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0 Introduction 
 

 

 Default reasoning involves leaping to conclusions. It is a 
case of presumptive reasoning 

 

 Counterfactual reasoning involves reaching conclusions 
with assumptions that may be counter to facts. 

 

 Both cases of reasoning are defeasible and both involve 
uncertainty 

 

 The earlier means to capture uncertainty (possibility, 
ranking functions and various measures for plausibility) can 
be used to define particular kinds of presumptive reasoning. 
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1 Some examples 
 

 

Some examples should convince you that plausible or 
presumptive reasoning is not completely arbitrary but 
regulated by general principles. 
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Inviolable inferences 
  
 If birds typically fly, and if birds typically sing, then birds 

typically fly and sing  
{B>F, B>S} |− B>(F∧S) 

 
 If red birds typically fly and if non-red birds typically fly, 

then birds typically fly (reasoning by cases) 
{(R∧B)>F, (¬R∧B)>F} |− B>F 
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Monotonicity 
  
 
 * If birds typically fly, then handicapped birds typically fly 

(monotonicity) 
not valid:  {B>F} |− (H∧B)>F 

 

 * If birds typically fly, then penguins typically fly 
not valid:  {B>F, P⇒B} |− P>F 

 

 If birds typically fly and birds typically have wings, then 
birds that have wings typically fly (cautious monotonicity) 
{B>F, B>W} |− (B∧W)>F 
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Defeasible inferences 
 

 
 If birds typically can fly and Fido is a bird, then Fido can fly 

(defeasible modus ponens) 
{B>F, B} |∼ F 

 

 *If birds typically can fly and Fido is a bird, but it cannot 
fly (it’s  a penguin), then Fido can fly 
not valid:{B>F, B, ¬F} |∼ F; valid {B>F, B, ¬F} |∼ ¬F    

[This shows that |∼ is nonmonotonic]  
 

 ?If students are typically adults and adults typically are car 
drivers, then students typically are car drivers (transitivity) 
? {S>A, A>C} |∼ S>C 
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 2 Belief 
 

 

A general model of beliefs uses filters. 
 

Definition 1:  Given a set of possible worlds W, a filter F is a 
nonempty set of subset of W that  
1. is closed under supersets: U ⊆ V & U ∈ F ⇒ V ∈ F 
2. is closed under intersection: U, V ∈ F ⇒ U ∩ V ∈ F 
3. does not contain the empty set 
 
The general conception of a filter does not give any insight 
where beliefs are coming from. It’s a descriptive modelling 
instrument only.   
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 Epistemic space and beliefs 
 
 

If W0 ⊆ W represents the agent’s belief then we call (W, W0) a 
belief space. 
 

Definition 2: Let Σ = (W, W0) be a belief space. 
 Σ ⊩ Belx(U) iff W0 ⊆ U  ( x beliefs U) 

 

Fact 1: The events that are believed with regard to a fixed 
belief space Σ  are filters, i.e.:  

 Σ ⊩ Belx(U) & U ⊆ V ⇒ Σ ⊩ Belx(V) 
 Σ ⊩ Belx(U) & Σ ⊩ Belx(V) ⇒ Σ ⊩ Belx(U ∩ V) 
 not  Σ ⊩ Belx(∅) 
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Probabilities and beliefs 
 

Let (W, ℱ, µ) be a probability space.  
 

Fact 2: The events with probability 1 form a filter, i.e.  
 

 µ(U)=1 & U ⊆ V  ⇒ µ(V)=1 
 µ(U)=1 & µ(V)=1 ⇒ µ(U ∩ V)=1 
 µ(∅)≠1 

 

 
In the following we investigate a more insightful model that 
makes use of plausibility spaces (generalizing probabilities) 
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Plausibility spaces 
 

 A plausibility measure is a generalization of all the 
approaches to uncertainty treated in the first part 
(probability, inner/outer measure,  possibility, ranking functions)  

 

 Formally, a plausibility space is a tuple S = (W, ℱ, Pl), 
where  ℱ is an algebra over W and Pl: ℱ → D where D is a 
set of plausibility values partially ordered by a relation <D. 
The relation <D   has a minimal element ⊥ and a maximal 
element ⊤. 

 

 Pl1. Pl(∅) = ⊥ 
Pl2. Pl(W) = ⊤ 
Pl3. U ⊆ V  ⇒ Pl(U) ≤ Pl(V) 
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Plausibility spaces and beliefs 
 

With regard to a plausibility space S = (W, ℱ, Pl) it is possible 
to give the most general definition for beliefs. 
 

