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ABSTRACT. The aim of this paper is twofold: (i) to introduce the framework of update

semantics and to explain what kind of phenomena may successfully be analysed in it; (ii) to

give a detailed analysis of one such phenomenon: default reasoning.
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1.  INTRODUCTION: THE FRAMEWORK OF UPDATE SEMANTICS

The standard definition of logical validity runs as follows: An argument is

valid if its premises cannot all be true without its conclusion being true as

well. Most logical theories developed so far have taken this definition of

validity as their starting point. Consequently, the heart of these theories

consists in a specification of truth conditions. The heart of the theories

developed in this paper does not consist in a specification of truth condi-

tions. The slogan ‘You know the meaning of a sentence if you know the

conditions under which it is true’ is replaced by this one: ‘You know the

meaning of a sentence if you know the change it brings about in the infor-

mation state of anyone who accepts the news conveyed by it’.1 Thus,

meaning becomes a dynamic notion: the meaning of a sentence is an

operation on information states.

To define an update semantics for a language L, one has to specify a

set Σ of relevant information states, and a function [  ] that assigns to each

sentence φ an operation [φ] on Σ. The resulting triple 〈

 

 

 

L

 

,

 

 

 

Σ

 

,

 

 

 

[

 

 

 

]

 

 

 

〉

 

 is called an

update system. If σ is a state and φ a sentence, we write ‘σ [φ]’ to denote

the result of updating σ with φ. Since [φ] is the function and σ the

argument, it would have been more in line with common practice to write

‘[ φ](σ)’, but postfix notation is more convenient for dealing with texts.

Now we can write ‘σ [ψ1]...[ψn]’ for the result of updating σ with the se-

quence of sentences ψ1,..., 

 

ψn.

An important notion is the notion of acceptance. Let σ be any state and

φ be any sentence. Consider the state σ [φ]. This state will in most cases

be different from σ, but every now and then it may happen that σ [φ]=σ.
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If so, the information conveyed by φ is already subsumed by σ. In such a

case we write σ |

 

|

 

−

 

 φ and we say that φ is accepted in σ.

1.1 Constraints that Do Not Aways Hold

The phrase ‘update semantics’ might be misleading in that it suggests that

all you have to do in order to update your information state with φ is to

add the informational content of φ to the information you already have.

DEFINITION 1.1.  An update system 〈 L, 

 

Σ, 

 

[ ] 〉 is additive iff there exists a

state 0, the minimal state, in Σ and a binary operation + on Σ such that

(i) the operation + has all the properties of a join operation:

0 + σ = σ;

σ + σ = σ;

σ + τ = τ + σ;

(ρ + σ) + τ = ρ + (σ + τ).

(ii) for every sentence φ and state σ, σ [φ] = σ 

 

+ 

 

0 

 

[φ].

Whenever (i) holds Σ is called an information lattice. If σ 

 

+ 

 

τ = 

 

τ , we will

write σ 

 

≤ 

 

τ, and say that τ is at least as strong as σ.

As long as one is dealing with phenomena that can be captured by a classi-

cal update system, the dynamic approach has nothing to offer over and

above the static approach. In such cases one can associate with every sen-

tence φ of L a static meaning — 0[φ], representing ‘the’ informational

content of φ — and define the dynamic meaning of φ in terms of it.

There are various constraints that must be fulfilled by an update

system for it to be additive. For one thing, σ 

 

[φ] should be defined for

every σ. The systems discussed in this paper have this property, but it is

not difficult to think of phenomena that cannot be covered in this way.

Take the case of a pronoun desperately looking for a referent:

‘He is just joking.’

If it is not clear to whom the speaker is referring, the hearer will not

know what to do with this statement. Or take the case of presupposition.

The framework of update semantics offers a natural explanation of this

notion:

φ presupposes ψ iff for every state σ, σ 

 

[φ] is defined only if σ |

 

|

 

−

 

 

 

ψ
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Clearly, this definition can only be instrumental in systems in which σ 

 

[φ]

is sometimes undefined.2

Another necessary condition for an update system to be additive is this:

Idempotence: For every state σ and sentence φ, σ 

 

[φ] 

 

|

 

|

 

−

 

 

 

φ.

At first sight this principle goes without saying. What would ‘updating

your state with φ’ mean if not at least ‘changing your state in such a man-

ner that you come to accept φ’? Still, there are sentences for which no

successful update exists. Here paradoxical sentences like ‘This sentence is

false’ are a case in point. As shown in Groeneveld[1994], the paradoxical-

ity of this sentence resides in the fact that every time you try to accom-

modate the information it conveys, you have to change your mind.

A third constraint worth looking at is the principle of Persistence:

Persistence: If σ 

 

|

 

|

 

−

 

 

 

φ and σ 

 

≤ 

 

τ, then τ 

 

|

 

|

 

−

 

 

 

φ .

The clearest examples of non-persistent sentences can be found among

sentences in which modal qualifications like ‘presumably’, ‘probably’,

‘must’, ‘may’ or ‘might’ occur. Consider for example the next two sequen-

ces. Processing the first does not cause any problems, but processing the

second does.

Somebody is knocking at the door... Maybe it's John... It's Mary.

Somebody is knocking at the door... Maybe it's John... It's Mary ... Maybe it's John

Explanation: it is quite normal for one's expectations to be overruled by

the facts — that is what is going on in the first sequence. But once you

know something, it is a bit silly to pretend that you still expect something

else, which is what is going on in the second.

One of the advantages of the dynamic approach is that these differ-

ences can be accounted for. The set-up enables us to deal with sequences

of sentences, whole texts. Let φ1 

 

= 

 

‘Somebody is knocking at the door’, φ2

= 

 

‘Maybe it's John’, and φ3 

 

= 

 

‘It's Mary’. If we want, we can compare σ
[φ1]  

 

[φ2] 

 

[φ3] with σ 

 

[φ1] 

 

[φ2] 

 

[φ3][φ2] for any state σ, and see if there are

any differences.

There are two more important constraints:
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Strengthening: σ 

 

≤ 

 

σ [φ]

Monotony: If σ 

 

≤ 

 

τ, then σ 

 

[φ] 

 

≤ 

 

τ 

 

[φ].

We will have more to say on these in due course. As for now, we note

PROPOSITION 1.2. An update system 〈 L, Σ, [ ] 〉 is additive iff (i) Σ is an

update lattice on which [  ] is total, and (ii) the principles of Idempotence,

Persistence, Monotony and Strengthening hold.

1.2. Notions of validity

Various notions of logical validity suggest themselves. The notion that will

concern us most is this:

 • An argument is valid1 iff updating the minimal state 0 with the

premises ψ1,..., 

 

ψn in that order, yields an information state in which

the conclusion φ is accepted. Formally:

ψ1,..., 

 

ψn 

 

|

 

|

 

−

 

1 

 

φ iff 0 

 

[ψ1]...[ψn] 

 

|

 

|

 

−

 

 

 

φ.

A more general notion of validity is this one:

 • An argument is valid2 iff updating any information state σ with the

premises ψ1,..., 

 

ψn in that order, yields an information state in which

the conclusion φ is accepted. Formally:

ψ1,..., 

 

ψn 

 

|

 

|

 

−

 

2 

 

φ iff for every σ, σ 

 

[ψ1]...[ψn] 

 

|

 

|

 

−

 

 

 

φ .

And the next notion is closest to the classical one:

 • An argument is valid3 iff one cannot accept all its premises without

having to accept the conclusion as well. More formally:

ψ1,..., 

 

ψn 

 

|

 

|

 

−

 

3 

 

φ iff σ 

 

|

 

|

 

−

 

 

 

φ for every σ such that σ 

 

|

 

|

 

−

 

 

 

ψ1,..., σ 

 

|

 

|

 

−

 

 

 

ψn.

PROPOSITION 1.3.  In every additive update system the following holds:

ψ1,..., 

 

ψn 

 

|

 

|

 

−

 

1 

 

φ iff ψ1,..., 

 

ψn 

 

|

 

|

 

−

 

2 

 

φ iff ψ1,..., 

 

ψn 

 

|

 

|

 

−

 

3 

 

φ .

In general the three notions do not coincide. Notice that validity3 is

monotonic: If an argument with premises ψ1,..., 

 

ψn and conclusion φ is

valid3, then it remains valid3 if you add more premises to ψ1,..., 

 

ψn.

Validity2 is at least left monotonic:

If ψ1,..., 

 

ψn 

 

|

 

|

 

−

 

2 

 

φ, then χ, 

 

ψ1,..., 

 

ψn 

 

|

 

|

 

−

 

2 

 

φ .
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Validity1 is neither right nor left monotonic. But it is easy to verify that

this notion conforms to the following principle of Sequential Monotony:

If ψ1,..., 

 

ψn 

 

|

 

|

 

−

 

1 

 

φ and ψ1,..., 

 

ψn, 

 

θ1,..., 

 

θk 

 

|

 

|

 

−

 

1 

 

χ, then ψ1,...,ψn, 

 

φ , 

 

θ1,..., 

 

θk 

 

|

 

|

 

−

 

1 

 

χ.

Moreover, validity1 complies with the following version of the principle

of Cut Elimination, which we shall call Sequential Cut:

If ψ1,..., 

 

ψn 

 

|

 

|

 

−

 

1 

 

φ and ψ1,..., 

 

ψn, 

 

φ , 

 

θ1,..., 

 

θk 

 

|

 

|

 

−

 

1 

 

χ, then ψ1,...,ψn, 

 

θ1,..., 

 

θk 

 

|

 

|

 

−

 

1 

 

χ.

Given the principle of Idempotence, validity1 is Reflexive.

ψ1,..., 

 

ψn, 

 

φ  

 

|

 

|

 

−

 

1 

 

φ .

Sequential Monotony, Sequential Cut, and Reflexivity completely

characterise the structural properties of the notion of validity1 in update

systems in which the principle of Idempotence holds. (See van

Benthem[1991] for a way to prove this.)

1.3 Overview

In the next section a simple nonadditive update system is discussed. It mo-

dels the dynamics of the epistemic possibility operator ‘might’. In addition

some further terminology will be introduced. In particular, a distinction is

made between additive propositional updates and non-classical tests.

In §3 a slightly more complex system is studied, covering the interplay

between rules of the form ‘Normally it is the case that...’ and the expec-

tations they give rise to, which are expressed by sentences of the form

‘Presumably it is the case that...’. It will appear that rules are classical,

just like ordinary descriptive sentences, although the kind of updates they

give rise to are not propositional.

§ 

 

4 is the heart of the paper. There the system developed in §3 is ex-

tended with restricted rules, i.e. sentences of the form ‘If..., it is normally

the case that...’. I will show that the logical behaviour of these sentences

can be explained by a simple coherence constraint which determines when

a rule is acceptable, supplemented with an applicability criterion which

explains why a rule is sometimes overruled by other rules.
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Finally, in §5, we will see that the system developed in §4 is suffi-

ciently rich to deal with most of the examples that are used as bench–mark

problems in the literature.

