Exercises cont.

4 Beliefs and defaults

- 4.1 Is the following pattern of inferences, from $\{Y > Z, X \Longrightarrow Y\}$ infer X>Z, an example for inviolable inferences or an example for defeasible inferences? Give examples that fill in this scheme and argue on the basis of these examples!
- 4.2 Filters: Which of the following sets are Filters? Take $W = \{1,2,3\}$ as set of possible worlds.
 - a. $F_1 = \{\{1\}, \{2\}, \{1,2\}, \{1,2,3\}\}$
 - b. $F_2 = \{\{2\}, \{1,2\}, \{1,2,3\}\}$
 - c. $F_3 = \{\{1,2\}, \{1,2,3\}\}$
 - d. $F_4 = \{\{2\}, \{1,2\}\}$
 - e. $F_5 = \{\emptyset, \{1\}, \{2\}, \{1,2\}, \{1,2,3\}\}$
- 4.3 Intersect two filters. Is the result a filter again? And is the union of two filters a filter? Prove it or give a counterexample.
- 4.4 Plausibility measure: Prove the following fact: If Pl(X) is a plausibility function on the algebra \mathcal{F} , then the dual $Pl'(X) = 1-Pl(\neg X)$ is likewise a plausibility function on the algebra \mathcal{F} .
- 4.5 Prove fact 3, i.e. prove $U \subseteq V \& Pl(\neg U) \Rightarrow Pl(\neg V) \Rightarrow Pl(\neg V)$
- 4.6 Take that an agent believes U iff $\mu(U) > \frac{1}{2}$. Show that this definition of beliefs does not satisfy closure under conjunction in the general case.
- 4.7 Take a probability function μ and consider the condition Pl4:
 Pl4. If U₀, U₁, and U₂ are pairwise disjoints sets, then μ(U₀∪U₁) > μ(U₂) & μ(U₀∪U₂) > μ(U₁) ⇒ μ(U₀) > μ(U₁∪U₂)
 Give a concrete example (chose a function μ) that shows that Pl4 can be satisfied. Give also an example that shows that not all probability functions satisfy Pl4.
- 4.8 Using the rules and axioms of P, prove that
 - a. $\{(A \land B) > C, (A \land \neg B) > C\} \mid -P A > C$
 - b. $\emptyset \mid -P(A \land B) > (A \lor B)$
 - c. $\{A \Rightarrow B, (A \land B) \ge C\} \mid_{-P} A \ge C$ (remark: $X \Rightarrow Y$ means that $X \rightarrow Y$ is a propositional tautology)
- 4.9 Prove that the definition (ε -CP) $M \models \phi > \psi$ iff $\mu(\llbracket \psi \rrbracket \vdash \llbracket \phi \rrbracket) > 1-\varepsilon$ satisfies the conditions LLE, RW, REF of the axiom system **P**. Construct an example (using an arbitrary ε) that shows that AND is not necessarily satisfied.