psjagical phenomenon

of tonal attraction in the next section, Sec. 3 provides atyua-cognitive model

based on a qubit representation of tones along the linesag@ekin [3]. In Sec. 4

we outline a gauge theory of musical forces, presentingtfiestorce-free case as
a default model which essentially reproduces the findinglseofjubit model. Sec-
ond, it is demonstrated how the introduction of local phaszdrs can improve

the descriptive power of the model. Gauge forces can bededas corrections
terms that apply to the force-free (default) case. Sectidinélly derives some

general conclusions and gives an outlook on future works,tke possible rela-
tionship of gauge theory and brain wave models [21] simdaXisting proposals

by de Barros and Suppes [1], Large [13], and most recenthtdfriand cowork-

ers [25].

2 ThePhenomenon of Tonal Attraction

In the last twenty years, there has been an enormous pragriésesdevelopment
of cognitive theories of tonal music. A central issue hastibe question of tonal
attraction. How well does a given pitch fit into a tonal scal¢éomal key, let it be

a major or minor key? In a celebrated study, Krumhans| ansl€e$l1] asked

listeners to rate how well each note of the chromatic octdeslfivith a preceding
context, which consisted of short musical sequences inmoajminor keys. This

finding plays an essential role in Lerdahl’s and Jackensl@f€nerative theory of
tonal music [16] and is one of the main pillars of the struakapproach in music
theory.

For illustration, Fig. 1(a) depicts the C major scale areghground the circle of
fifths comprising 12 semitones within one octave. The tanidicated with “0”,
defines the origin of the chroma circle [9]. Open bullets ammbers of the C
major (diatonic) scale, while black bullets do not belonghe scale. One can
see from Fig. 1(a) that the whole chromatic scale is diviaged two connected
subparts: the diatonic part (open bullets) and the remgi(miondiatonic) part.
The empirical results of Krumhansl and Kessler [11] areicaptd in Fig. 1(b)
for the C major context. The probe tones are representedbsummbers= j1/6

(j =0,...12, with C(0)= C’(12) one octave higher) at theaxis corresponding
to the radian angles at the chroma circle Fig. 1(a). The stibageratingsy(x)
are plotted at thg-axis. The results of this experiment clearly show a kind of
hierarchy: the tonic pitclj = 0 which is mostly attracting received the highest
rating, followed by the pitches completing the tonic trittdrd j = 1 and fifthj =

4), followed by the remaining scale degrees, and finally tirernatic, nonscale
tones.
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Fig. 1. Tonal attraction at the chroma circle. (a) The circle of ffar C major scale as indicated
by open bullets. (b) Rating dayéx) of Krumhansl and Kessler [11] (dashed-bullets) and scaled
guantum models of tonal attraction. Gray bold-solid: urkedrquantum model from Sec. 4.1
[Eqg. (9)]. This model makes the same predictions as the quiittum model described in Sec. 3.
Black bold-solid: marked quantum model from Sec. 4.2 [EQ)}(1Obviously, the nondiatonic
pitches (6 — 10 on the circle of fifth) are the pitches with thedst attraction values as described
by the traditional, hierarchic model.

3 Qubit Quantum Model of Tonal Attraction

One important model for the Krumhans| and Kessler [11] data given by Ler-
dahl [15] and recently rephrased by Blutner [3] in terms dfroplity theory [22].

In this framework, cognitive representations are desdrlipeseveral constraints
that could either be satisfied of violated. The constraiotation profile of a
construction accounts for itmarkednessUnmarked constructions are generally
easier to process in psychological experiments as is refldxt lower processing
times and higher accuracies. On the other hand, markedraotishs increase
processing demands in terms of “mental energy” or “cogaitorces”. Therefore

it sounds reasonable to look for a similar relationship leetvtonal markedness
in the sense of [3, 15] and musical forces.

One of the fundamental ideas of quantum cognition is to agymathematics
of the physical formalism to the domain of cognition. For mxde, we can use
a series of qubit states to represent the 12 pitch classeésimsenal music. In
addition, we can use the probability that one of these quatesollapses into
another one as a measure for the tonal attraction betweeottesponding tones
(see [3)).

For getting an explicit model of tonal states as states of laefti space, the
concept of symmetry is essential. Mathematically, symynistisimply a set of
transformations applied to given states such that thefoemations preserve the
properties of the states. In music, the most basic symmeingiple is theprin-
ciple of translation invariancelt says that the musical quality of an episode is
essentially unchanged if it is transposed into a differegt Khat means, the oper-
ations of the cyclic groufi.1, are applied to the chroma circle from Fig. 1(a) [18].
Therefore, we can say th@t, is the symmetry group of (Western) music.

