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NORMIC LAWS AS SYSTEM LAWS:

Foundations of Nonmonotonic reasoning

Gerhard Schurz, University of Salzburg

1. Introduction: In Search for Objective Foundations

Since its beginnings (e.g., Reiter 1980), nonmonotonic and default reasoning was

motivated mainly in a subjective-epistemic way. From our knowledge that Tweety

is a bird plus the epistemic fact that we know nothing else about Tweety we

conclude that Tweety is a normal or prototypical bird, and thus, that Tweety can fly.

This approach was made explicit in autoepistemic logic (Moore 1985, Konolige

1994). But how, and why, can such a reasoning from non-knowledge to knowledge be

reliable? Assume you try to read a book while driving a car. It would be a bad

device for you to infer from your ignorance that the street is normal and thus straight,

or that the traffic lights are normal and thus on green. What is the objective criterion

which can tell us in which situations default reasoning has intended rather than

catastrophic consequences?

Since its beginnings the main application domain of nonmonotonic reasoning

were claims of normality or prototypicality, like bird normally can fly, or the light

normally goes on when the switch is turned on. I call them normic laws and use to

formalize them as A Û B, where A and B are open formulas. The name goes back to

Scriven (1959), who together with Dray (1957) has detected them in the debate on

explanation in humanities and social sciences. The phrase "normally" seems to imply

at least something objective - a vague statistical majority- or most-claim. However,

even this statistical implication was doubted by several researchers, computer logi-

cians (e.g., McCarthy 1986, Reiter 1987) as well as philosophers of science (e.g.

Neander 1991, Wachbroit 1994). The problem is that, typically, we do not know

statistical frequencies like x% of all birds (when?, where?) can fly, or x% of all light

switches (when?, where?) are functioning properly. Hempel (1988) has argued that

such frequencies are subject to indefinitely many theoretically heterogeneous
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disturbing factors, so that no theory informs us about frequency estimations of this

sort. This has the practical consequence that such frequencies will strongly vary

with contingent circumstances. Hence random sampling procedures concerning

arbitrary "birds" or "light switches" will not be very useful.

But this does not imply that ideal (i.e., prototypical) normality is not at all connec-

ted with statistical normality, as argued by McCarthy and Reiter, but is just a practi-

cally useful convention of speech. In contrast, nonmonotonic reasoning can only be

practically reliable, can only have a high predictive success rate, if statistical nor-

mality is at least a necessary condition of ideal  normality. This thesis will be de-

fended in this paper.

The need of such a relation between ideal and statistical normality for practically

reliable nonmonotonic reasoning has been frequently pointed out by defenders of

probability-accounts, as Adams (1975), Pearl (1988), and including myself. A techni-

cally demanding question is how to establish this relation in a situation where we are

largely ignorant about the real statistical distributions. A well-known approach is

Adams' and Pearl's infinitesimal probability semantics. Another approach elabora-

ted in my own technical papers is noninfinitesimal probability semantics, where

one assigns lower conditional probability bounds to normic laws and controls how

these bounds are propagated and diminished when we draw default inferences

(Schurz 1997, 1998).

This paper, however, is mainly nontechnical. It tries to answer a more fundamen-

tal question, namely: is there any objective reason for the relation between ideal and

statistical normality, and if so, what is it? It has been shown by several authors that

normic laws seem to be omnipresent in everyday life, in the 'higher' or 'life' sciences

as well as in technology; so-called ceteris-paribus laws are often nothing but normic

laws (Hempel 1988, Fodor 1992, Schurz 1995, Silverberg 1996). Is this merely a

result of our subjective framing of the world which in fact is too complex to be under-

standable, hence a result of wishful thinking?1 Or is there a deeper objective reason

1 Inductive overconfidence in a well-known phenomenon in cognitive psychology.
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for it? In philosophy of science one usually distinguishes between genuine laws and

merely accidental regularities by the fact that the former ones have a unified

explanation by general theories, e.g. of physics (the so-called Ramsey-Lewis

account; cf. Earman 1986). Is such an objective theoretical foundation possible also

for normic laws?

In this paper I will try to give such a foundation. It will be based on cybernetics,

system theory, and evolution theory. This foundation does not only explain why nor-

mic laws are omnipresent in practical life, life science and technology, but also why

and how they are related to high statistical probabilities, and finally why we are

usually unable to determine the exact numerical values of their statistics. This foun-

dation, if correct, will at the same time point to a wide range of applications of non-

monotonic reasoning. For it shows that in all these domains, nonmonotonic logic is

just the right sort of reasoning. Finally, such sort of foundation does not at all imply

that the subjective-epistemic accounts to nonmonotonic reasoning are incorrect or

inadequate. In contrast, it can explain why they are indeed adequate in a wide range

of application domains.