Here are some examples to indicate the end result: Within the system de-

veloped in §4 and §5 the following argument form turns out to be valid1:

premise 1: P's normally are R

premise 2: x is P

conclusion: Presumably, x is R

This argument remains valid1 if one learns more about the object x, pro-

vided there is no evidence that the new information is relevant to the con-

clusion. So in the next case the inference still goes through.

premise 1: P's normally are R

premise 2: x is P

premise 3: x is Q

conclusion: Presumably, x is R

However, if on top of the premises 1, 2, and 3 the rule ‘Q's normally are

not R’ is adopted, the argument is not valid1 any more. If all one knows is

premise 1: Q's normally are not R

premise 2: P's normally are R

premise 3: x is P

premise 4: x is Q

then it remains open whether one can presume that x is R. Clearly, the

object x must be an exception to one of the rules, but there is no reason to

expect it to be an exception to the one rule rather than to the other.

Adding further default rules may make the balance tip. If, for instance,

we add ‘Q's normally are P’ as a premise, we get the following valid1 ar-

gument:
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premise 1: Q's normally are P

premise 2: Q's normally are not R

premise 3: P's normally are R

premise 4: x is P

premise 5: x is Q

conclusion: Presumably, x is not R

In the presence of the principle ‘Q's normally are P’ the principle ‘Q's

normally are not R’ takes precedence over the principle ‘P's normally are

R’. (If a concrete example is wanted, read ‘x is P’ as ‘x is adult’, ‘x is Q’

as ‘x is a student’ and ‘x is R’ as ‘x is employed’).

None of the arguments above is valid2 or valid3. Both the definition of

validity2 and the definition of validity3 contain a quantification over the

set of states. Hence, in checking the validity2 or validity3 of an argument,

one must reckon with the possibility that more is known than is stated in

the premises. Conclusions drawn from default rules, however, are typical-

ly drawn ‘ in the absence of any information to the contrary’; they may

have to be withdrawn in the light of new information. Therefore, in eva-

luating a default argument it is important to know exactly which informa-

tion is available. That is why I will concentrate on the notion of validity1.

The dynamic set up and the notion of validity1 that comes with it are

the main features setting the theory developed in this paper apart from

other default theories. Another difference between this theory and other

theories is this: The fact that a conclusion has been drawn by default is

made visible in the object language. It is not valid1 to infer from ‘P's

normally are R’ and ‘x is P’ that x is R; only that this is presumably so.

Sentences starting with ‘presumably’ are non–persistent, so this qualifica-

tion makes explicit the fact that the conclusion is defeasible. In other the-

ories, a conclusion which is drawn by default inference is not marked; it is

only at the meta–level that a defeasible conclusion gets a special status.

Finally, the research that led to this paper started off from the idea

that questions of priority, which are likely to arise in the case of conflict-

ing defaults should be decided at the level of semantics. Take the fact that

the rule ‘Q's normally are not R’ can override the rule ‘P's normally are

R’ in the presence of the rule ‘Q's normally are P’. (See the last example

above). This is enforced by what these rules mean. It is not something to
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be stipulated over and above the semantics — as most theories would have

it — but something to be explained by it.

2.  A FIRST EXAMPLE: MIGHT

DEFINITION 2.1.  Let A be a set consisting of finitely many atomic senten-

ces. With A we associate two languages, LA
0 and LA

1. Both have A as their

non-logical vocabulary. LA0 has as its logical vocabulary one unary opera-

tor ¬, two binary operators ∧ and ∨, and two parentheses ) and (. The

sentences of LA0 are just the ones one would expect for a language with

such a vocabulary. LA
1 has in its logical vocabulary one additional unary

operator might. A string φ of symbols is a sentence of LA
1 iff there is some

sentence ψ of LA
0 such that either φ 

 

= 

 

ψ or φ 

 

= might 

 

ψ.

Below, ‘p’, ‘q’, ‘r’, etc. are used as metavariables for atomic sentences.

Different such metavariables refer to different atomic sentences. The

symbols ‘φ’ , ‘ψ’ , and ‘χ’  are used as metavariables for arbitrary sentences.

The idea behind the analysis of ‘might’ is this: One has to agree to might 

 

φ
if φ is consistent with ones knowledge — or rather with what one takes to

be ones knowledge. Otherwise might 

 

φ is to be rejected.

In order to fix this idea into a mathematical model we need a way to

represent an agent's knowledge. Below, a knowledge state3 σ is given by a

set of subsets of A. Intuitively, a subset w of A — or a possible world as

we shall call it — will be an element of σ if, for all the agent in state σ
knows, w might give a correct picture of the facts — given the agent's in-

formation, the possibility is not excluded that the atomic sentences in w

are all true and the other false.

The powerset of A determines the space of a priori possibilities: if the

agent happens to know nothing at all, any subset of A might picture reality

correctly. As the agent's knowledge increases σ shrinks, until σ consists of

a single subset of A. Then the agent's knowledge is complete. Thus,

growth of knowledge is understood as a process of elimination.

DEFINITION 2.2.  Let W be the powerset of the set A of atomic sentences.

(i) σ is an information state iff σ 

 

⊆ 

 

W;

(ii) 0, the minimal state, is the information state given by W;

1, the absurd state, is the information state given by the empty set;
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(iii) For every two states σ andτ, σ + 

 

τ = 

 

σ 

 

∩ 

 

τ.

 Note that σ ≤ 

 

τ iff τ 

 

⊆ 

 

σ.

The notion of information state is language dependent: different sets of

atomic sentences give rise to different sets of possible information states.

The definition obscures this. It would be more accurate to speak of A-in-

formation states, and of the A-minimal state. I will occasionally use the

latter terminology, in particular when we are ready to prove that in mat-

ters of logic it is not important to know exactly which language is at stake.

DEFINITION 2.3.  Let A be given. For every sentence φ of LA
1 and state σ,

σ 

 

[φ] is determined as follows:

atoms: σ 

 

[p] = σ 

 

∩ 

 

{ w 

 

∈W 

 

 

 

| 

 

 

 

p 

 

∈w}

¬: σ 

 

[¬φ] = σ 

 

~ σ 

 

[φ]

∧: σ 

 

[φ 

 

∧ 

 

ψ] = σ 

 

[φ] 

 

∩ 

 

σ 

 

[ψ]

∨: σ 

 

[φ 

 

∨ 

 

ψ] = σ 

 

[φ] 

 

∪ 

 

σ 

 

[ψ]

might: σ 

 

[might 

 

φ] 

 

= 

 

σ  if σ 

 

[φ] 

 

≠ 

 

1

σ 

 

[might 

 

φ] 

 

= 

 

1  if σ 

 

[φ] 

 

= 

 

1

The update clauses tell for each sentence φ and each state σ how σ changes

when somebody in state σ accepts φ. If σ 

 

[φ] 

 

≠ 

 

1, φ is acceptable in σ. If

σ  

 

[φ] 

 

= 

 

1, φ is not acceptable in σ and if σ 

 

[φ] 

 

= 

 

σ, φ is accepted in σ.

These notions are normative rather than descriptive: If σ 

 

[φ] 

 

= 

 

1, an agent

in state σ should not accept φ. And if σ 

 

[φ] 

 

= 

 

σ, an agent in state σ has to

accept φ. An agent who refuses to do so is willingly or unwillingly

breaking the conventions that govern the use of ¬, ∧, ∨, might, etc.

It is also important to keep in mind that these notions have little or no-

thing to do with the notions of truth and falsity. It is very well possible

that σ 

 

[p] 

 

= 

 

1, whereas in fact p is true or that σ 

 

[p] 

 

= 

 

σ, whereas in fact p is

false. Suppose that p is in fact true, and that σ 

 

[p] 

 

= 

 

1. Given the terminol-

ogy introduced above, p is not acceptable for an agent in state σ. Does this

mean that an agent in state σ must refuse to accept p, even when he or she

is confronted with the facts? Of course not. The sentence p is not accept-

able in state σ. So, the agent should revise σ in such a manner that p be-

comes acceptable. In definition 2.3 we are not dealing with revision: The

update clauses do not tell for any sentence φ how a state σ in which φ is
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not acceptable must be revised so that φ can be accepted in the result.

They stop at the point where it is clear that an inconsistency would arise if

the information contained in φ would be incorporated in σ itself.

Note that for every sentence φ, 1 

 

[φ] 

 

= 

 

1. So, in the absurd state every

sentence is accepted, but no sentence is acceptable. This explains how it

can be that although we are not dealing with revision, the principle of

Idempotence still goes through: Even if a sentence φ is not acceptable in σ
— even if you should not accept φ — the result of updating σ with φ is an

information state in which φ is accepted.

Although we are not dealing with belief revision, it may very well

happen that a sentence is accepted at one stage, and rejected later. Revision

is not the only possible source of non-persistence; testing is another. Here,

sentences of the form might 

 

φ provide an example. As the definition says,

all you can do when told that it might be the case that φ is to agree or to

disagree. If φ is acceptable in your information state σ, you must accept

might 

 

φ. And if φ is not acceptable in σ, neither is might 

 

φ. Clearly, then,

sentences of the form might 

 

φ provide an invitation to perform a test on σ
rather than to incorporate some new information in it. And the outcome

of this test can be positive at first and negative later. In the minimal state

you have to accept ‘It might be raining’, but as soon as you learn that it is

not raining ‘It might be raining’ has to be rejected.

DEFINITION 2.4.  A sequence of sentences ψ1,..., 

 

ψn 

 

is consistent iff there

is an information state σ such that σ 

 

[ψ1]...[ψn]≠ 

 

1.

Again, since the set of information states varies with the non-logical vo-

cabulary of the language in which ψ1,..., 

 

ψn have been formulated, it

would have been more accurate to speak of A-consistency. The next

lemma and proposition show, however, that this prefix A can be omitted.

LEMMA  2.5.  Let A ⊆ 

 

A'.  With each A-state σ we associate an A'-state

σ*  

 

= 

 

{ w 

 

⊆ 

 

A '  

 

| 

 

w 

 

∩ 

 

A 

 

∈ 

 

σ}. With each A'-state σ we associate an A-state

σ  

 

= 

 

{ w 

 

⊆ 

 

A 

 

| 

 

w 

 

= 

 

v 

 

∩ 

 

A for some v 

 

∈ 

 

σ}.

Now, for every φ of LA
1 the following holds:

(i) if σ is an A-state, then σ 

 

[φ]*  

 

= 

 

σ*  

 

[φ];

(ii) if σ, τ are A-states and σ 

 

≠ 

 

τ, then σ*  

 

≠ 

 

τ*;

(iii) if σ is an A'-state, then σ 

 

[φ]˚ 

 

= 

 

σ˚ 

 

[φ];
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(iv) if σ is an A'-state, and σ 

 

[φ] 

 

≠ 

 

σ, then σ˚ 

 

[φ] 

 

≠ 

 

σ˚.