More concretely, in the present case of tonal music, the nlyidg symmetry
group could be represented by certain rotations of vectoestivo-dimensional



é in n steps to the
original vector. In linear algebra, the elementary rotatteps can be described
by the following rotation matriy.:

vector space. For instance we can rotate the vaktoe
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Performing a repeated application of the rotation matriauovectorg_, above,
we can generate the 12 tones of the circle of fifth in the falhgway:

i

1 sin——
vi=y (4= 12 )

0 cos’S
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In the case of pure states, quantum theory defines strugitobébilities. This
means the probability that a stajecollapses into another state depends exclu-
sively on the geometric, structural properties of the cdergd states. How well
does a given tone fit with the tonic pitch? What is the proligtihat it collapses
into the (tonic) comparison state? The probability of aaude of the statey;

into a stata)y can be calculated straightforwardly:

D fucos™

Py (¥5) = co¢ =5

1 5 } where 0< j,I < 12. (3)

For a fixed elemeny the probabilities of the 12 tones indexed 9 < j < 12)
sum up to one. Hence, formula (3) offers a probabilistiaation profile relative
to a given context tongy to which we refer to as kernel functionlf the context
is not given as a single tone, but rather as a tonal regionpedchbr a series of
chords, then we would consider the mixture of all the stab@$arming to all the
involved single tonal elements. For simplicity, we coulkieall tones contribut-
ing to this mixture as being equivalent and give them the commeight ¥N
(assuming\ tonal elements are taken into account), thereby computienaity
operator over different kernel functions [3]. This assumpis rather similar to
Woolhouse’s treatment of the problem of context effect®irat attraction [26].
Figure 1(b) shows the attraction profile for the C major kethakernelpy, (y;),
obtained from the quantum model, and scales it to the Krusihemd Kessler
data [11] plotted in gray bold. Note that the quantum modgaimmeter-free. The
correlation coefficient between the predicted profile arelKhumhansl-Kessler
profile isr = 0.7 in the case of C major. That means that about 50% of the w@ian
is already explained by the default quantum kernel.

In order to permit the comparison with the symmetric modéMablhouse [26],
we fitted a kernel mixture, assuming symmetric phase paemigt the quantum
model (i.e., the phases of the first seven tones of the cifdidtio are mirrored
at the tritone point). The phase parameters were fitted &sv®l(starting from
the tonic in the circle of fifth)(0, 17/2, 17,0,0.9,0,0.99,0,0.9,0, 17, 11/2,0). In the
present case of a symmetric kernel function, the correlataefficient between
the model fit and the Krumhansl|-Kessler profile is: 0.82 in the case of major
keys. Moreover, an asymmetric distribution of phase anghgsoves the good-
ness of fit tor = 0.95 for major keys [3].



4 Gauge Theory of Tonal Attraction

In the following, we present an alternative treatment oftatructures allowing
the introduction of musical forces that is inspired by quamtgauge theory. In
the last paragraph we have seen how the introduction ofljoddferent phase
factors could substantially improve the goodness of fit efgoantum model of
tonal attraction. In modern physics, such phase functiead haturally to the
emergence of forces as frustrated connections of an umcgsdpatial structure.
In contrast to the qubit approach explained above, wheraewas represented
by a state in the Hilbert space’ = C2 subjected to the cyclic group;, as sym-
metry, we strive here for a representation in terms of Stihger wave functions.
A wave function is a state in a function Hilbert spa#é = L?(Q) of complex-
valued (square-integrable) functiogs: Q — C over a configuration spac®.
l.e., for a fixed “site”"x € Q, the valuey(x) belongs to a “local” Hilbert space
% = C attached tox. These local Hilbert spaces altogether form a “fiber bun-
dle” over the configuration spac&e, which is the appropriate framework of gauge
theory as required for the proper treatment of musical frce

Our starting point is the chroma circle Fig. 1(a) represgntones as equivalence
classes of pitches over one octave. This is essentiallyghgnzium of the unit
circleS' =R (mod 2m) which contains the semitone cyclic grofig, as a sub-
group. A tone is then given through its radian angte jri/6 (j =0,...12) as
a spatial site of the unit circle. Therefore, the “tonal cguafation space” of our
quantum model will be taken as the chroma cirfle= SL. A quantum state is
then given as a wave functiafi(x,t) that is dependent on tonal site= St and
timet solving the one-dimensional Schrodinger equation [24]

Loy
H(,U—IE 4)

with Hamilton operatoH .2 Finally, the complex value of a wave functigr(x, t)
for fixed x,t will be regarded as a state in a local Hilbert spate= C allowing
for gauge transformations.

