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0 Introduction 
 

 

 Up to now two simplifying assumptions were made 
 Single agents 
 Only static situations (the agents knowledge are 

independent of the world where the agent lives) 
 

 For modelling interactive situations a more natural 
framework is required, especially in situations where 
 agents are bargaining 
 playing a game 
 performing a distributed computation 
 performing a conversation 
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1 Epistemic frames 
  

 In the first chapter we introduced the concept an epistemic 
space: If W0  W, then (W, W0) is called an epistemic space.  

 

 Now we assume that the proposition W0 can depend on the 
worlds w  W0. This leads to the conception of an epistemic 
frame 

 

 Hence, the knowledge/belief of an agent becomes 
dependent of the world the agent lives in. 

 
 There are various constraints that restrict the dependencies 

between the worlds and the agent’s beliefs in that world  
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Epistemic frames 
 

 Let K WW be a binary relation on W. Then the pair M = 
(W, K) is called an epistemic frame. The relation K is called 
an accessibility relation. (u,v)K says that the agent 
considers v possible in the world u. 

 Define K(u) = {vW: (u,v)K} 
K(u) is the set of worlds that the agent considers possible in 
world u.  
 

 A situated epistemic frame is a pair (M, w) where M is an 
epistemic frame and wW. 
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knowing and considering possible 
 

Old Definition 1: Let  (W, W0) be an epistemic space: 
 (W,W0)   ⊩ Possiblex(U) iff UW0 (x considers U possible) 
 (W, W0)  ⊩ Knowx(U) iff W0U   ( x knows U) 

 

New Definition 1: Let (W, K, w) be a situated epistemic frame: 
 (W, K, w)  ⊩ Possiblex (U) iff UK(w)   
 (W, K, w)  ⊩ Knowx (U) iff K(w)  U  
 

Definition 2: Extending the elementary propositional language 
by adding sentences of form P and K: 
 (W, K, w)  |= P iff (W, K, w’) |=   for some w’  K(w) 
 (W, K, w)  |= K  iff (W, K, w’) |=   for all w’  K(w)  
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Basic constraints 

Reflexive (u,u)K uK(u) 
Transitive (u,v)K & (v,w)K 

 (u,w)K 
vK(u)  
K(v)  K(u) 

Euclidian (u,v)K & (u,w)K 
 (v,w)K 

vK(u)  
K(v)  K(u) 

Symmetric (u,v)K  (v,u)K vK(u)  uK(v) 
Serial For each w there is 

some w’ such that 
(w,w’)K 

K(w)   

Equivalence 
relation 

Reflexive, symmetric, 
transitive 

uK(u); 
vK(u)  K(v)=K(u) 
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 Exercises 
 

 Take K as a binary relation and show the following: 
a. K is reflexive iff uK(u) for all worlds u         
b. K is transitive iff vK(u)  K(v)K(u) for all worlds u,v 
c. K is Euclidian iff vK(u)  K(v)K(u) for all worlds u,v 

 Assume K is reflexive. Show the following: 
(W, K, w)  |= K  implicates (W, K, w)  |=  for all w 

 Assume the following clause: (W, K, w)  |=   implicates 
(W, K, w)  |= K for all w. Formulate a condition for the 
relation K such that this clause becomes true. Do the same 
for the clause (W, K, w)  |=   implicates (W, K, w)  |= P. 
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       i 
u             v 

 n agents 

Definition 3: An epistemic frame for n agents is a tuple  
(W, K1, …Kn) where each Ki is a binary relation on W.  

A situated epistemic frame for n agents is a tuple  
(W, K1, …Kn, w) with wW 

 In general, different agents will consider different worlds 
possible, that means Ki(w)   Kj(w) for i  j. 