PROPOSITION 2.6.  Let p1,..., 

 

pk be the atomic sentences occurring in

ψ1,..., 

 

ψn, φ. Suppose that {p1,..., 

 

pk}  

 

⊆ 

 

A and {p1,..., 

 

pk}  

 

⊆ 

 

A ' .

(i) The argument ψ1,..., 

 

ψn 

 

/ 

 

φ is A-valid1 iff it is A'-valid 1;

(ii) ψ1;...; 

 

ψn is A-consistent iff ψ1;...; 

 

ψn is A'-consistent.

Suppose p1,..., 

 

pk are the atoms in the argument ψ1,..., 

 

ψn 

 

/ 

 

φ. Given

proposition 2.6, we may rest assured that the answer to the question

whether ψ1,..., 

 

ψn 

 

/ 

 

φ is valid is language independent, as it should be. Ac-

tually, in looking for the answer to this question we can always restrict

ourselves to looking at the set of states generated by A 

 

= 

 

{p 1,..., 

 

pk}. Since

there are only finitely many of these, the logic is decidable.

Henceforth I will omit the subscript ‘1’ in ‘validity 1’  and ‘ |

 

|

 

−

 

1’. The next

examples illustrate some of the points made in the preceding section.

EXAMPLES 2.7

(i) might 

 

¬p 

 

, p is consistent;

p 

 

, might 

 

¬p is not consistent.

(ii) Right-monotonicity fails: might 

 

¬p 

 

|

 

|

 

−

 

 

 

might 

 

¬p, but it is not the case

that might 

 

¬p, 

 

p 

 

|

 

|

 

−

 

 

 

might 

 

¬p;

(iii) Left-monotonicity fails, too: |

 

|

 

−

 

 

 

might 

 

p, but it is not the case that

¬p 

 

|

 

|

 

−

 

 

 

might 

 

p.

A systematic study of the logical behaviour of might will have to be left to

another occasion. What follows are some preliminary observations, which

will play a role in the next sections.

LEMMA  2.8.  Let σ and τ be information states and φ a sentence of LA1.

(i) σ 

 

≤ 

 

σ 

 

[φ];

(ii) σ 

 

[φ][φ] 

 

= 

 

σ 

 

[φ];

(iii) if σ 

 

≤ 

 

τ, then σ 

 

[φ] 

 

≤ 

 

τ 

 

[φ];

(iv) if φ a sentence of LA0, the following holds:

if σ 

 

≤ 

 

τ and σ 

 

|

 

|

 

−

 

 

 

φ, then τ 

 

|

 

|

 

−

 

 

 

φ .

The principles of Strengthening, Idempotence, Monotony and Persistence

hold in 〈 

 

LA
0, 

 

Σ, 

 

[ 

 

] 

 

〉. Hence, the system 〈 LA
0, 

 

Σ, 

 

[ ] 

 

〉 is additive: we can asso-

ciate with every sentence φ of LA
0 a static meaning, 0 

 

[φ]. Updating any
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state σ with φ boils down to taking the intersection of σ and 0 

 

[φ]. In the

following, whenever we are dealing with a sentence φ of LA
0, I will refer

to 0 

 

[φ] as the proposition expressed by φ, and write |

 

|

 

 

 

φ |

 

|

 

 instead of 0 

 

[φ] .
What would be the starting point in a static set up, can now be proved:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

|

 

|

 

 p 

 

|

 

|

 

  = {w∈ 

 

W | p 

 

∈ 

 

w}

|

 

|

 

 

 

¬φ 

 

|

 

|

 

 

 

 = W 

 

~ |

 

|

 

 

 

φ  

 

|

 

|

 

|

 

|

 

 

 

φ  

 

∧ 

 

ψ 

 

|

 

|

 

  = |

 

|

 

 

 

φ  

 

|

 

|

 

 

 

∩ 

 

|

 

|

 

 

 

ψ 

 

|

 

|

 

|

 

|

 

 

 

φ  

 

∨ 

 

ψ 

 

|

 

|

 

  = |

 

|

 

 

 

φ  

 

|

 

|

 

 

 

∪ 

 

|

 

|

 

 

 

ψ 

 

|

 

|

 

Given this, it will come as no surprise that for sentences of LA
0 we have

that ψ1,..., 

 

ψn 

 

|

 

|

 

−

 

 

 

φ iff the argument ψ1,..., 

 

ψn 

 

/ φ is valid in classical logic

The system 〈 

 

LA
1 , 

 

Σ, 

 

[ ] 

 

〉 is not additive. Sentences of the form might 

 

φ
are not persistent; they do not express a proposition; their informational

content is not context independent. If you learn a sentence φ of LA
0, you

learn that the real world is one of the worlds in which the proposition

expressed by φ holds: the real world is a φ-world. But it would be

nonsense to speak of the ‘

 

might 

 

φ-worlds’. If φ might be true, this is not a

property of the world but of your knowledge of the world.

3.  RULES WITH EXCEPTIONS

In the previous section we studied a simple update process. The only in-

formation an agent could acquire was information about the actual facts.

In this section we are interested in a slightly more complex process: Not

only will the agents be able to learn which propositions in fact hold, but

also which propositions normally hold. On top of that, they will be able to

decide whether — in view of the information at hand — a given proposi-

tion presumably holds.

DEFINITION 3.1.  Let A and LA
0 be as in § 2. The language LA

2 has A as its

non-logical vocabulary, and in its logical vocabulary two additional unary

operators: normally, and presumably. A string of symbols φ is a sentence

of LA
2 iff there is a sentence ψ of LA

0 such that either φ 

 

= 

 

ψ, or φ 

 

=
normally 

 

ψ, or φ 

 

= 

 

presumably 

 

ψ.

Below, sentences of the form normally 

 

φ will be called (default) rules. To

describe their impact on an agent's state of mind, we must give more

structure to an information state than we did in the previous section. We
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want to capture two things: an agent's knowledge and an agent's expecta-

tions. And we want to do so in such a way that we can describe how an

agent's expectations are adjusted as his or her knowledge increases. One

way to do this is to think of a state σ as a pair 〈ε 

 

, 

 

s〉. Here s is a subset of

the set of possible worlds, playing much the same role as it did in the pre-

vious section; it represents the agent's knowledge of the facts. The set ε
represents the agent's knowledge of the rules.

DEFINITION 3.2.  Let W be as before. Then ε is an (expectation) pattern

on W iff ε is a reflexive and transitive relation on W.

The relation ε encodes the rules the agent is acquainted with. It does so in

the following manner. Let P be the set of all propositions that a certain

agent considers to be normally the case. Then 〈w 

 

,v〉 is an element of this

agent's expectation pattern ε if every proposition in P that holds in v also

holds in w. In other words, w conforms to all the rules in P that v con-

forms to, and perhaps to more.

Instead of ‘〈w, 

 

v〉 

 

∈ 

 

ε’, we often write ‘w 

 

≤ε 

 

v’.  If both v 

 

≤ε 

 

w and

w ≤ε 

 

v, we write ‘v 

 

≅ε 

 

w’. Clearly, ≅ε is an equivalence relation. If v 

 

≤ε 

 

w

but not w 

 

≤ε 

 

v, we write ‘v 

 

<ε 

 

w’  and say that v is less exceptional than w.

DEFINITION 3.3. Let ε be a pattern on W;

(i) w is a normal world in ε iff  w 

 

∈ 

 

W and w ≤ε 

 

v for every v 

 

∈ 

 

W;

(ii) nε is the set of all normal worlds in ε;

(iii) ε is coherent iff nε 

 

≠ 

 

∅.

Again, let P be the set of all propositions that a certain agent considers to

be normally the case. Assume that ∅ 

 

∉P. (For a rule normally 

 

φ to be ac-

ceptable it is a necessary condition that the proposition expressed by φ
holds at least in one world.) Given this, clause (iii) says that a pattern ε is

coherent iff there is at least one possible world in which all the propo-

sitions in P hold. It seems reasonable to require that patterns be coherent

in this sense. If it is not even conceivable that everything is normal,

something is wrong. This does not mean, of course, that everything must

in fact be normal, or that one must in all circumstances expect everything

to be normal. It would not be very realistic to expect things to be more

normal than the data leave room for.
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Every now and then it is helpful to picture a state. The figure below

pictures a state σ 

 

= 

 

〈ε 

 

, 

 

s〉 pertaining to a language with three atoms.

2

3
1 4

5
0

6
7

If two worlds belong to the same ≅ε -equivalence class, they are placed

within the same circle or oval. So, the ≅ε -equivalence classes are {w1},

{ w2}, { w3}, { w4}, { w0, w5}, and {w6, w7}. If wi 

 

<ε 

 

wj, the diagram con-

tains a rightward path from the ≅ε-equivalence class to which wi belongs

to the ≅ε -equivalence class to which wj belongs. We have for example that

w0 

 

<ε 

 

w3, while it is neither the case that w2 

 

≤ε 

 

w3, nor that w3 

 

≤ε 

 

w2. The

worlds constituting s are placed in an area with dashed borders; s 

 

=
{ w3, 

 

w4, 

 

w6}. The normal worlds, w5 and w0, do not belong to s. So, an

agent who is in state σ knows that the actual world is not normal. Among

the worlds that might be the actual world the worlds w3 and w6 take a

special place: they are optimal in the sense of the next definition.

DEFINITION 3.4.  Let ε be a pattern on W, and s 

 

⊆ 

 

W.

(i)  w is optimal in 〈ε 

 

, 

 

s〉 iff w 

 

∈ 

 

s and there is no v∈ 

 

s such that v 

 

<ε 

 

w;

(ii) m〈ε, 

 

s〉 is the set of all optimal worlds in 〈ε, 

 

s〉.

Default rules are of crucial importance when some decision must be made

in circumstances where the facts of the matter are only partly known. In

such a case one must reckon with several possibilities: for all an agent in

state 〈ε 

 

, 

 

s〉 knows, each element of s might give a correct picture of the

facts. Defaults serve to narrow down this range of possibilities: some ele-

ments of s are more normal than other. An agent in state 〈ε 

 

, 

 

s〉 will assume

that the actual world conforms to as many standards of normality as

possible; presumably, it is one of the optimal worlds. Worlds that are less

than optimal become important when expectations have to be adjusted. As

ones knowledge increases s shrinks, and the worlds that were optimal in s

may disappear from s, and other worlds will become optimal.

DEFINITION 3.5.  Let ε and ε' be patterns on 

 

W, and e 

 

⊆ 

 

W.

(i) ε' is a refinement of ε iff ε'  

 

⊆ 

 

ε 

 

;
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(ii)  ε 

 

••   

  

e 

 

= 

 

{ 〈v, 

 

w〉 

 

∈ 

 

ε 

 

| if w∈ 

 

e, then v 

 

∈ 

 

e}; ε 

 

•• 

 

e is the refinement of ε with

the proposition e.