Definition 3:  Given a plausibility space S = (W, ℱ, Pl), say 
that an agent believes U ∈ ℱ iff Pl(U) > Pl(¬U) 
 

Fact 3: This definition satisfies closure under supersets, i.e.:  
U ⊆ V & Pl(U) > Pl(¬U) ⇒ Pl(V) > Pl(¬V) 
 

Proof: exercise 
 

Unfortunately, this definition does not satisfy closure under 
conjunction in the general case:  
 

Pl(U1 ) > Pl(¬U1) & Pl(U2 ) > Pl(¬U2)  ⇒ Pl(U1∩U2) > Pl(¬(U1∩U2)) 
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The condition Pl4 
 

However, we can stipulate this as an extra condition: 
 

Pl(U1 ) > Pl(¬U1) & Pl(U2 ) > Pl(¬U2)  ⇒ Pl(U1∩U2) > Pl(¬(U1∩U2)) 
 

In order to deal with conditioned plausibilities a somewhat 
stronger condition is stipulated: 
 

Pl4. If U0, U1, and U2 are pairwise disjoints 
sets, then Pl(U0∪U1) > Pl(U2) & Pl(U0∪U2) > Pl(U1) 
⇒  Pl(U0) > Pl(U1∪U2) 
 

In words, if U0∪U1 is more plausible than U2 and if U0∪U2 is more 
plausible than U1, then U0 by itself is already more plausible than 
U1∪U2. 
Remark: Pl4 is necessary and sufficient to guarantee that (conditional) 
beliefs are closed under conjunction.  
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Ranking functions and the condition Pl4 
 
Fact 4: The condition Pl4 is generally satisfied for possibility measures 
(and ranking functions).  
 

In order to prove  
Pl(U0∪U1) > Pl(U2) & Pl(U0∪U2) > Pl(U1) ⇒  Pl(U0) > Pl(U1∪U2) 
assume that Pl(X∪Y) = max(Pl(X), Pl(Y))  
 

Case 1: Pl(U0) ≥ Pl(U1), then the premise reduces to Pl(U0) > Pl(U2) & 
Pl(U0) > Pl(U1) and the consequence part follows obviously.  
 

Case 2.1: Pl(U0) < Pl(U1), Pl(U0) < Pl(U2),  then the premise reduces to 
Pl(U1) > Pl(U2) & Pl(U2) > Pl(U1) and the consequence is trivially true. 
 

Case 2.2: Pl(U0) < Pl(U1), Pl(U0) ≥ Pl(U2),  then the premise reduces to 
Pl(U1) > Pl(U2) & Pl(U0) > Pl(U1) and the consequence is true.  
 

Consequence: An agent believes U according to definition 3 gives a 
filter if the plausibility function Pl is based on a possibility measure! 
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3 Characterizing default reasoning 

 
 

Giving a set At of primitive (atomic) propositions, the 
language ℒ defaults(At) consists of all formulas of the form φ > ψ 
where φ and ψ are propositional formulas over At.  
 

The formula φ > ψ can be read in various ways, depending on 
the application: 
 

• If φ is the case then typically ψ is the case 
• If φ the normally ψ 
• If φ then by default ψ 
• If φ then ψ is very likely 
• If φ were the case then ψ would be true. 
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Core properties 
 
Though there is some disagreement in the literature as to what 
properties > should have, there seems to be a consensus on the 
following set of six core properties, which make up the axiom system P: 
 

• LLE (left logical equivalence): If φ↔φ’ is a propositional 
tautology, then from φ > ψ infer φ’ > ψ  

• RW (right weakening): If ψ→ψ’ is a propositional 
tautology, then from φ > ψ infer φ > ψ’ 

• REF (reflexivity): φ > φ 
• AND: From φ > ψ1 and φ > ψ2 infer φ > ψ1 ∧ ψ2 
• OR: From φ1 > ψ and φ2 > ψ infer φ1 ∨ φ2 > ψ 
• CM (cautious monotonicity): From φ > ψ1 and φ > ψ2 infer 

φ ∧ ψ2 > ψ1 
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Deduction in the core logic P 
 

Definition 4: 
Let ∑ be a finite set of formulas in ℒ defaults(At). Then write  
∑ |−P φ > ψ iff φ > ψ can be deduced from ∑ using the rules 
and axioms of P 
 