 One of the advantages of an epistemic frame is that it can be 
viewed as a labelled graph. The nodes are the worlds in W 
and there is an edge from u to v labeled i iff (u,v)Ki, i.e. 
vKi(u): 
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 Example 
Suppose that a deck consists of three cards labelled A, B, and 
C. Agent 1 and 2 each get one of these cards; the third card is 
left face down. A possible world is describing the cards held 
by each agent. Give a description of the epistemic situation! 
 

 6 possible worlds 
 in the world (A,B) agent 1 

thinks two worlds are possible: 
(A,B) and (A,C) 

 That means agent 1 knows that 
he has card A but considers it 
possible that agent 2 could 
hold either card B or card C.  

 The relation K1 and K2 are 
equivalence relations (loops and arrows on edges are omitted) 
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2 Modal epistemic logic 
 

 

Perhaps the simplest kind of reasoning about uncertainty 
involves reasoning about whether certain situations are 
possible or impossible. The following provides a logic of 
knowledge that allows just this kind of reasoning.  
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Syntax of propositional epistemic logic 
 

Giving a set At of primitive (atomic) formula, the language 
ℒn

K(At) is formed with the help of modal operators K1, …Kn, 
one for each agent. Formulas are formed by starting with 
primitive (propositional) formulas and closing off under 
negation and conjunction and the application of modal 
operators Ki , so that if  is a formula, so is  Ki .  
 
 K1K2 pK2K1K2 p is a well-formed formula of ℒn

K(At) 
 K1K2 pq, K1K2 pq are not 
 

 Important definition: Pi  =def Ki  
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Semantics of propositional epistemic logic 
 

Definition 4: Let (W, K1, …Kn) be an epistemic frame for n 
agents, and  be an interpretation -- assigning propositions to 
the atomic formulas of the language ℒn

K(At). Then M =  
(W, K1, …Kn, ) is called an epistemic structure.  
 

a. (M, w) |= p (for pAt) iff w(p) 
b. (M, w) |=  iff (M, w) |=  and  (M, w) |=  
c. (M, w) |=  iff (M, w) |  
d. (M, w) |= Ki iff (M, w’) |=  for all w’Ki(w) 
e. (M, w) |= Pi iff (M, w’) |=  for some w’Ki(w) 
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Properties of knowledge 
 

A formula  is considered valid in an epistemic structure M, 
denoted M |=  iff (M, w) |=  for all w in M. 
  

Fact 1: Suppose M = (W, K1, …Kn, ) is an epistemic structure 
 

a. M |= (Ki  Ki ()) Ki  (distribution axiom) 
b. if M |=  then M |= Ki (rule of knowledge generalization)  
c. if Ki is transitive then M |= (Ki  Ki Ki ) (positive IA*) 
d. if Ki is Euclidian then M |= (Pi  Ki Pi ) (negative IA*) 
e. if Ki is serial then M |= Ki false (Consistency axiom) 
f. if  Ki is reflexive then M |= (Ki  ) (Knowledge axiom) 
 

* IA = introspection axiom 
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Sample proof  
 
 

M |= (Ki  Ki ()) Ki  (distribution axiom) 
  
Proof: 

1. assume (M, w) |= (Ki  Ki ()) 
2. then (M, w’) |=  and (M, w’) |= () for all w’Ki(w) 
3. hence, (M, w’) |=  for all w’Ki(w) 
4. Therefore (M, w) |= Ki   
5. Thus, (M, w) |= (Ki  Ki ()) Ki  
6. Since this is true for all wW, it follows that 
7. M |= (Ki  Ki ()) Ki   
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Axiomatizing knowledge 
 
Consider the following collection of axioms and inference rules:  
 

Prop. All substitution instances of tautologies of prop. logic 
K1. (Ki  Ki ()) Ki  (distribution axiom)  
K2. Ki   (Knowledge axiom) 
K3. Ki false (Consistency axiom) 
K4. Ki  Ki Ki ) (positive inspection axiom) 
K5. Pi  Ki Pi ) (negative inspection axiom) 
MP. From  and  infer (modus ponens)  
Gen. from  infer Ki (rule of knowledge generalization) 
 