4.1 Unmarked Behavior

In a first approximation for the unmarked behavior, we stimy“movement” of
a free particle with Hamiltonian

H=T=p?
around the chroma circle. Hefle denotes kinetic energy with = —id/dx the
momentum operator. Inserting the latter expressions iqtd 4 yields
2
- ©)
which is solved by plane waves
Pr(x,t) = A (6)

3Note that we chose a natural unit system with particle’s massl/2 and Planck’s quantum
of angular momenturh = 1 as necessary for quantum cognition applications.



and their linear combinations, whefg denote complex amplitudes. The wave
numberk and circular frequencw depend on each other through the dispersion
relation

w=Kk. (7)

The final solution of the Schrodinger equation must obeygilien initial and
boundary conditions. As initial condition we may setx,0) = A for encoding
the tonic of the context as a phase skifvith A as maximal attraction amplitude
that is subjected to the normalization constraint

: .
/Q\Lp(m)\ dx—1.

Additionally we need Mobius-type periodic boundary cdiwtfis on the unit cir-
cle y(x+4mt) = Y(x,t) thus reflecting the double covering from Eq. (2). There-
fore, the chroma circle exhibits the topology of a Mobiupetalnterestingly,
Mazzola [18] has visionarily foreseen the putative relegaaf these structures
for mathematical music theory as well. Moreover, Mobiyget connectivities
have been suggested as possible organizational prinaplesrtical structure
and brain wave dynamics by Wright and coworkers [27, 28]. foinmer yields
the normalizatiorA = 1/(2./), while the latter gives a quantization constraint
ek — 1, and hence € Z/2. Choosing the two fundamental wave numbers
k= +1/2 yieldsw = 1/4 andA, = Ae '®_ Finally, the superposition of fun-
damental solutions entails

i _
Y(xt) = \%Te 4 cos® ZXI (8)
which is a standing wave along the unit circle with probapitiensity
1 X—X|
_ 2_ =
P = [@(x. 1) = ~cod ——=. ©)

Inserting the semitones = j71/6 around the circle of fifths fox, confirms the
previous result obtained from the qubit quantum model [8(S).

1 Lmi-1)
i(4) = |W(xj,t)[> = = cod : 10
Pj(x1) = |[Y(xj,t)| nco 12 (10)
This default distribution kernel characterizesmarkedmusic cognition and is
plotted in gray bold after scaling in Fig. 1(b). The corratwith the Krumhansl-

Kessler data [11] is = 0.7 as reported above.

4.2 Marked Behavior

In order to understand marked behavior as well, we have telopwa theory
of musical forces that complements the metaphoric notidrisacson [14] and
Mazzola [18]. To that aim, we first realize that the distribat(10) simply reflects
the similarity relations between tones along the chromaeiwhere C, G, and
F are close neighbors and hence similar with respect to étaction profiles,
whereas C and the tritone: Bre maximally distant and thus unrelated [Fig. 1(a)].
A suitable deformation of the distances along the chron@ecrould lead to an



improved description of the empirical data presented in Efg). Therefore, we
make the ansatz

W(x) = Acogy(x)) (11)
for the stationary wave function wheygx) is a spatial deformation function and
A a normalization constant. For the sake of simplicity, wautoon the C major
scale withx; = O here. Differentiating (11) twice and eliminating triganetric
terms, we obtain the differential equation

y'(%)
()

which we compare with the stationary Schrodinger equdtigrix) = E((x) for
the energy eigenvalug. With

—¢"(x) + W)~y (0?P(x) =0 (12)

H=T+M+U

this comparison yields the following operators: The firsirtd is, as usual, the
operator of kinetic energy

02

ox2’
The second term could be interpreted in the context of elewignetism where
the velocity-dependent contribution to the Hamilton oparés regarded as mag-
netic interaction energy

U
A
Y (X) dx
Finally, the last term, which is simply a scalar multiplicet operator, receives
its usual interpretation as potential energy

U=E-y((x?

which might be seen either as electrostatic or gravitatipptential. Note that
the constant
E=y(0? (13)

can be interpreted as the total energy of the tonal dynamics.

The marked Schrodinger equation obeys conservation afygnas unveiled by
multiplication with the adjoint solutioiy* from the left. Introducing energy den-
sities

tx) = - ') (14)
_ * V/(X) !/

i) = 99" (15)

u(x) = Y(x)* (E-Y(X*)Px) (16)

yields
t(x) +m(x) +u(x) = EY(x)"¢(x) = Ep(x)
with p(x) = |@(x)|? the resulting probability distribution. Interestinglfis dis-

tribution describes the original Krumhansl-Kessler datH jwhich therefore re-
ceive a straightforward interpretationtasal energy densitpf tonal attraction.