2. Normic Laws as System Laws

An important distinction is the distinction between natural laws (laws of nature)

and system laws.2 Natural laws are the laws of physics. They hold in the universe as

a whole. System laws describe the behavior of  so-called open systems, which are

abstractly modeled by cybernetics, system theory and evolution theory. They come

in two kinds: natural or 'living' systems, the objects of biology, psychology,

sociology, history and humanities, and artificial or technical systems, the objects of

technology. Abstractly, both kinds of systems share the following features (Si for

system theory, Ci for cybernetics):3

2 To my knowledge this distinction was first introduced by my father J. Schurz
(1990).

3 Cybernetics has been founded by Ashby (1964), system theory by Bertalanffy
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S1) Open systems are physical ensembles composed of parts, placed into a

(physical) environment significantly larger than themselves. There is continuous ex-

change of energy and matter between system and environment. The environment

has resources to satisfy the system's 'needs' (see C1) but also to 'destroy' the

system (see S2).

S2) In spite of S1, open systems preserve a relative strict identity through time -

their state is called a dissipative state in systems theory (a stationary disequilibrium,

far away from the  thermodynamical equilibrium of closed, 'dead', systems).

C1) Their identity in time is abstractly governed by certain ideal states (or norm

states, in German "Sollwerte")4 which the system constantly tries to approximate

by its real states. It does this by certain organs = subsystems which perform certain

functions = homeostatic regulatory mechanisms.

C2) These regulatory mechanisms compensate disturbing influences of the en-

vironment. If such influences cause the system's real state to move apart from its

ideal state, the regulatory mechanism initiate counteracting influences and keep

them in force until the system has again reached its approximate ideal state. The

compensation power of these regulatory mechanisms is limited; they work only if the

external influences keep within a manageable range. Otherwise the system is usually

destroyed (though sometimes it may be 'catapulted' into a new dissipative state).

This is an abstract description. Why are open systems omnipresent in our world?

How have they evolved? This is different for natural and artificial systems. Natural

'living' systems have evolved in natural evolution, which is schematically described

by evolution theory with help of mainly these assumptions:5

(1979), cf. also Stegmüller (1969, ch. viii), Mihajlo (1989), Nagel (1977).
4 This system-theoretic notion of an "ideal state" is different from the notion of

"ideal state" used in physics. In physics, an ideal state is a counterfactual theore-
tical simplification assumption (cf. Rott 1991) which may be far away from the
real state. In system theory, ideal states must be constantly approximated in or-
der to survive. Cf. Wachbroit (1984, p. 587-9).

5 For evolution theory (founded by Darwin) cf. Kitcher (1985), Rydley (1993),
Maynard-Smith/Szathmáry (1995).
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E1) Natural systems come in larger populations. The individuals of a species

have a finite life cycle; and there is a mechanism of (genetic) reproduction.

E2) There is a mechanism of 'blind' variation (through mutation and recombi-

nation) of species (= kinds of systems).

E3) The environment is competitive, it selects the fittest specii, i.e. those with

highest reproduction rate. High reproduction rate is the ultimate ideal state of natural

systems (individual fitness, healthiness etc., are derived ideal states).

E4) In order to exert selective force on species, the natural environment must be

relatively stable (compared to the temporal rate of generation change).

 Biological evolution is only goal-directed (cf. Nagel 1977), not goal-intended,

since it is assumed that variation acts 'blindly', and is not the intentional result of

some super-creator (God). In contrast, artificial systems are constructed by

intentional (so far, human) beings. Their purpose, i.e. their ideal states, are defined by

their creator. Hence artificial systems are goal-intended (with respect to the crea-

tor's goals). But since human creators are fallibel, also the evolution of technical sys-

tems shares important features with natural evolution (Bigelow/Pargeter 1987, p.

185). Systems which are properly functioning are eliminated and replaced by better

ones; thus the creator takes over the role of the selector. There are two kinds of

technical systems. Non-automated systems (e.g., cars) form only together with its

(intelligent) user a self-regulatory system maintaining certain ideal states (purposes).

Automated systems are self-regulatory by themselves (except for energy supply

provided by the creator - at least so far). Finally, cultural evolution is a mixture of

natural evolution and creation. The regulatory mechanisms of humans and social

systems are of both non-intentional and intentional nature (in sociology one

distinguishes since Merton 1957 between 'latent' and 'manifest' purposes).