K = {Prop, MP, Gen,  K1}, T = {Prop, MP, Gen,  K1, K2}, 
S4 = {Prop, MP, Gen,  K1, K2, K4}, S5 = {Prop, MP, Gen,  K1, K2, K4, K5} 
KD45 = {Prop, MP, Gen,  K1, K3, K4, K5} 
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Soundness and completeness 
 

Fact 2: Consider sets of epistemic structures where the 
accessibility relations satisfy particular conditions. 
 

a. K is a sound and complete axiomatization with respect to all 
epistemic structures 

b. T is a sound and complete axiomatization with respect to all 
reflexive epistemic structures 

c. S4 is a sound and complete axiomatization with respect to 
all reflexive & transitive epistemic structures 

d. S5 is a sound and complete axiomatization with respect to 
all reflexive & transitive & symmetric epistemic structures 

e. KD45 is a sound and complete axiomatization with respect 
to all Euclidian & transitive & serial epistemic structures 
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3 Epistemic probability frames 
 

 

Epistemic frames in multi agent systems are used for 
modelling the simplest kind of reasoning about uncertainty 
where certain situations are considered possible or impossible.  
Epistemic probability frames introduce degrees of certainty 
into this picture.  
 

 6 possible worlds 
 in the world (A,B) agent 1 

thinks two worlds are possible: 
(A,B) and (A,C) 

 an epistemic probability frame 
assigns probabilities to these 
possibilities. 
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The definition  

Definition 5: An epistemic probability frame for n agents is a 
tuple  

(W, K1, …Kn, {(w,1, … w,n): wW}) where  
 

1. (W, K1, …Kn) is an epistemic frame and  
2. (Ki(w), w,i) is a classical probability space for each 1in  
    (i.e. w,i (U) is a defined probability for all propositions 
    U  Ki(w).) 
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Example  
 

Suppose that a deck consists of three cards labelled A, B, and 
C. Agent 1 and 2 each get one of these cards; the third card is 
left face down. A possible world is describing the cards held 
by each agent. Give a description of the epistemic probability 
frame if we assume that agent 1 saw card 3 for 5 ms before she 
saw her own card and assigned probability ½ that card 3 was an A. 
 

 6 possible worlds 
 in the world CB agent 1 thinks 

two worlds are possible: CB 
and CA.   

 She assigns the probabilities 
CB,1(CB) =? and CB,1(CA) =? 

 What about the other 
probabilities? 
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Example  
 

Suppose that a deck consists of three cards labelled A, B, and 
C. Agent 1 and 2 each get one of these cards; the third card is 
left face down. A possible world is describing the cards held 
by each agent. Give a description of the epistemic probability 
frame if we assume that agent 1 saw card 3 for 5 ms before she 
saw her own card and assigned probability ½ that card 3 was an A. 
 

 6 possible worlds 
 in the world CB agent 1 thinks 

two worlds are possible: CB 
and CA.   

 CB,1(CB)=2/3, CB,1(CA)=1/3 
 AB,1(AB)=1/2, AB,1(AC)=1/2 

CB,2(CB)=1/2, CB,2(CA)=1/2, 
… 
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Two constraints  
 

The following two constraints on epistemic probability frames 
are very natural for frames where the accessibility relations are 
equivalence relations. 
 

SDP (state-determined probability) 
For all i, v and w: if v  Ki(w) then v,i = w,i 
 

CP (common prior assumption) 
There exist a probability space (W, ) such that  
w,i = | Ki(w), i.e. w,i (U) = (U|Ki(w) for U  Ki(w) 
 

CP says that differences in beliefs among agents can be 
completely explained by differences in information. Agents 
start out with identical prior beliefs and the condition on the 
information they later receive.  
Which constraint is satisfied in our example? 
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 4 The Dynamics of multi-agent systems 
 

 

This section introduces multi-agent systems which are more 
realistic for modelling interacting agents (players in a poker 
game, robots interacting to clean a house, …).  
 

 discriminating global and local (internal) states 
 global state changes as a result of individual actions. 