From the general deformation ansatz Eq. (11) for the marksd we retain the
unmarked wave function by the choice

rendering the force-free dynamics withx) = E — y{,(x)2 = E—1/4, i.e.U =
0 andE = w = 1/4. For the marked attraction profile we assume a symmetric
polynomial of fourth order

Yn(X) = @0 +aa(x—1)*,
with boundary conditiony(0) = 0, i.e. the tonic should not be deformed, and
y(m) = /2, i.e. the tritone receives maximal deformation. This &l the
parameter-free model y

m o (X—1

Vm(x) = E - ( 27T3)
Interestingly, the terms higher than linear order can berpreted as spatially
dependent phase shifts of the unmarked wave function whégeridls on the
linear term only. From (17) we obtain the total energy (13Eas 4 which is
sixteen times larger than the energy required to the unrdatieamics.
Inserting the deformation (17) into the wave function (iglds the marked
attraction kernel for the tonic context, plotted as the tmétk curve in Fig. 1(b).
The correlation with the Krumhansl-Kessler data [11F is- 0.89, i.e. our fit
accounts now for 79% of the data’s variance. Computing theéuré over the C
major tonic triad context, improves the fitte= 0.97, covering 95% of the data.
Finally, we compute the three energy densities (14 — 16) &althe density of
potential energy alone

7

d(x) = m(x) + u(x) . (18)
The results are presented in Fig. 2.
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Fig. 2. Emergent energies of tonal attraction. (a) Energy dessiBelid: “inertia”i(x), dashed:
“gravity” u(x), dotted: “magnetismin(x). (b) Density of potential energiekx) [Eq. (18)].

Figure 2(a) shows the three densities “inertia” (solid)algty” (dashed), and
“magnetism” (dotted). Both, “inertia” and “gravity” clelgrindicate that the tonic
at x =0 (mod 2m) acts as a center of gravity, where the gravitation potential
(16) approaches minus infinity while the kinetic energy (fet)ds toward plus



infinity. Therefore, the gravitational force which is thegagve gradient of the
potential is negative in the tonic’s vicinity, i.e. the tons attracting, leading to
high acceleration (14). The tonic is also attracting witspet to the “magnetic”
force (15) which also has positive slope for smallalues. However, for tones in
the interval 04 < x < 5.8, corresponding to G — F, “magnetism” prevents tones
from being attracted by the tonic. This makes the tritop@ Fmagnetic trap” in
this region.

Even more instructive is Fig. 2(b) depicting the summed miidéenergy density.
Here again, the tonic appears as a center of force. Extrertiee gfotentiald(x)
are equilibrium points which are either unstable for localxima or stable for
local minima. On the one hand, there are two unstable eqaildyoundx = 0.8
(D) andx = 5.4 (Bb). On the other hand, the only equilibriumat mTis stable,
which is precisely the tritone. Because the total energysiters low in this
region, tones are trapped by the tritone.

4.3 Gaugelnvariance

Finally, we have to prove the local gauge invariance of ousi;guantum model.
To that aim, we first realize that the probabilitigx) do not change under a shift
of the wave functions’s phases. Lgtbe an arbitrary wave function solving the
Schrddinger equation (4) ade R a real phase value. Then the operatipr-

{ = &9y yields another solution of the Schrodinger equation syngitained
by multiplying Eq. (4) with & . However, thigjlobal gauge transformatiodoes
not affect the observable probabilities="J|? = p.

Yet, things get much more involved when the phase shift besoafunction of
space! ¢(x), describing docal gauge transformatianriting

P(x) =M yx) (19)
we have to take the spatial derivatives in (12)
oW 0% go . doO% _go (9 9%
ox _|0Xe' Y+e ox = ax ' ox v

Repetition of the derivation yields the Laplacean

%P 3 [jo(0 .09 e (9 .99\

For the operator appearing in round brackets we introdue@diation

J0 .0¢
Dy = 0x+| ox (20)
which is calledcovariant derivativethereby alluding to the curved space of gen-
eral relativity which was the historically first formulatéztal gauge theoryThe
gradient of the phase functigi(x) is called thegauge fieldn this connection.
The Schrddinger equation (12) is callestally gauge invariantif the trans-
formed wave function obeys a structurally equivalent eignatith transformed
coefficients
V' ()

V(¥

—@"(x)+ P'(0~ 7 (0*P(x) = 0. 1)

“4For the sake of simplicity, we neglect time-dependence efjduge field in our exposition.