This description of open systems explains why their behaviour obeys normic laws

which imply high conditional statistical probabilities. Due to their regulatory mecha-

nisms, open systems are normally in certain states and perform certain functional

behaviour - their ideal or prototypical states or functions. Because of limited

compensatory power, dysfunctions may occur, whence normic laws are subject to
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various exceptions. Yet it must be the case that open systems are in their ideal states

in the high statistical majority of cases and times. For otherwise, they could not

survive in evolution and would die out. Birds, for instance, can normally fly. Of course

it is possible that due to an environmental catastrophe, all birds suddenly loose their

ability to fly. But then (with high probability), the species of birds will become extinct

after a short period of evolution. On similar reasons, human behave normally rational

in the sense of egoistic purpose-orientation, and governments normally try to keep

their countries economically intact; otherwise they will be overthrown or will loose

the next elections. Analogously, electric installations normally work, for they are

constructed in that way, and if this were not so, they could not survive in the

economic market. Also in the technical domain, a small probability of dysfunctions is

unavoidable. The dysfunction probability is here, at least partly, explainable and

controllable by the involved risks and utilities, economic  supplies and demands. For

example, while the computers at plane stations used for boarding often have a

breakdown, those in the plane used for flying almost never have one. Put into a

nutshell, prototypical normality and statistical normality are connected by the law

of evolutionary selection.

Thus system laws are normic laws. Generally, their behaviour is described by

three kinds of normic laws:

1) System-Organ-Laws: Systems of species Si have normally organs (sub-

systems) of kind Oi. For example, birds normally have wings. Formally Six Û Oix.

2) Organ-Function-Laws: Organs Oi normally perform (or, are able to perform)

function Fi. For example, animals with wings normally can fly. Formally Oix Û Fix.

3) System-Function-Laws: Systems of species Si normally perform (or, are able

to perform) function Fi. For example, birds normally can fly. Formally Six Û Fix.

Laws of kind 3) are derivable from laws of kinds 1, 2 in the calculus of

preferential entailment including negated conditionals (Delgrande 1988,

Lehmann/Magidor 1992, Schurz 1998), if we make the weak assumption 4: ¬(Oix

Û ¬Six), i.e. it is not the case that animals with wings are birds only in the

exceptional case. Then 2 and 4 imply 5: Six∧Oix Û Fix by Rational Monotony, and 5
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and 1 imply 3 by Cautious Cut.

The functions Fi are realizations of the regulatory mechanisms which keep the

system close to its ideal state, and the organs are the subsystems which perform

these regulations. Of course, there exist functional equivalents (cf. Hempel 1959):

the same regulatory mechanism (for instance, protection against the predator) can

be realized by different functions (e.g., hiding, fleeing, self defence), and the same

function (e.g., fleeing) can be realized by different organs (wings, long legs). System

and evolution theory thus do not explain why this particular species has these parti-

cular organs with these particular functions. This is largely dependent on the contin-

gent circumstances of evolution. If evolution takes place in another part of the uni-

verse, it will probably have produced species which are rather different than those

on earth. In contrast, natural laws like the law of gravitation will hold there just in the

same way as on our earth. Hence system laws are, unlike natural laws, not physi-

cally necessary, but involve a considerable portion of contingency.

Yet they also contain a considerable portion of physical necessity: if certain

contingent conditions of evolution are known or hypothetically assumed, then evo-

lution theory is able to predict the course of evolution. The quantitative models of

evolution theory explain why normic laws describe the final result of a period of

evolution. Assume, the genotype G of a certain phenotype P of a species S mutates

into a variant G* producing phenotype P* which has a small selective advantage in

the given constant environment. Then, completely independent from the initial statis-

tical frequencies of G, P and G*, P*, the quantitative evolution models predict that

after sufficiently many generations the population will be in an evolutionary equi-

librium (not thermodynamically, but with respect to frequencies) where almost all S-

members have phenotype P*, and even more have genotype G* (Rydley 1993, ch.

5). The reason why neither the P*- nor the G*-law is deterministic is simply that the

systems are open, subject to external influences, which may cause organic dys-

functions (alterations of P*) or even genetic dysfunctions (alterations of G*). Similar

hypothetical evolution models have been applied to cultural or technical evolution

(Kitcher 1985). The nomological, i.e. non-accidental, character of normic laws is
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also demonstrated by the fact that they support counterfactuals (Nagel 1977, p.

273). For example, "if this bird (or this animal with wings) would be hunted by a

predator, it would fly away". Or also: "if this unknown animal, hiding behind a bush,

would have wings, then it could fly". On the other hand, "if this cow would have

wings, it could fly" is wrong, since in the hypothetical situation (the revised belief set

where cows have wings) the normic law that cows have a heavy body structure is

preserved and implies that cows with wings cannot fly.