 
Cf. Halpern,  
Chapter 6.3 
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Local and global states, runs and points  
 
 A global state describes the system at a given point t of time 
 A global state is structured as follows: (se, s1, …, sn) 

 se is the environment’s state 
 si is agent i’s local state 

 A run is a complete description of one possible way in 
which the system’s state can evolve over time. Formally, a 
run r is a function from time to global states, hence r(t) 
describes the global state at time t. 

 If  r(t) = (se, s1, …, sn), then define 
 re(t) = se, the environment’s state at point (r, t) 
 ri(t) = si, the agent i’s local state at point (r, t) 
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Systems of runs as epistemic frames 
 

We can identify systems of runs  with epistemic frames where 
the accessibility relations are equivalence relations: 
 

F  = (W, K1, …Kn)  where 
 W = {(r, t): r and ttime}, worlds are the points in  
 Ki (r, t) = {(r’, t’): ri(t) = r’i(t’)}, two points are equivalent 

for agent i iff they are indistinguishable to i (they identify 
the same local state) 

 

To model a dynamic system as a multi-agent system requires 
deciding how to model the local states. In the case of multi-
agent systems this is a harder task than in the single-agent case 
because now the uncertainty includes what agents are thinking 
about one another. 



 25

Tossing two coins  
 

Suppose Alice tosses two coins and sees how the coins land. 
Bob learns how the first coin landed after the second coin is 
tossed, but does not learn the outcome of the second coin toss. 
There are exactly 7 possible global states: 
 

 One initial state: ([.], [.], [.]) 
 Two time-1 states of the form 

([X], [X], [tick]), where 
X{H,T} 

 Four time-2 states of the form 
([X1, X2], [X1, X2], [X1, tick]), 
where Xi{H,T} 

 

These states can be identified with the nodes of the shown tree.  
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Determine the equivalence classes 
 

 
 
KA (r1, 0) =  ? 
KB (r1, 0) =  ? 
 

KA (r1, 1) =  ? 
KB (r1, 1) =  ? 
 

KA (r1, 2) =  ? 
KB (r1, 2) =  ? 
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Determine the equivalence classes 
 

 
 
KA (r1, 0) =  {(r1, 0), (r2, 0),  (r3, 0),  (r4, 0)} 
KB (r1, 0) =  {(r1, 0), (r2, 0),  (r3, 0),  (r4, 0)} 
 

KA (r1, 1) =  {(r1, 1), (r2, 1)} 
KB (r1, 1) =  {(r1, 1), (r2, 1),  (r3, 1),  (r4, 1)} 
 

KA (r1, 2) =  {(r1, 2)} 
KB (r1, 2) =  {(r1, 2), (r2, 2)} 
 



 28

Determining probabilities with uniform runs 
 

 In the example under discussion we can assume that  
(ri, t) = (rj, t) for all runs ri and rj. Obviously, the  
probabilities are independent of t and we can ask for the 
probabilities of runs given some local state.  

 For example, agent A can be in state [H] – conforming to 
the situation KA(r1, 1) = {(r1, 1), (r2, 1)}. Or agent B can be 
in state [H, tick]. This conforms to the situation KB(r1, 2) = 
{(r1, 2), (r2, 2)}. 

 Generally, we can assume CP (Section 3) and we get 
w,A = | KA(w) and w,B = | KB(w) 

 With (ri) = ¼  we get (r1, 1), A (r1) = (r1, 1), A (r2) = ½ and 
(r1, 1), B (r1) = (r1, 1), B (r2) = ¼. What about (r1, 2)? 
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Determining probabilities with non-uniform runs 
 

Consider the situation described before but assume now that 
the first coin has bias 2/3, the second coin is fair, and the 
tosses are independently as shown in the figure.   
 