The refinement operation •• is put to work when a new rule is learnt. Think

of it as follows: Suppose 〈v, 

 

w〉 

 

∈ 

 

ε. Then every rule which holds in w, also

holds in v — at least in so far as the rules encoded in ε are concerned.

Now a new rule comes in: normally 

 

φ. Two possibilities obtain:

(i) nε 

 

∩ 

 

|

 

|

 

 

 

φ  

 

|

 

|

 

  

 

≠ 

 

∅. There are normal worlds in which |

 

|

 

 

 

φ  

 

|

 

|

 

 

 

holds. Hence,

the new rule is compatible with the rules encoded in ε; it is acceptable. If

it is accepted, the new pattern will become ε 

 

•• 

 

|

 

|

 

 

 

φ  

 

|

 

|

 

. That is, if w 

 

∈ 

 

|

 

|

 

 

 

φ  

 

|

 

|

 

 but

v 

 

∉ 

 

|

 

|

 

 

 

φ  

 

|

 

|

 

, the pair 〈v, 

 

w〉 has to be removed from ε. Given the new rule, it is

no longer the case that v conforms to every rule that w conforms to.

(ii) nε 

 

∩ 

 

|

 

|

 

 

 

φ  

 

|

 

|

 

 

 

= 

 

∅. In this case the new rule is incompatible with the

rules encoded in ε. Therefore it is not acceptable.

PROPOSITION 3.6.

(i) (ε 

 

•• 

 

∅) 

 

 

 

= 

 

 

 

ε
(ε 

 

•• 

 

W) 

 

 

 

=  

 

ε
(ii) (ε 

 

•• 

 

e) 

 

•• e 

 

 

 

=  

 

ε 

 

•• 

 

e

(iii) If ε is a refinement of ε',  and ε 

 

' ••  

 

e 

 

= 

 

ε,’ then ε 

 

•• 

 

e 

 

= 

 

ε
(iv) If ε is a refinement of ε',  then ε 

 

•• 

 

e is a refinement of ε 

 

' ••  

 

e.

Clauses (ii), (iii), and (iv) of this proposition are the basis for the proof

that rules are idempotent, persistent and monotonous.

Let ε be a pattern. A proposition e 

 

⊆ 

 

W is said to be a default in ε iff

e 

 

≠ 

 

∅ and (ε 

 

•• 

 

e) 

 

= 

 

ε. The next proposition shows that this terminology fits

in well with the explanation of the notion of a pattern given above.

PROPOSITION 3.7.  Let ε be a pattern on W. Then for every v, 

 

w ∈ 

 

W,

w 

 

≤ε 

 

v iff  w 

 

∈ 

 

e for every default e in ε such that v 

 

∈ 

 

e.

I have not yet officially stated what an information state is.

DEFINITION 3.8.  Let W be as before.

(i) σ is an information state iff σ 

 

= 

 

〈ε, s〉 and one of the following con-

ditions is fulfilled:

(a) ε is a coherent pattern on W and s is a non empty subset of W;

(b) ε 

 

= 

 

{ 〈w, 

 

w〉 

 

| 

 

w∈ 

 

W}  and s 

 

= 

 

∅;
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(ii) 0, the minimal state, is the state given by 〈WxW 

 

, 

 

W 

 

〉;

1, the absurd state, is the state given by 〈{ 〈w, 

 

w〉 

 

| 

 

w∈ 

 

W},  

 

∅〉.
(iii) Let σ 

 

= 

 

〈ε, s〉 and σ'=  

 

〈ε',  

 

s' 〉 be states.
σ 

 

+ 

 

σ'  

 

= 

 

〈ε 

 

∩ 

 

ε',  s 

 

∩ 

 

s' 〉, if 〈ε 

 

∩ 

 

ε',  s 

 

∩ 

 

s' 〉 is coherent;
σ 

 

+ 

 

σ'  

 

= 

 

1, otherwise.

Note that 〈ε 

 

, s〉 

 

≤ 

 

〈ε',  

 

s' 〉 iff s 

 

' ⊆ 

 

s and ε 

 

' ⊆ 

 

ε..

In the minimal state 0 no defaults are known: all worlds are equally

normal.

There exist many pairs 〈ε, s〉, with the property that ε is incoherent, or s

= 

 

∅. Only one of these, the absurd state 1, has acquired official status as an

information state — the idea being that the other incongruous states, being

no less absurd, can be identified with 1.

DEFINITION 3.9.  Let σ 

 

= 

 

〈ε 

 

, 

 

s〉 be an information state. For every sentence

φ of LA
2, σ 

 

[φ] is determined as follows:

• 

 

if φ is a sentence of LA
0, then

• if s 

 

∩ 

 

|

 

|

 

 

 

φ  

 

|

 

|

 

 

 

= 

 

∅, σ 

 

[φ] 

 

= 

 

1;

• otherwise, σ 

 

[φ] 

 

= 

 

〈ε, s 

 

∩ 

 

|

 

|

 

 

 

φ  

 

|

 

|

 

〉.

• if φ = normally 

 

ψ, then

• if nε 

 

∩ 

 

|

 

|

 

 

 

ψ 

 

|

 

|

 

 

 

= 

 

∅ 

 

, σ 

 

[φ] 

 

= 

 

1;

• otherwise, σ 

 

[φ] 

 

= 

 

〈ε 

 

•• 

 

|

 

|

 

 

 

ψ 

 

|

 

|

 

, s〉.

• if φ = presumably ψ, then

• if mσ 

 

∩ 

 

|

 

|

 

 

 

ψ 

 

|

 

|

 

 

 

= 

 

mσ , σ 

 

[φ] 

 

= 

 

σ;

• otherwise, σ 

 

[φ] 

 

= 

 

1.

The rule for presumably 

 

φ resembles the one for might 

 

φ in being an invi-

tation to perform a test: If the proposition expressed by φ holds in all op-

timal worlds of σ, the sentence presumably 

 

φ must be accepted. Other-

wise, presumably 

 

φ is not acceptable — not acceptable in σ, that is.

A sentence of the form presumably 

 

φ is not meant to convey new in-

formation. By asserting presumably 

 

φ, a speaker makes a kind of com-

ment: ‘Given the defaults and the facts that I am acquainted with it is to be

expected that φ’. The addressee is supposed to determine whether on the

basis of his or her own information φ is to be expected, too. If not so, a

discussion will arise: ‘Why do you think φ is to be expected?’ the addres-

see will ask, and in the ensuing exchange of information both the speaker
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and the addressee may learn some new defaults or facts, so that in the end

both will expect the same. (Admittedly, this is a somewhat idyllic picture).

EXAMPLES 3.10

(i) 0 

 

[normally 

 

p] 

 

[¬p] 

 

≠ 

 

1

0 

 

[normally 

 

p] 

 

[normally 

 

¬p] 

 

= 

 

1

(ii) normally 

 

p  

 

|

 

|

 

−

 

 

 

 

 

presumably 

 

p

normally 

 

p, 

 

¬p  

 

|

 

|

 

−

 

/ presumably 

 

p

normally 

 

p, 

 

¬p  

 

|

 

|

 

−

 

 

 

 

 

normally 

 

p

(iii) normally 

 

p, 

 

q  

 

|

 

|

 

−

 

 

 

 

 

presumably 

 

p

normally 

 

p, 

 

q, 

 

¬p  

 

|

 

|

 

−

 

/  presumably 

 

p

(iv) normally 

 

p, 

 

normally 

 

q  

 

|

 

|

 

−

 

 

 

 

 

presumably 

 

p

 normally 

 

p, 

 

normally 

 

q, 

 

¬p  

 

|

 

|

 

−

 

/ presumably 

 

p

 normally 

 

p, 

 

normally 

 

q, 

 

¬p  

 

|

 

|

 

−

 

 

 

 

 

presumably 

 

q

(v) normally 

 

p, 

 

normally 

 

q, 

 

¬(p 

 

∧ 

 

q)  

 

|

 

|

 

−

 

/ 

 

presumably 

 

p

 normally 

 

p, 

 

normally 

 

q, 

 

¬(p 

 

∧ 

 

q)  

 

|

 

|

 

−

 

/ presumably 

 

q

The examples illustrate some important characteristics of the system. The

first example under (i) shows that rules can have exceptions: An agent

may first learn normally 

 

p — ‘normally it rains’ — and then discover that

in fact it isn't raining. However, once an agent has accepted that it nor-

mally rains, the opposite rule ‘Normally it does not rain’ is unacceptable.

The states pertaining to the examples mentioned under (ii), (iii), (iv)

and (v) are pictured below. W 

 

= 

 

{ w0, 

 

w1, 

 

w2, 

 

w3}, where w0 

 

= 

 

∅, w1 

 

= 

 

{p},

w2 

 

= 

 

{q}, and w3 

 

= 

 

{p,q} . The first two examples mentioned under (ii)

show that sentences of the form presumably 

 

φ are not persistent. If it is a

rule that it normally rains, and if that is all you know, you may presume

that it is raining now. But once you know that in fact it is not raining, it is

silly to go on presuming that it is. Note that this does not mean you have

to give up the rule in question. Today's weather may be exceptional,

tomorrow's presumably will be normal again.4 Even though the con-

sequences one can draw from a rule are not persistent, the rule itself is5.
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¬(p∧q)

03
2

1

normally q

2
0

3
1

¬p
3
1

2
0q

0  1
2  3

normally p
3
1

2
0

¬p
1

3
2

0
1

2
3 0

The point of the examples in (iii) and (iv) is this: Having accepted a rule

normally 

 

p you may expect p provided the other information you have is

irrelevant to p — or at least not known to be relevant to p. So, if it is a

rule that it normally rains, and all you know on top of that is that there is

an easterly wind, you may presume that it is raining now. (In the next

section we will see what happens when you learn that an easterly wind

normally means that the weather is dry).

The examples in (iv) show that a sentence of the form normally φ says

quite a bit more than just that φ holds in all normal worlds. It induces a

general preference for worlds in which φ holds to worlds in which φ does

not hold. Hence, if the real world has turned out to be exceptional in one

respect, one can go on assuming it is normal in other respects.

As the examples in (v) illustrate, sometimes one gets in a predicament. If

you prefer worlds in which p holds to worlds in which p doesn't hold, and

worlds in which q holds to worlds in which q doesn't hold, then it is hard

to choose if you cannot have both. Or to put it in terms of the next

definition: the state 0 

 

[normally 

 

p] 

 

[normally 

 

q] 

 

[¬(p 

 

∧ 

 

q)] is ambiguous.

DEFINITION 3.11.  Let 〈ε 

 

, 

 

s〉 be an information state.

(i) m is an optimal set in 〈ε 

 

, 

 

s〉 iff there is some optimal world w in 〈ε 

 

, 

 

s〉

such that m 

 

= 

 

{ v 

 

∈ 

 

s 

 

| 

 

v 

 

≅ε 

 

w};

(ii) 〈ε 

 

, 

 

s〉 is ambiguous if there is more than one optimal set in 〈ε 

 

, 

 

s〉.