Example: Prove that {B>E, B>W, B>F} |−P B∧(W∨E) > F 
 

1. Take {B>E, B>W, B>F}  as premises 
2. from 1 infer (B∧W) > F (CM) 
3. from 1 infer (B∧E) > F (CM) 
4. from 2 & 3 infer (B∧E)∨( B∧W) > F (OR) 
5. (B∧E)∨( B∧W) ↔ B∧(W∨E) is a propositional tautology 
6. from 4 & 5 infer B∧(W∨E) > F (LLE) 
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4 Semantics for defaults 
 

 

There have been many attempts to give semantics to formulas 
in   ℒ defaults(At). The surprising thing is how many of them 
have ended up being characterized by the basic axiom system 
P. A semantics based on plausibility measures helps to explain 
why P characterizes so many different approaches. The 
property Pl4 is essential in this 
connection 
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Probabilistic semantics 
 

Let M = (W, µ, π) be a simple probability structure, i.e. W is a 
set of possible worlds, µ a probability function on the subsets 
of W, and π is interpretation function for our language 
ℒdefaults(At). π(pi) assigns subsets of W to the atoms pi∈At. 

Definition 5: Interpretation of ℒ defaults(At).  
 

〚pi〛= π(pi) for pi∈ At.  
〚¬φ〛 = ¬〚φ〛 
〚φ∧ψ〛 = 〚φ〛∩〚ψ〛 
〚φ∨ψ〛 = 〚φ〛∪〚ψ〛 

 (CP)   M |= φ > ψ iff µ(〚ψ〛|〚φ〛) = 1 

Remark: all interpretat-
ions 〚.〛are with regard 
to the structure M!
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Probabilistic semantics cont. 
 

• It is not difficult to show that this definition of defaults in 
(conditional) probability structures satisfies all the axioms 
and rules of axiom system P.  

• In fact, P can be viewed as a sound and complete 
axiomatization of default reasoning for the language 
ℒdefaults(At). In order to make that precise… 

 

Definition 6: ∑ |= φ > ψ iff for all structures M for which 
each sentences of ∑ is true, the default φ > ψ also is true  
Fact 5:  ∑ |−P φ > ψ iff  ∑ |= φ > ψ 
 

• Is the intuitive interpretation of the last clause (CP) of 
Definition 5 really plausible? 
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ε-semantics 
 

Replace the condition (CP) in the definition 5 by the following 
definition making use of a fix, very small number ε>0. 
 

(ε-CP)    M |= φ > ψ iff µ(〚ψ〛|〚φ〛) > 1−ε 
 

• It can be shown this definition satisfies LLE, RW, REF but 
not AND, CM, and OR (see exercise) 

• However, if we consider sequences of probability functions 
(µ1, µ2, …) then the corresponding definition conforms to P:  
(∞-CP) M |= φ > ψ iff limk→∞ µk(〚ψ〛|〚φ〛) = 1 

• It is not so clear where the sequence of probabilities is 
coming from 
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Using possibility measures 
 

(Poss)     M |= φ > ψ iff Poss(〚φ〛) = 0 or  
Poss(〚φ∧ψ〛) > Poss(〚φ∧¬ψ〛)  
 

Remember the definition of possibility measures: 

  

 
Theorem: The definition (Poss) of the truth-conditions for   
φ > ψ satisfies all the axioms and rules of axiom system P. 
Moreover, P is a complete characterization of the correspond-
ing semantics: ∑ |−P φ > ψ iff  ∑ |= φ > ψ.  

 (for the poof see Halpern, p. 299) 

Poss1. Poss(∅)=0 
Poss2. Poss(W)=1 
Poss3. Poss(U∪V) =  max(Poss(U), Poss(V))  
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 5 Beyond system P 
 

• The system P has been viewed as characterizing the 
“conservative core” of default reasoning.  

• For practical reasons (modeling of presumptive reasoning) 
it is useful to add a “nonmonotonic periphery” in order to 
deal with defeasible reasoning.  

• One example is defeasible modus ponens, another is 
exceptional subclass inheritance: 
{penguin⇒bird, bird>winged} |∼ penguin>winged 
 

(Although penguins are an exceptional subclass of birds (property 
fly!) , it seems reasonable for them to still inherit the property of 
having wings from birds) 
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The semantics of the periphery  
 

Instead of the standard definition of entailment (semantic 
consequence) repeated here a new definition 7 is used that 
makes use of preferred structures 
 

Definition 6: ∑ |= φ > ψ iff for all structures M for which each 
sentences of ∑ is true, the default φ > ψ also is true  
 

Definition 7: ∑ |= φ > ψ iff for all preferred structures M for 
which each sentences of ∑ is true, the default φ > ψ also is true  
 

Example for preferred structures: looking for probability 
distributions that maximize the entropy (see Halpern p. 309) 