Calculate the probability distributions  
(1)  (r1, 1), A (ri) 
(2)  (r1, 2), B (ri)   
(3)  (r1, 2), A (ri) 
(4)  (r1, 0), A (ri) 

 
Start with calculating (ri)! 
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Determining probabilities with non-uniform runs 
 

 
r1   r2  r3  r3 

       1/3    1/3    1/6    1/6 
 
 
 
(1) (r1, 1), A (ri) = (ri|{(r1,1), (r2,1)}) = ½ for i=1 and i=2 
(2) (r1, 2), B (ri)  = (ri|{(r1,2), (r2,2)}) = ½ for i=1 and i=2 
(3) (r1, 2), A (ri) = (ri|{(r1,2)}) = 1 for i=1 
(4) (r1, 0), A (ri) = (ri|{(r1,0), (r2,0), (r3,0), (r4,0)}) =  

   1/3 for i=1 and i=2 
   1/6 for i=3 and i=4. 
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5 Protocols 
 

 
Multi-agent systems provide a useful way of representing 
complex situations. But where does the system come from? 
Changes often occur as a result of actions. These actions, in 
turn, are often performed as a result of agents using a protocol 
or strategy. Cf. Halpern, Chapter 6.6. 
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 Deterministic and probabilistic protocols 
 

 A protocol Pi for agent i is a function that associates with 
every local state in Li a nonempty subsets of actions in ACTi 

 If  Pi is deterministic then Pi  prescribes a unique action for i 
at each local state, that is | Pi (l) | = 1 for each l  Li. 

 If  Pi is a probabilistic protocol, then  | Pi (l) | > 1 and each 
local state l is associated with a probability measure over a 
subset of action in  ACTi.   We drop protocols Pe for the 
environment in this presentation (see Halpern, p 208)   

 A joint protocol (P1, … Pi) consists of a protocol for each of 
the agents and associates with each global state a subset of 
possible joint actions ACT1  …  ACTn. 

 If the local protocols are probabilistic then a probability on 
the joint actions can be calculated by treating the local 
protocols as independent 
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 Protocols generate systems of runs 
 

Given a joint protocol and a set of initial global states, it is 
possible to generate a system of runs in a straightforward way. 
 

Example: 
On sonny days Alice tosses a coin with bias 2/3, on cloudy days Alice 
tosses a coin with bias 1/4, and sunny days happen with probability 3/4.  
 

 Alice’ local states: [sonny], [cloudy], [H], [T]. 
 Alice’ actions:  PA ([sonny])  = {toss-heads, toss-tails}: 2/3,1/3 

PA ([cloudy]) = {toss-heads, toss-tails}: 1/4, 3/4 
 Resulting systems of runs (the nodes represent the states of the 

system) 
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 Calculations 
 

 
Alice’ local states (repeated): 
[sonny], [cloudy], [H], [T]. 
 

 
 
Exercise: equivalence classes and probabilities: 
 

1. KA (r1, 0) = ?; KA (r3, 0) = ? 
KA (r1, 1) = ?; KA (r2, 1) = ?  

2. (ri) = ? 
3. (r1, 1), A (ri) = ? 
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Calculations 
 

 
Alice’ local states (repeated): 
[sonny], [cloudy], [H], [T]. 
 

 
 
Exercise: equivalence classes and probabilities: 
 

1. KA (r1, 0) = {(r1, 0), (r2, 0)}; KA (r3, 0) = {(r3, 0), (r4, 0)} 
KA (r1, 1) = {(r1, 1), (r3, 1)}; KA (r2, 1) = {(r2, 1), (r4, 1)}  

2. (r1) = ½; (r2) = ¼ ; (r3) = 1/16; (r4) = 3/16;  
3. (r1, 1), A (r1) = ½ / (1/2+1/16) = 8/9; (r1, 1), A (r3) = 1/9 

(r1, 1), A (r2) = 4/7, (r1, 1), A (r4) = 3/7. 
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6 Example protocols to specify situations 
 

 

The use of protocols helps clarify what is going on in many 
examples. Because protocols specify the possible actions (and 
their probabilities) for each local state, a concise description of 
the local states is required. Cf. Halpern, Chapter 6.7. 
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A listener-teller protocol 
 

 Suppose the world is characterized by n binary random 
variables X1, …Xn. There are two agents, a Teller, who 
knows what the true values of the variables are, and a 
Listener, who initially has no idea what they are. 