I will not pursue a systematic study of normally and presumably here.

However, the following seems to me essential.
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LEMMA  3.12.  Let φ be a sentence of LA
2 and let σ and τ be any states.

(i) σ 

 

≤ 

 

σ 

 

[φ];

(ii) σ 

 

[φ] 

 

[φ] 

 

= 

 

σ 

 

[φ];

(iii) If φ 

 

≠ 

 

presumably 

 

ψ and σ ≤ 

 

τ, then σ 

 

[φ] 

 

≤ 

 

τ 

 

[φ];

(iv) If φ 

 

≠ 

 

presumably 

 

ψ and σ ≤ 

 

τ and σ|

 

|

 

−

 

 

 

φ, then τ 

 

|

 

|

 

−

 

 

 

φ .

We already saw that sentences of the form presumably 

 

φ are not persis-

tent. That they are not monotonous either is due to the fact that the test for

presumably 

 

φ may very well at first have a negative outcome, and a posi-

tive outcome later. Note, for example that 0 

 

≤ 

 

0 

 

[p], but it is not the case

that 0 

 

[presumably 

 

p] 

 

≤ 

 

0 

 

[p][presumably 

 

p].

Note, however, that (iii) and (iv) of lemma 3.12 do hold for rules. We

can assign to normally 

 

φ a static meaning, viz. 0 

 

[normally 

 

φ], and think of

the process of updating a state σ with normally 

 

φ as adding the informa-

tion contained in 0 

 

[normally 

 

φ] to σ. Not only purely descriptive senten-

ces carry context independent information, but rules do so as well.

One way to gain some insight in the logical properties of the operator

normally is to compare it with the alethic necessity operator. The next

principles give a characterisation of the logical properties of the latter in a

normal system of modal logic6.

necessarily 

 

φ  

 

|

 

|

 

−

 

 φ
necessarily 

 

φ, necessarily 

 

ψ 

 

|

 

|

 

−

 

 necessarily 

 

(φ 

 

∧ 

 

ψ)

necessarily 

 

φ  

 

|

 

|

 

−

 

 necessarily 

 

(φ 

 

∨ 

 

ψ)

If  |

 

|

 

−

 

 φ, then 

 

|

 

|

 

−

 

 necessarily 

 

φ

Only the second and the fourth of these principles remain valid — in our

sense of the word — if we substitute normally for necessarily. We find:

normally 

 

φ, normally 

 

ψ 

 

|

 

|

 

−

 

 normally 

 

(φ 

 

∧ 

 

ψ)

If |

 

|

 

−

 

 

 

φ, then 

 

|

 

|

 

−

 

 normally 

 

φ

We already know that the first principle does not hold for normally. What

we have instead is the much weaker principle

normally 

 

φ |

 

|

 

−

 

presumably 

 

φ .

The third principle fails, too. It is not generally so that
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normally 

 

φ |

 

|

 

−

 

 normally 

 

(φ 

 

∨ 

 

ψ)

Perhaps the point is best brought out by an example. Compare:

— Normally it rains. It is not raining now. So, presumably it is snowing.

— Normally it rains or it snows. It is not raining now. So, presumably it is snowing.

Intuitively, the first line of thought is incorrect. Formally, it is invalid:

normally 

 

p, ¬p|

 

|

 

−

 

/ 

 

presumably q

The second line of thought, however, seems correct. Formally we find:

normally 

 

(p 

 

∨ 

 

q), ¬p 

 

|

 

|

 

−

 

 

 

presumably q

The example also shows why an agent might accept normally 

 

p, while re-

fusing to accept normally 

 

(p 

 

∨ 

 

q). The latter gives some indication as to

what one can expect in case it is found that p happens to be false, the for-

mer does not. An agent may agree that p is normally the case but disagree

that q rather than ¬q is to be expected if p is false.7

4.  RULES FOR EXCEPTIONS

The system devised above lacks expressive power. It works fine for gen-

eral rules with accidental exceptions — ‘Normally it rains, but today it

doesn't’ — but there is no room for non accidental exceptions: we cannot

say when exceptional circumstances are to be expected and what one can

expect when they obtain — ‘Normally it rains. But if there is an easterly

wind, the weather is usually dry.’

Here is an example illustrating this. Suppose an agent in state 0 accepts

the rule normally 

 

p — normally it rains. This induces an overall preferen-

ce for worlds in which |

 

|

 

 

 

p 

 

|

 

|

 

 holds. Now, the agent wants to make an excep-

tion: If |

 

|

 

 

 

q 

 

|

 

|

 

 holds, |

 

|

 

 

 

p 

 

|

 

|

 

 normally does not hold — if there is an easterly

wind, then normally it does not rain. The problem is that this exception

cannot be made with the formula normally(q 

 

⊃ ¬p). The effect should be

that in the domain of q–worlds the rule normally 

 

p is overridden, but

things do not work out that way. The formula normally(q ⊃ ¬p) induces

another overall preference, this time for worlds in which the proposition
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|

 

|

 

 

 

q 

 

⊃ ¬p|

 

|

 

 holds. So, when it is learnt that in the actual world |

 

|

 

 

 

q 

 

|

 

|

 

 holds, an

ambiguous situation arises: There are two optimal sets, one for the world

that conforms to normally 

 

p, and the other for the world that conforms to

normally(q 

 

⊃ ¬p). In the picture below w3 

 

= 

 

{p, q}, w2 

 

= 

 

{q}, w1 

 

= 

 

{p}

and w0 

 

= 

 

∅.

normally (q ⊃ ¬p)normally p 3
1

2
0 2

0

3
1

2
0

3
1q0  1

2  3

One cannot equate ‘if q, then normally ¬p’ with normally(q 

 

⊃ ¬p). The

binary operator ‘if..., then normally ... is not definable in terms of unary

operator ‘normally...’.8

DEFINITION 4.1.  Let A and LA
0 be as in § 2. The language LA

3 has A as its

non-logical vocabulary, and in its logical vocabulary one additional binary

operator ~> and one additional unary operator presumably. A string of

symbols φ is a sentence of LA
3 iff there are sentences ψ and χ of LA

0 such

that φ 

 

= 

 

ψ, or φ 

 

= 

 

ψ 

 

~>χ, or φ 

 

= 

 

presumably 

 

ψ.

Read ‘φ 

 

~> 

 

ψ’ as ‘If φ, then normally ψ’. A sentence of the form ‘φ 

 

~> 

 

ψ’

is going to express that the proposition |

 

|

 

 

 

ψ 

 

|

 

|

 

 is a default in the domain of

worlds given by φ. If this domain is a proper subset of the set of possible

worlds, ‘φ 

 

~> 

 

ψ’ is called a restricted rule. General rules of the form

normally 

 

ψ are reintroduced here as an abbreviation of (ψ 

 

∨¬ψ) 

 

~>ψ.

DEFINITION 4.2.

(i) Let W be as before. A frame on W is a function π assigning to every

subset d of W a pattern πd on d.

(ii) Let π be a frame on W and d, e 

 

⊆ 

 

W. The proposition e is a default in

πd iff d∩e 

 

≠ 

 

∅ and πd 

 

•• 

 

e 

 

= 

 

πd.

Whenever it is clear which frame is at stake we will say ‘e is a d-default’

rather than ‘e is a default in πd’.

For the example introduced above, the resulting frame π looks like this:
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|

 

|

 

 

 

p 

 

|

 

|

 

 is a default in πW:
1
3

0
2

|

 

|

 

 

 

¬p 

 

|

 

|

 

 is a default in π|

 

|

 

 

 

q 

 

|

 

|

 

32

And for d 

 

≠ 

 

W or d 

 

≠ 

 

|

 

|

 

 

 

q 

 

|

 

|

 

, πd 

 

= 

 

d 

 

x 

 

d.

Given definition 4.2 every subset d of W can have its own pattern πd. So,

now our agents can make as many exceptions as they wish. But of course,

not anything goes. If they make too many exceptions, their expectation

frames get incoherent.

4.1  Coherence

DEFINITION 4.3. Let π be a frame on W, and d 

 

⊆ 

 

W.

(i) w is a normal world in πd iff w 

 

∈ 

 

d and for every d'  

 

⊆ 

 

d such that

w 

 

∈ 

 

d' it holds that w 

 

≤πd'  

 

v for every v 

 

∈ 

 

d';

(ii) nπd is the set of all normal worlds in πd;

(iii) π is coherent iff for every non empty d 

 

⊆ 

 

W, nπd 

 

≠ 

 

∅.

Consider the frame depicted above. Given definition 4.3, nπW= 

 

{ w1}. So,

despite the fact that w3 conforms to the general rule normally 

 

p, w3 does

not count as a normal world in πW. Think of this as follows. By accepting

|

 

|

 

 

 

¬p 

 

|

 

|

 

 as a |

 

|

 

 

 

q 

 

|

 

|

 

−

 

default, the agent has made an exception: the worlds in the

domain |

 

|

 

 

 

q 

 

|

 

|

 

 are exempted from the general rule. So, to say that w3 con-

forms to the general rule, as I did above, is misleading as it suggests that

w3 is subjected to this rule in the first place. But it is not. It is only

subjected to the more specific rule q ~> ¬p, to which it happens to be an

exception The world w3 is an exception to an exceptive clause, and we are

not going to consider such an ‘exception to an exception’ as normal.

Here is a simple example of a frame that is not coherent. We are dea-

ling with an agent who believes that it normally rains and who has made

an exception for the case that there is an easterly wind: if there is an east-

erly wind, then normally it does not rain. On top of this the agent wants to

make an exception for the case that there is no easterly wind: if there is no

easterly wind, then normally it does not rain either. This is too much: the

agent is making too many exceptions. Formally: the resulting frame π' is

the same as the frame π depicted above except that now |

 

|

 

 

 

¬p|

 

|

 

 is a rule in

π|

 

|

 

 

 

¬q 

 

|

 

|

 

. So π'{ w0, 

 

w1} looks like this:
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But this means that nπW 

 

= 

 

∅. The frame π'  is incoherent.

DEFINITION 4.4.  Let W be as before.

(i) σ is an information state iff σ 

 

= 

 

〈π, 

 

s〉, and one of the following con-

ditions is fulfilled:

(a) π is a coherent frame on W, and s is a non empty subset of W;

(b) π is the frame 〈ι, 

 

∅〉, where ιd 

 

= 

 

{ 〈w, 

 

w 

 

〉 

 

| 

 

w 

 

∈ 

 

d} for every d 

 

⊆ 

 

W.

(ii) 0 

 

= 

 

〈υ, 

 

W〉, where υd 

 

= 

 

d 

 

x 

 

d for every d 

 

⊆ 

 

W.

1 

 

= 

 

〈ι, 

 

∅〉.
(iii) Let σ 

 

= 

 

〈π, 

 

s〉 and σ'  

 

= 

 

〈π ',  

 

s' 〉 be states. Let π" be the frame such that
for every d, π"d 

 

= 

 

πd 

 

∩ 

 

π' d. Then
σ 

 

+ 

 

σ'  

 

= 

 

〈π", 

 

s 

 

∩ 

 

s' 〉, if 〈π", 

 

s 

 

∩ 

 

s' 〉 is coherent;
σ 

 

+ 

 

σ'  

 

= 

 

1, otherwise.