Using covariant derivatives instead of the conventionasofwhich emerge as
limiting cases forp = constant) yields

N2 ¥'(x) T 2
Dy (x) + 7 Dx(x) — ¥ ()“@(x) =0,
which gives after some rearrangements
! V/(X) e / o ! H " V/(X)
w0+ (B 20 ) w792 - 0002 (0709 - T
This expression is invariant under the constraints
i -ava- 10
V()%= ¢'(x)? =y (x)? (23)
000 = L8/, (24)

which restrict the freedom of choice for the local phase fiomcg (x). Thus, our
musical gauge theory has a broken symmetry that is not th&Jft)) symmetry
of quantum electrodynamics.

5 Discussion and Outlook

In this study we have discussed the phenomenon of tonatatnain a quan-
tum cognition framework. After reviewing a previous approdased on a qubit
representation of the essential musical symmetry groupw8]formulated an
alternative description in terms of wave functions. SajMine Schrodinger equa-
tion of a “free particle” over the circle of fifths as musicangiguration space,
we were able to reproduce the results of the unmarked quhittgm model for
the experimental findings of Krumhansl and Kessler [11]. $eeond step we ad-
dressed the important issue of gauge symmetry of the Sicly@dequation and
derived three expressions for musical forces which mighteteted to similar
concepts discussed in the literature [14, 23]. The intridn®f gauge forces led
to a spatial deformation of the circle of fifths that we appneeted by a poly-
nomial of fourth order, for which we could explicitly derithe musical forces
of tonal attraction of the marked quantum model, in good exgent with the
Krumhansl and Kessler data.

Sofar, our approach accounts for the effect of “static feteehich determine the
center(s) of a series of tones or chords by means of stayiraare functions. Yet,
there are also “dynamic forces” affecting melodic or harfogrogression and
predictability, investigated, e.g. in [10]. The most imsting dynamical aspect of
music theory is, notably, modulation, the dynamic transifrom one scale or key
into another one. Inspired by Schonberg’s modulationrh], Mazzola [18]
developed a sophisticated mathematical account based sitahsymmetries
and cadences. Its most important ingredient is, what he ¢a8l “modulation
gquantum”, a collection of chords mediating the dynamicgition from one key
into another. It will be a challenging endeavor to furtheralep our gauge theory
of musical forces into these fascinating directions.
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In the recent literature of explaining tonal attractione thpectral pitch class
model [20] plays an essential role. In this model, the pitehcpption of any
musical sound is described by using spectral pitch clas®recThere are close
similarities between this Helmholtzian model [8] and thegant quantum ap-
proach which should be pursued in a later publication. At gaint we only note
that Schrodinger’s idea of “quantization as eigenvalugbj@m” [24] was cru-
cially influenced by Helmholtz’ idea of oscillating strings

Next, let us speculate about the putative relevance of qumoagh in the neuro-
sciences. Partial differential equations are well-knowrthie discipline of neu-
ral field [5] and dynamic neural field theory [7, 17] within cpaotational neu-
roscience where they appear as brain wave equations [3r2tte latter, fields
are regarded as functions owastract feature spacemd we might consider the
chroma circle in our approach as such a feature space. Tleesal fields are
clearly real-valued functions in contrast to the genelycabmplex wave func-
tions solving the Schrodinger equation. However, acegydd Bohm [4], the
Schrodinger equation for one complex field is equivalentwo coupled real
fields describing the motion of a classical particle in a ‘fifuan mechanical po-
tential” and its respective field dynamics. In quantum tletbis leads to dis-
putably nonlocal representations. Yet in neural field tiqgaonlocal interactions
are ubiquitous due to long-range synaptic connectivityisTlour gauge theory of
musical forces may find its neurophysiological countespartthe organization
of cortical areas [25, 28].

Finally, let us remark on the relationship between the mead musical per-
ception and the musical composition process. A very naivkergtanding of the
composition process is that it is nothing else than lookingttie most probable
continuation of a starting sequence of tones. Of courss,ishsimply to realize
with the help of neural networks (e.g. [2]). A composer ndiynams to generate
emotions in the mind of the listener. Emotions are deeplyeoted with subjec-
tive expectancy [19]. However, it is crucially surprisetthanerates great musical
effects. Hence, the process of composition cannot be testds a mechanism
for finding the most probable continuation. If one insistvi@wv the process of
composing as an optimization algorithm, then one has toiderisg higher rules
of optimization. These rules are directed to resolving dctiriig aims in follow-
ing particular emotional goals, optimally separating efiént voices and, at the
same time, pursuing certain restrictions of a particuldest
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