 In each round, the Teller gives the listener very limited 
information: She describes (truthfully) one world that is not 
the true world. For instance, if n=2, The Teller can say  
“not 10” to indicate that the true world is not (10) 

 How can this situation be modelled as a system of runs? 
This depends on what he local states are and what protocol 
the Teller is following. 

 The local states have to represent what the Teller/Listener 
remembers. We assume that the Teller remembers 
everything she has said.  
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A deterministic  protocol 
 

W = {(x1, …,xn): xi  {0,1}}  
T:  (w0, [w1, …,wk]); 0kn,  w0, wiW, wi w0,  

K=0 conforms to the initial state (w0)  
L:   (wk); (the listener remembers only the last message that 

T said) 
 

Specify the system of runs for n=2 in case T is using a 
deterministic protocol (she follows the ordering 00,01,10,11 in 
generating her utterances)! Numbering of runs: r00, r01, r10, r11. 
 

a. Determine the equivalence classes for L! E.g. KL(r11,1)=? 
b. Assume all worlds have equal probability. What is L’s  

probability that the world is 11 – given his evidence at 
time 1, i.e. calculate (r11, 1), L (r11) = ? 
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A deterministic  protocol: solution 
 

W = {(x1, …,xn): xi  {0,1}}  
T:  (w0, [w1, …,wk]); 0kn,  w0, wiW, wi w0,  

K=0 conforms to the initial state (w0)  
L:   (wk); (the listener remembers only the last message that 

T said). For the example assume n=2. 
 
 

 
 
 
 
a. KL(r11,1) = {r01, r10, r11};  KL(r00,1) = {r00}; 
b. (r11, 1), L (r11) = 1/3;   (r00, 1), L (r00) = 1 

round 0 
round 1 
round 2 
round 3 

00 
-- 
-- 
-- 

01 
not 00 

-- 
-- 

10 
not 00 
not 01 

-- 

11 
not 00 
not 01 
not 10 

 r00 r01 r10 r11 
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Another deterministic  protocol 
 

W = {(x1, …,xn): xi  {0,1}}  
T:  (w0, [w1, …,wk]); 0kn,  w0, wiW, wi w0,  

K=0 conforms to the initial state (w0)  
L:   [w1, …, wk] (the listener remembers everything that T 

said) 
 
 Taking the same system of runs as before, what are the 

equivalence classes for L? In particular, consider KL(r00, 3)? 
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A nondeterministic protocol 
 

T can also follow a non-deterministic strategy, for instance by 
considering all possible messages as equally distributed. What 
do you expect in this case? (start with considering a Listener 
with complete memory) 
 
 

round 0 
round 1 
round 2 
round 3 

00 
 

01 
  

10 
  

11 
  

Runs??     
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 Monty Hall puzzle 

Suppose you’re in a game show and given a choice of three 
doors. Behind one is a Car. Behind the others are Goats. You 
pick door 1. Before opening door 1, host Monty Hall (who 
knows what is behind each door) opens door 3, which has a 
goat. He then asks you if you still want to take what’s behind 
door 1, or to take instead what’s behind door 2. Should you 
switch? 
 

 
Construct (a) a deterministic (b) a nondeterministic protocol 
and calculate your subjective probability for a car being behind 
door 1 (door 2). 