The differences between these definitions and the corresponding ones in

the preceding section (see definition 3.8) are all due to the fact that we are

not dealing with just one pattern, but with a frame of patterns.

Updating an information state with a new rule is a matter of refinement,

just like before. If an agent in state σ 

 

= 

 

〈π, 

 

s〉 decides to accept φ 

 

~> 

 

ψ, the

pattern π|

 

|

 

 

 

φ  

 

|

 

|

 

 will have to be refined with |

 

|

 

 

 

ψ 

 

|

 

|

 

. But of course, no agent

should accept φ 

 

~> 

 

ψ if the result of refining π|

 

|

 

 

 

φ  

 

|

 

|

 

 with |

 

|

 

 

 

ψ 

 

|

 

|

 

 is incoherent.

DEFINITION 4.5.

(i) Let π and π'  be frames, both based on W. The frame π is a refine-

ment of π'  iff πd 

 

⊆ 

 

π' d for every d 

 

⊆ 

 

W.

(ii) Let π be a frame and d, 

 

e 

 

⊆ 

 

W. πd••e is the refinement of π given by

(a) if d' ≠ 

 

d, then πd••e 

 

d'  

 

= 

 

πd';

(b) πd••e 

 

d 

 

= 

 

πd 

 

•• 

 

e.

The frame πd••e is the result of refining πd in π with e.

DEFINITION 4.6.  Let σ 

 

= 

 

〈π, 

 

s〉 be an information state.

•  σ 

 

[φ 

 

~> 

 

ψ] 

 

= 

 

1 if |

 

|

 

 

 

φ |

 

|

 

 

 

∩ |

 

|

 

 

 

ψ 

 

|

 

|

 

 

 

= 

 

∅ or π|

 

|

 

 

 

φ 

 

|

 

|

 

 

 

••|

 

|

 

 

 

ψ |

 

|

 

 is incoherent.

•  Otherwise, σ 

 

[φ 

 

~> 

 

ψ] 

 

= 

 

〈π|

 

|

 

 

 

φ |

 

|

 

 

 

••|

 

|

 

 

 

ψ |

 

|

 

, 

 

s〉.

The case that |

 

|

 

 

 

φ |

 

|

 

 

 

∩|

 

|

 

 

 

ψ 

 

|

 

|

 

 

 

= 

 

∅ is special: according to definition 4.2(ii), |

 

|

 

 

 

ψ 

 

|

 

|

 

cannot be a default in π|

 

|

 

 

 

φ |

 

|

 

 in this case. Still, according to proposition
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3.6(i), π 

 

|

 

|

 

 

 

φ |

 

|

 

 

 

••|

 

|

 

 

 

ψ |

 

|

 

 = π|

 

|

 

 

 

φ |

 

|

 

. Hence, π 

 

|

 

|

 

 

 

φ |

 

|

 

 

 

••|

 

|

 

 

 

ψ |

 

|

 

 is coherent — a technical

inconvenience.

PROPOSITION 4.7.  Let π be coherent d, 

 

e 

 

⊆ 

 

W. Suppose d∩e 

 

≠ 

 

∅.

 π 

 

d••e is coherent iff there is no d'  

 

⊇ 

 

d such that nπd'  

 

⊆ 

 

d 

 

~ 

 

e.

Combining the definition and the proposition we get

Let σ 

 

= 

 

〈π, 

 

s〉 be an information state. σ 

 

[φ 

 

~> 

 

ψ] is determined as follows:

•  If  nπd 

 

⊆ 

 

|

 

|

 

 

 

φ  

 

|

 

|

 

~ 

 

|

 

|

 

 

 

ψ 

 

|

 

|

 

 for some d 

 

⊇ |

 

|

 

 

 

φ  

 

|

 

|

 

, then σ 

 

[φ 

 

~> 

 

ψ] 

 

= 

 

1.

•  Otherwise, σ 

 

[φ 

 

~> 

 

ψ] 

 

= 

 

〈π 

 

|

 

|

 

 

 

φ|

 

|

 

••|

 

|

 

 

 

ψ|

 

|

 

, 

 

s〉.

EXAMPLES 4.8

(i) 0 

 

[normally 

 

p] 

 

[q 

 

~> 

 

¬p] 

 

≠ 

 

1;

(ii) 0 

 

[normally 

 

p] 

 

[q 

 

~> 

 

¬p] 

 

[¬q 

 

~>¬p] 

 

= 

 

1;

(iii) 0 

 

[normally 

 

p] 

 

[q 

 

~> 

 

¬p] 

 

[normally 

 

q] 

 

= 

 

1;

(iv) 0 

 

[p 

 

~> 

 

q] 

 

[q 

 

~> 

 

p] 

 

[p~> 

 

r] 

 

[q 

 

~> 

 

¬r] 

 

= 

 

1.

(i) and (ii) were discussed above. (iii and (iv) are left as exercises.

4.2  Applicability

Let σ 

 

= 

 

〈π, 

 

s〉 be a state. The frame π encodes the rules an agent in state σ
is acquainted with and s his or hers knowledge of the facts. Now, what

will an agent in state σ expect? In the previous section, where we were

dealing with states consisting of just one pattern ε, this question was easy

to answer: all we had to do was to sort out which of the worlds in s were

optimal given the pattern ε. In this section things are more complicated.

We are dealing with a number of patterns not all of which need have the

same impact on s.

The crucial notion here is the notion of applicability: If you want to

know what an agent in state 〈π, 

 

s〉 expects, you will have to sort out which

of the rules encoded in π apply within s.

DEFINITION 4.9.  Let σ 

 

= 

 

〈π, 

 

s〉 be a coherent information state and assume

that e1,…, 

 

en are defaults in πd1,..., 

 

πdn respectively.

(i) A world w complies with {e1,…, 

 

en}  iff w 

 

∈ 

 

ei for every i such that

w 

 

∈ 

 

di  (1≤i≤ 

 

n).

(ii) The set of defaults {e1,…, 

 

en} applies within s iff for every d 

 

⊇

 

s there

is some w 

 

∈ 

 

nπd such that w complies with {e1,…, 

 

en}.
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(Instead of saying ‘the set {e1,…, 

 

en} applies within s’, we often say

‘e1,…,en jointly apply within s’).

To see what is going on here, let us first look at the case that we are dea-

ling with one default only. (In this case we say that the d–default e, rather

than the singleton {e} applies within s). The definition reduces to:

Let 〈π, 

 

s〉 be a coherent information state and e be a default in πd. The

default e applies within s iff there is no d'  

 

⊇ 

 

s such that nπd'  

 

⊆ 

 

d 

 

~ 

 

e.

An even more special case obtains if s is a subset of d. Then we say that

the d- default e applies to s (rather than within s).

PROPOSITION 4.10.  Let π be a coherent frame. Let e be a default in πd

and suppose s 

 

⊆ 

 

d. The default e applies to s iff there exists a coherent re-

finement π'  of π such that for every domain d'  with s 

 

⊆ 

 

d' ⊆ 

 

d, e is a de-

fault in π'd' .

In other words, the d-default e applies to the subdomain s of d just in case

e is an acceptable default in every domain between s and d. If there is

some domain d' between s and d that cannot be coherently refined with e,

then e does not apply to s.

EXAMPLES 4.11  For each of the following states σi 

 

= 

 

〈πi, 

 

si〉 we want to

know which defaults apply to si.

(i) σ1 

 

= 

 

0 

 

[normally 

 

p] [q 

 

~>¬p] 

 

[q];

(ii) σ2 

 

= 

 

0 

 

[normally 

 

p] [q 

 

~>¬p] 

 

[q 

 

∧ 

 

r];

(iii) σ3 

 

= 

 

0 

 

[normally 

 

p] 

 

[q 

 

~>¬p] 

 

[(q 

 

∧r) 

 

~> 

 

p] 

 

[q 

 

∧ 

 

r];

(iv) σ4 

 

= 

 

0 

 

[p 

 

~> 

 

r]  

 

[q 

 

~> 

 

(p 

 

∧ 

 

¬r)] 

 

[p 

 

∧ 

 

q].

Here and in the following it may help if you read p as ‘it rains’, q as ‘there

is an easterly wind’ and r as ‘the temperature is below 15 

 

oC’. Imagine that

in each of these cases we are talking about a different country. All you

know about the climate of this country is given by the rules mentioned.

All you know about today's weather condition is given by the descriptive

sentences mentioned. The question is: what else do you expect?

Example (i). We already know the frame π1: |

 

|

 

 

 

p 

 

|

 

|

 

 is a default in πW and

|

 

|

 

 

 

¬p 

 

|

 

|

 

 is a default in π|

 

|

 

 

 

q 

 

|

 

|

 

. The agent's factual knowledge is given by s1 

 

=
|

 

|

 

 

 

q|

 

|

 

. Clearly, π|

 

|

 

 

 

q 

 

|

 

|

 

 cannot coherently be refined with |

 

|

 

 

 

p 

 

|

 

|

 

. So, according
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to proposition 4.10, |

 

|

 

 

 

p 

 

|

 

|

 

 does not apply to s1. It is overridden by the more

specific |

 

|

 

 

 

q|

 

|

 

 

 

-default |

 

|

 

 

 

¬p 

 

|

 

|

 

, which does apply to s1.

Example (ii). For this example eight possibilities must be taken into

account. Apart from that, the frame π2 is much like π1; its only interesting

features are that |

 

|

 

 

 

p 

 

|

 

|

 

 is a default in W, and that |

 

|

 

 

 

¬p 

 

|

 

|

 

 is a default in

|

 

|

 

 

 

q 

 

|

 

|

 

. The agent's factual knowledge is given by s2 

 

= 

 

|

 

|

 

 

 

q 

 

∧ 

 

r 

 

|

 

|

 

. When π2|

 

|

 

 

 

q 

 

|

 

|

 

 is

refined with |

 

|

 

 

 

p 

 

|

 

|

 

, the result is incoherent. Since s2 

 

⊆ 

 

|

 

|

 

 

 

q 

 

|

 

|

 

 

 

⊆ 

 

W, it follows by

proposition 4.10 that the W-default |

 

|

 

 

 

p 

 

|

 

|

 

 does not apply to s2. The more

specific |

 

|

 

 

 

q 

 

|

 

|

 

 

 

−

 

default |

 

|

 

 

 

¬p 

 

|

 

|

 

 does apply to s2.