Since the detailed contingent circumstances of natural evolution are usually un-

known, system and evolution theory do not provide a complete explanation of the

normic laws describing the systems behaviour, but only an explanation schema (in

the sense of Kitcher 1981). They explain only why open systems have some ideal

states, and some organs with some functions performing the regulations necessary

for survival; hence why open systems are described by some normic laws. But this is

sufficient for our purpose - it is exactly the theoretical foundation we are after.

3. Ideal Normality Normally Implies Statistical Normality

In philosophy of science, some authors have doubted that biological normality in

the ideal sense implies statistical normality. Both Neander (1991) and Wachbroit

(1994) have argued as follows: it may always happen in evolution that, by an

epidemy or catastrophe, an organ O of a species S becomes dysfunctional, hence it

looses the function F for which it was selected. This argument gives me the opportu-

nity to sharpen my thesis. Of course, catastrophes may happen in evolution. Nor-

mally the species will die out in such a case. It may also happen that a small  fraction

of the species changes its habitat and survives - which is one way how new species

evolve. It may even be the case that the species which is extinguished by a catastro-

phe has existed just for a very short period of time, so that the prototypical  function

F of organ O had no chance to become the statistical majority among S-members.

But the point is: these catastrophic situations of radical change can never become

statistically dominant in evolution. For if they would become dominant, evolution
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could not take place. Note that I do not claim that continuing catastrophes are

physically impossible, but only, that given that evolution had taken place, they are

impossible. Evolution requires relatively stable environments (their temporal change

rate must be some decimal powers smaller than the temporal change rate of

generations). Otherwise environment cannot develop its selective power. On this

reason, the connection between ideal normality and statistical normality will hold for

most parts of evolution. It will normally hold. So, the connection between ideal and

statistical normality in evolution is itself not deterministic, but normic.

Let me explicate the exact meaning of my claim that ideal normality normally

implies statistical normality. Since I assume that normality always has a statistical

most-meaning, this claim reduces to a numerically unspecified iterative conditional

probability assertion. As soon as we allow predicates with more than one variable

in our language, conditional probability assertions may be iterated (cf. Bacchus 1990,

p. 91; Weydert 1997). For instance, we may say that most of the German cities are

such that most of their inhabitants have a car. Formally Gx Ûx (Iyx Ûy Cy); the

variable subindices at the arrow indicate which variables get bound by the conditio-

nal most-quantifier. In probabilistic terms, px( py(Cy/Iyx) = high) / Gx) = high. In

similar way, the normic connection between ideal and statistical normality is explica-

ted by the following iterative normic conditional:

(C) For most species S and time intervals t of natural evolution it holds that if

organ O of S-members contributes with function F to evolutionary fitness of S and

was selected for that reason, then most members of S will have organ O in t, and

most S-members having organ O will be able to perform function F.

A similar claim holds for the evolution of technical systems. Evolutionary fitness

is replaced here by the given purpose of the creator, who also figures as the selector.

We finally give an explanation why we are typically theoretically unable and/or

practically unwilling to specify the exact numerical probabilities corresponding to the

normic system laws, although we know that they are high. Theoretically we are

unable because these systems are open and thus described by nonlinear differential

equations. If the strength of external influences reaches the dysfunctional region



11
where the compensatory range of the system is exceeded - we call this the critical

range - then the nonlinear dynamics becomes effective and chaotic behaviour

results. This means that the point where a system starts to become dysfunctional will

be extremely sensitive on slight variations of external influences (given they are in

the critical range; cf. Schurz 1996). Thus, exact frequency numbers of dysfunc-

tioning systems in critical situations are not theoretically predictable. This chaotic

behaviour of systems in the critical range means practically that the frequency of

dysfunctional systems will be strongly influenced by various heterogeneous environ-

mental conditions. If we take random samples of dysfunctioning systems they will be

completely heterogeneous. On this reason it makes practically not much sense to

estimate the exact frequencies of normic laws by sampling procedures. Of course, it

may well make sense to estimate them in restricted and defined situations. For

example, biologists may be interested in the frequency of certain birds, e.g. pigeons,

which are unable to fly in a certain geographic regions, in order to infer something

about a certain disease. Or, engineers will be interested in the frequency of dys-

functioning refrigerators among refrigerators when coming out from their production

plant, while what happens with them afterwards will depend on contingent circum-

stances of their household. This is also the reason why I have suggested that in

noninfinitesimal probability semantics, the lower probability bounds of normic laws

will depend on the application context and thus should be specified by the user of a

nonmonotonic reasoning system instead of being predetermined by a system-in built

threshold value (Schurz 1997).
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