1 2 3 
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The Monty Hall  puzzle: deterministic protocol      
 

   C   G   G  G   C   G   G   G   C 

 1 2  3  1  2 3  1  2 3  
 
 

    2  3  2  3    1   1 2  1    1  
 
 
 
 
Kyou(r1, 1) = {r1, r4 , r7};  (r1, 1), you ({r1}) = 1/3 
Kyou(r1, 2) = {r1, r7};  (r1, 2), you ({r1}) = (1/3)/(2/3) = 1/2 

      r1          r2        r3   r4        r5       r6    r7       r8         r9      
   1/3         1/3   1/3      . . .  
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The Monty Hall  puzzle: nondeterministic protocol 
 

   C   G   G  G   C   G   G   G   C 

 1 2  3  1  2 3  1  2 3  
 
 

2 3 3 2  3 1  2  1 2  1 1 2 
 
 
 
 
Kyou(r1, 1) = {r1, r1’, r4 , r7};  (r1, 1), you ({r1, r1’}) = 1/3 
Kyou(r1, 2) = {r1, r7};  (r1, 2), you ({r1}) = (1/6)/(3/6) = 1/3 

r1        r1’    r2        r3   r4   r5       r5’   r6   r7       r8     r9      r9’ 
1/6 1/6 1/3   1/3      . . .  
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 The second-ace puzzle 
 

A deck has four cards: the ace and deuce of hearts A♡,2♡, and 

the ace and deuce of spades A♠, 2♠. After a fair shuffle of the 
deck, two cards are dealt to Alice. At this point there is a 
probability of 1/6 that Alice has both aces.  
 Alice now says (truthfully): “I have an ace”. Conditioning 
on this information, Bob computes the probability that Alice 
holds both aces to be 1/5.  This seems reasonable.  
 Next, Alice says “I have the ace of spades”. Conditioning 
on this new information, Bob now computes the probability 
that Alice holds both aces to be 1/3. Of the three deals in 
which Alice holds the ace of spades, she holds both aces in one 
of them. Hence, as a result of learning that the ace Alice holds 
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is the ace of spades, the conditional probability that Alice 
holds both aces goes up from 1/5 to 1/3. 
 But suppose Alice had instead said, “I have the ace of 
hearts”. A similar argument shows that the probability that 
Alice holds both aces is 1/3. 
 Is this reasonable? When Bob learns that Alice has an ace, 
he knows that she must have the ace of hearts or the ace of 
spades (or both). Why should finding out which particular ace 
it is raise the conditional probability of Alice having two aces? 
 
The first step in analyzing this puzzle in the systems of runs 
framework is to specify the global states and the exact protocol 
being used. Surprisingly, there are two protocols that are 
consistent with the story, one deterministic, the other 
probabilistic 
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A deterministic protocol for the second ace puzzle 
 

A♡,A♠ A♡,2♠ A♡,2♡  A♠,2♠  A♠,2♡ 2♡,2♠ 
  1/6    1/6    1/6    1/6    1/6    1/6 
 
 
says Ace says Ace  says Ace  says Ace  says Ace  says No  
   
 
says A♠ says A♡  says A♡ says A♠  says A♠  says No  
    r1           r2          r3      r4      r5     r6 
 
(r1, 1), B (r1) = (r1|{r1, r2, r3, r4, r5}) = 1/5 
(r1, 2), B (r1) = (r1|{r1, r4, r5}) = 1/3 
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A probabilistic protocol for the second ace puzzle        

  A♡,A♠   A♡,2♠ A♡,2♡  A♠,2♠  A♠,2♡ 2♡,2♠ 
     1/6     1/6    1/6    1/6    1/6      1/6 
 
 
  says Ace says Ace  says Ace  says Ace  says Ace  says No  
   
 ½      ½ 
             says A♡  says A♡  says A♠  says A♠  says No  
says A♡ says A♠ 
r1        r1’     r2     r3      r4      r5     r6   
(r1, 1), B ({r1, r1’}) = ({r1, r1’} |{r1, r1’, r2, r3, r4, r5}) = 1/5 
(r1’, 2), B ({r1, r1’}) = ({r1’}|{r1’, r4, r5}) = 1/5 