Example (iii). It is important to realise that we are working with a three

place relation ‘the d-default e applies to s’. Often the first argument will

be suppressed, but sometimes we cannot do so. This becomes evident when

we compare the second example with the third. We saw above that in σ2

the W-default |

 

|

 

 

 

p 

 

|

 

|

 

 does not apply to |

 

|

 

 

 

q 

 

∧ 

 

r 

 

|

 

|

 

. There is nothing wrong, how-

ever, if an agent in addition to the rules normally 

 

p and q 

 

~> ¬p accepts

the rule (q 

 

∧r) 

 

~> 

 

p — as an exceptive clause to an exceptive clause. But

even after doing so, the W-default |

 

|

 

 

 

p 

 

|

 

|

 

 does not apply to

|

 

|

 

 

 

q 

 

∧ 

 

r 

 

|

 

|

 

. It is the more specific |

 

|

 

 

 

q 

 

∧ 

 

r 

 

|

 

|

 

−

 

default |

 

|

 

 

 

p 

 

|

 

|

 

 which does.

Examples (i)-(iii) show how the applicability criterion enforces that more

specific rules take precedence over more general rules. However, as the

next example shows, that is not the only thing enforced by it.

Example (iv). Neither of the rules p 

 

~> 

 

r and q 

 

~> 

 

(p 

 

∧ 

 

¬r) is more specific

than the other. Yet, in the context given by p 

 

∧ 

 

q only the rule

q 

 

~> 

 

(p 

 

∧¬r) has to be taken into account, which is the main reason why an

agent in state σ4 is allowed to draw the following conclusion:

p 

 

~> 

 

r
q 

 

~> 

 

(p 

 

∧¬r)

p 

 

∧ 

 

q
presumably ¬r

If it rains, normally the temperature is below 15 

 

oC.

If there is an easterly wind, then normally it rains,

but the temperature is 15 

 

oC or higher.

It is raining and there is an easterly wind

Presumably, the temperature 15oC or higher

The |

 

|

 

 

 

p 

 

|

 

|

 

 

 

-default |

 

|

 

 

 

r 

 

|

 

|

 

 does not apply to s4 

 

= 

 

|

 

|

 

 

 

p 

 

∧ 

 

q 

 

|

 

|

 

, because |

 

|

 

 

 

q 

 

|

 

|

 

 

 

 

 

⊇ s4 

 

,

while nπ4|

 

|

 

 

 

q 

 

|

 

|

 

 

 

 

 

⊆ 

 

 

 

|

 

|

 

 

 

p 

 

|

 

|

 

 

 

~ 

 

|

 

|

 

 

 

r 

 

|

 

|

 

. The |

 

|

 

 

 

q 

 

|

 

|

 

 

 

-default |

 

|

 

 

 

p 

 

∧¬r 

 

|

 

|

 

 does apply to

|

 

|

 

 

 

p 

 

∧ 

 

q|

 

|

 

, because there is no d 

 

 

 

⊇ 

 

|

 

|

 

 

 

p 

 

∧q 

 

|

 

|

 

 such that nπd' ⊆ 

 

|

 

|

 

 

 

q 

 

|

 

|

 

 

 

~ 

 

|

 

|

 

 

 

p 

 

∧ 

 

¬r 

 

|

 

|

 

.



DEFAULTS IN UPDATE SEMANTICS 27

Definition 4.9 pertains to sets of defaults rather than to single defaults.

From the next example it will become clear why this is so.

EXAMPLES 4.11 (continued). For each of the states σi 

 

= 

 

〈πi, 

 

si〉 we want to

know which defaults jointly apply within si.

(v) σ5 

 

= 

 

0 

 

[p 

 

~> 

 

r]  

 

[q 

 

~> 

 

¬r] 

 

[p 

 

∧ 

 

q];

(vi) σ6 

 

= 

 

0 

 

[q 

 

~> 

 

p] 

 

[p 

 

~> 

 

r]  

 

[q];

Example (v). If it rains, the temperature is normally below 15oC. If there

is an easterly wind the temperature is normally 15oC or higher. It's raining

and there happens to be an easterly wind. What would the temperature be?

The following analysis reveals why there is not much to be said here.

index world
0 —
1 p
2 q
3 q, p
4 r
5 r, p
6 r, q
7 r, q, p

We are dealing with a set W 

 

= 

 

{ w0,..., w7} of eight

possible worlds described in the table on the left.

The set s5 

 

= 

 

{ w3, 

 

w7}.

π5 is the following frame:

If d 

 

≠ 

 

{ w1, 

 

w3, 

 

w5, 

 

w7} and d 

 

≠ 

 

{ w2, 

 

w3, 

 

w6, 

 

w7},

π5d 

 

= 

 

d 

 

x 

 

d.

 

 

   π5|

 

|

 

 

 

p 

 

|

 

|

 

 looks like this:
7
5

3
1

    π5|

 

|

 

 

 

q 

 

|

 

|

 

 is this:
3
2

7
6

So, if {w1, 

 

w3, 

 

w5, 

 

w7}  

 

⊆ 

 

d, nπd 

 

= 

 

d 

 

~ 

 

{ w1, 

 

w3}; and if {w2, 

 

w3, 

 

w6, 

 

w7}  

 

⊆
d, nπd 

 

= 

 

d 

 

~ 

 

{ w6, 

 

w7}. Otherwise, nπd 

 

= 

 

d.

The proposition |

 

|

 

 

 

r 

 

|

 

|

 

 

 

= 

 

{ w4, 

 

w5, 

 

w6, 

 

w7} is acceptable as a default in every

domain between s5 

 

= 

 

{ w3, 

 

w7} and |

 

|

 

 

 

p 

 

|

 

|

 

 

 

= 

 

{ w1, 

 

w3, 

 

w5, 

 

w7}. Hence, the

|

 

|

 

 

 

p |

 

|

 

 

 

-default |

 

|

 

 

 

r |

 

|

 

 applies to s5. Likewise we find that the |

 

|

 

 

 

q 

 

|

 

|

 

 

 

-default |

 

|

 

 

 

¬r 

 

|

 

|

 

applies to s5. However, there is no coherent refinement π'  of π5 such that

both |

 

|

 

 

 

r 

 

|

 

|

 

 

 

= 

 

{ w4, 

 

w5, 

 

w6, 

 

w7}  and |

 

|

 

 

 

¬r 

 

|

 

|

 

 

 

 

 

= 

 

{ w0, 

 

w1, 

 

w2, 

 

w3}  are defaults in

π'{ w3, 

 

w7}.  Which amounts to saying that the |

 

|

 

 

 

p 

 

|

 

|

 

 

 

-default |

 

|

 

 

 

r 

 

|

 

|

 

 and the

|

 

|

 

 

 

q |

 

|

 

 

 

-default |

 

|

 

 

 

¬r 

 

|

 

|

 

 do not jointly apply to s5.

PROPOSITION 4.12.  Let σ 

 

= 

 

〈π, 

 

s〉 be a coherent information state and as-

sume that e1,…, 

 

en are defaults in πd1,…, 

 

πdn respectively. Suppose s 

 

⊆ 

 

di

for every i (1 

 

≤ 

 

i 

 

≤ 

 

n). The defaults e1,…, en jointly apply to s iff there ex-
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ists a coherent refinement π' of π such that for every i it holds that ei is a

default in π' d' for every domain d'  

 

such that s 

 

⊆ 

 

d' ⊆ 

 

di.

The important thing to notice here is the order of the quantifiers: “there

exists a coherent refinement such that for every i it holds that ei is...”

 

 it

says, rather than “for every i there exists a coherent refinement such that

ei is...”

 

 In the latter case each of the defaults e1,…, en taken separately

applies to s, but perhaps e1,…, en do not jointly apply.

Let us now turn to a case in which not all rules the agent is acquainted

with express defaults in a domain extending s.

Example (vi). We will find that q 

 

~> 

 

p, p 

 

~> 

 

r, q |

 

|

 

−

 

 presumably 

 

r .

The main reason why this is so is because in state 0 

 

[q 

 

~> 

 

p] 

 

[p 

 

~> 

 

r]  

 

[q] 

 

the

|

 

|

 

 

 

q |

 

|

 

 

 

-default |

 

|

 

 

 

p |

 

|

 

 and the |

 

|

 

 

 

p |

 

|

 

 

 

-default |

 

|

 

 

 

r 

 

|

 

|

 

 jointly apply within 

 

|

 

|

 

 

 

q 

 

|

 

|

 

.

Consider W 

 

= 

 

{ w0,..., w7} as described above under (v).

The set s6 

 

= 

 

{ w2, 

 

w3, 

 

w6, 

 

w7};  π6 is the following frame:

If d 

 

≠ 

 

{ w1, 

 

w3, 

 

w5, 

 

w7} and d 

 

≠ 

 

{ w2, 

 

w3, 

 

w6, 

 

w7}, π6d 

 

= 

 

d 

 

x 

 

d.

 

 

  π6|

 

|

 

 

 

p |

 

|

 

 looks like this:
7
5

3
1

 

 

  π6|

 

|

 

 

 

q |

 

|

 

 is this:
7
3

6
2

So, if {w1, 

 

w3, 

 

w5, 

 

w7}  

 

⊆ 

 

d, nπd 

 

= 

 

d 

 

~ 

 

{ w1, 

 

w3}, and if {w2, 

 

w3, 

 

w6, 

 

w7}  

 

⊆
d, nπd 

 

= 

 

d 

 

~ 

 

{ w2, 

 

w6}. Otherwise, nπd 

 

= 

 

d.

The |

 

|

 

 

 

q |

 

|

 

 

 

-default |

 

|

 

 

 

p |

 

|

 

 and the |

 

|

 

 

 

p |

 

|

 

 

 

-default |

 

|

 

 

 

r |

 

|

 

 jointly apply within |

 

|

 

 

 

q |

 

|

 

if for every d 

 

⊇ 

 

|

 

|

 

 

 

q 

 

|

 

|

 

 there is some w 

 

∈ 

 

nπd which complies with both.

Since w7 

 

∈ 

 

nπd for every d 

 

⊇ 

 

|

 

|

 

 

 

q 

 

|

 

|

 

, this is so. And since w7 is the only

world in || q |

 

|

 

 which complies with both these defaults, an agent in state σ6

will expect the real world to be like w7 rather than like w2, w3, or w6.

Which means that the agent will expect both p and r to be true.

By now the basic ideas behind definition 4.9 will be clear. First, if a set of

defaults applies within a given context s, the effect will be that worlds not

complying with these defaults do not count as normal s-worlds any more.

Second, from the previous section we know that in a coherent frame the

following holds: if a world is not normal in s, it is not normal in any do-

main extending s. So, when does a set of defaults apply within s? If for no
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domain d extending s, the set nπd of normal d-worlds consists entirely of

worlds not complying with the defaults in question. Because otherwise, if

the defaults did apply, the frame would get incoherent.

In the above I alluded several times to the next definition.

DEFINITION 4.13.  Let σ = 〈π, 

 

s〉 be a coherent information state and as-

sume that e1,…, 

 

en are defaults in πd1,…, 

 

πdn.

(i) Then {e1,…, en} is a maximal applicable set in σ iff e1,…, en jointly

apply within s, and for every en+1 and dn+1 such that en+1 is a default in

πdn+1, and e1,æ, en, en+1 jointly apply within s it holds that en+1 

 

= 

 

ei and

dn+1 

 

= 

 

di for some i≤n.

(ii) A world w is optimal in σ iff w 

 

∈ 

 

s and w complies with a maximal

applicable set of defaults. The set of optimal worlds is denoted by mσ.

(iii) σ 

 

[presumably 

 

ψ] is determined as follows:

• If mσ 

 

∩ 

 

|

 

|

 

 

 

ψ 

 

|

 

|

 

 

 

= 

 

mσ , then σ 

 

[presumably 

 

ψ] 

 

= 

 

σ.

• Otherwise, σ 

 

[presumably 

 

ψ] 

 

= 

 

1.

It is very well possible for there to be more than one maximal applicable

set of defaults. If so, the state is called ambiguous.

PROPOSITION 4.14.  Let σ 

 

= 

 

〈π, 

 

s〉 be a coherent information state. Let each

πd be given by πd 

 

= 

 

(d 

 

x 

 

d) 

 

•• 

 

(ed)1 

 

… 

 

•• 

 

(ed)m.

Then w is optimal in σ iff w 

 

∈ 

 

s and w complies with a set of defaults D

with the following properties:

(i) Each element of D is identical to some (ed)i;

(ii) D applies within s;

(iii) for every (ed)i such that D‹{( ed)i} applies within s, it holds that

(ed)i∈ 

 

D.

Suppose you have to sort out whether a certain argument of the form

φ1 

 

~> 

 

ψ1,..., 

 

φn 

 

~> 

 

ψn, 

 

χ1,..., 

 

χm 

 

/ presumably 

 

θ is valid. What you have to

do then is to determine the set of optimal worlds in the state

σ 

 

= 

 

0 

 

[φ1 

 

~> 

 

ψ1] 

 

...[φn 

 

~> 

 

ψn] 

 

[χ1]...[χm]. Definition 4.13 says that in order to

do so you have to determine all maximal applicable sets of defaults in σ.

Proposition 4.14 facilitates this work: you never have to take more de-

faults into account than the explicitly given defaults |

 

|

 

 

 

ψ1 

 

|

 

|

 

, 

 

... 

 

, 

 

|

 

|

 

 

 

ψn 

 

|

 

|

 

 in their

respective domains |

 

|

 

 

 

φ1 

 

|

 

|

 

, 

 

... 

 

, 

 

|

 

|

 

 

 

φn 

 

|

 

|

 

. All you have to do is to determine the
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maximal subsets of {|

 

|

 

 

 

ψ1 

 

|

 

|

 

, 

 

... 

 

, 

 

|

 

|

 

 

 

ψn 

 

|

 

|

 

} applying within |

 

|

 

 

 

χ1 

 

|

 

|

 

 

 

∩ ... 

 

∩ 

 

|

 

|

 

 

 

χm 

 

|

 

|

 

.

The set of optimal worlds is given by these.

Given proposition 4.14, it is easy to determine the set of optimal

worlds in the states σ1, ..., σ6 figuring in example 4.11. Thus, we find:

(i) normally 

 

p, q 

 

~>¬p, q |

 

|

 

−

 

 presumably 

 

¬p.

(ii) normally 

 

p, q 

 

~>¬p, q 

 

∧ 

 

r |

 

|

 

−

 

 presumably 

 

¬p

(iii) normally 

 

p, q 

 

~>¬p, (q 

 

∧ 

 

r) 

 

~> 

 

p, q 

 

∧ 

 

r |

 

|

 

−

 

 presumably 

 

p

(iv) p 

 

~> 

 

r, q 

 

~> 

 

(p 

 

∧ 

 

¬r), p 

 

∧ 

 

q |

 

|

 

−

 

 presumably 

 

¬r

(v) p 

 

~> 

 

r, q 

 

~> 

 

¬r, p 

 

∧ 

 

q |

 

|

 

−

 

/ 

 

presumably 

 

r

p 

 

~> 

 

r, q 

 

~> 

 

¬r, p 

 

∧q |

 

|

 

−

 

/ 

 

presumably 

 

¬r

(vi) q 

 

~> 

 

p, p 

 

~> 

 

r, q |

 

|

 

−

 

 presumably 

 

r .

5.  COMPARISONS

So far, we have been thinking of the language LA
3 as a propositional lan-

guage, but we can also give a predicate logical interpretation to it. Think

of p, q, etc. as monadic predicates rather than atomic sentences. Each such

predicate specifies a property and each well-formed expression of LA
0 spe-

cifies a Boolean combination of properties. Think of W as the set of pos-

sible objects rather than the set of possible worlds. A possible object i 

 

∈ 

 

W

has the property expressed by the atom p if and only if p 

 

∈ 

 

i. Note that

different possible objects have different properties. Therefore it would be

more precise to call the elements of W possible types of objects: in reality

there can be more than one or no object fitting the description of a given

possible object in W.

Like before, the set s in a state 〈π, 

 

s〉 represents the agent's knowledge, only

now it is not the agent's knowledge about the real world, but about some

real object. With a formula φ of LA
0 it is learnt that this object, which is not

explicitly mentioned in φ, has the property expressed by φ.

A default in a pattern πd is a property now — a property that objects

with the property d normally possess. Since φ-worlds (worlds in which

the proposition expressed by φ holds) have become φ-objects (objects with

the property expressed by φ), ‘φ 

 

~> 

 

ψ’ can be read as ‘φ-objects normally

are ψ-objects’ instead of ‘φ-worlds normally are ψ-worlds’.

Let me repeat one of the things I said above: in reality there can be

more than one or no object fitting the description of a given possible ob-

ject. Expectation frames are conceptual frames. So, if the coherence con-
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dition requires that nπd 

 

≠ 

 

∅, this just means that it must be conceivable for

an object in d to have all the properties that objects in d normally have. It

does not mean that such an object must really exist. It may very well be

that in reality no object fitting the description of any object in nπd can be

found. It might be that each and every real bird lacks one or more of the

properties that birds normally have, either by rule or by accident. It can

be a fact that every bird is in some respect abnormal. But it cannot be a

rule. If you want a system in which the sentence ‘Birds normally aren't

normal’ is acceptable, you will have to look elsewhere.

Looking at the examples treated in the preceding section through predicate

logical glasses, you will recognise some old acquaintances. Example

4.11(v), for instance, which is repeated below on the right hand side, can

also serve as a formalisation of the well known Nixon Dilemma:

Quakers normally are pacifist

Republicans normally are not pacifist

Nixon is both republican and Quaker

p 

 

~> 

 

r
q 

 

~> 

 

¬r
p 

 

∧ 

 

q

As we saw, from these premises no conclusion, not even a tentative one,

concerning Nixon's pacifism can be drawn.

Equally well known is the next example, which we did not discuss so far.

Adults normally are employed

Students normally are not employed

Students normally are adults

John is a student

Presumably, John is adult and not employed

p 

 

~> 

 

r
q 

 

~>¬r
q 

 

~> 

 

p
q
presumably (p 

 

∧¬r)

This argument is valid. To see why, we have to determine the state

 0 

 

[p 

 

~> 

 

r]  

 

[q 

 

~>¬r] [q 

 

~> 

 

p] [q 

 

] 

 

= 

 

σ 

 

= 

 

〈π, 

 

s〉.

Let W be defined as in example 4.11(v). Then s 

 

= 

 

{ w2, 

 

w3, 

 

w6, 

 

w7}. For π
we find: if d 

 

≠ 

 

{ w1, 

 

w3, 

 

w5, 

 

w7} and d 

 

≠ 

 

{ w2, 

 

w3, 

 

w6, 

 

w7}, πd 

 

= 

 

d 

 

x 

 

d.

   π|

 

|

 

 

 

p|

 

|

 

 can be depicted as:  

7
5

3
1
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   And this is π|

 

|

 

 

 

q|

 

|

 

:
7

2

3 6

Since nπs 

 

= 

 

{ w3} ⊆ 

 

|

 

|

 

 

 

p 

 

|

 

|

 

~|

 

|

 

 

 

r 

 

|

 

|

 

, the |

 

|

 

 

 

p|

 

|

 

 

 

-default |

 

|

 

 

 

r |

 

|

 

 does not apply within s.

The other rules apply, which means that σ 

 

|

 

|

 

−

 

 

 

presumably (p 

 

∧¬r).

DEFINITION 5.1.  Let σ 

 

= 

 

〈π, 

 

s〉 be a state.

(i) The factual information contained in σ is given by

 { φ 

 

| 

 

φ is a sentence of LA
0 such that s 

 

⊆ 

 

|

 

|

 

 

 

φ  

 

|

 

|

 

}.

(ii) A set ∆ of sentences of LA0 is called an extension of the factual infor-

mation contained in σ iff there exists some maximal applicable set E of

defaults such that ∆ 

 

= 

 

{ φ 

 

| {w 

 

∈ 

 

s | 

 

w complies with E} 

 

⊆ 

 

|

 

|

 

 

 

φ  

 

|

 

|

 

}.

One way to compare the theory developed here with other theories, is to

compare what they have to say about extensions. Note for example that we

have:

φ1~> 

 

ψ1,..., 

 

φn~> 

 

ψn, 

 

χ1,..., 

 

χm|

 

|

 

−

 

presumably 

 

θ iff θ belongs to every ex-

tension of the factual information in 0[φ1~> 

 

ψ1]...[φn~> 

 

ψn][χ1]...[χm 

 

].

In other words, the theory developed here belongs to the class of sceptical

theories. It differs from other sceptical theories in that some sets of sen-

tences that qualify as an extension in this sceptical theory will not do so in

some of the other, or vice versa. Take the last example above. Within the

framework of Reiter's default logic, this argument can be represented as

the default theory 〈D, 

 

W〉, where

D = {(p: Mr / r), (q: M¬r / ¬r), (q: Mp / p)}, and W = {q}

Given Reiter's definition of extension this default theory has two exten-

sions: the deductive closure of {p, q, 

 

¬r}, and the deductive closure of

{p, 

 

q, r}. On our account, however, only the first of these counts.

The main shortcoming of Reiter's original theory is that it does not ans-

wer questions of priority. In many cases where conflicting rules are at

stake, some take priority over other. In the above, I have tried to uncover

the mechanisms behind this phenomenon. The resulting theory has much

in common with the theories presented in Delgrande[1988] and

Asher&Morreau[1990], which are built on the semantics of conditionals

developed by David Lewis[1973].
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In one respect the theory developed here is simpler than those of

Delgrande and Asher&Morreau. In checking the validity of an argument,

all three theories intend to look at the state of an agent who does not know

more than what is given by the premises. Both Delgrande and

Asher&Morreau try to give a direct definition of this state, whereas in the

dynamic framework it is built up incrementally. In another respect, the

theory developed here is more complex. Indeed, readers acquainted with

the papers mentioned will have wondered why I did not choose selection

functions9 to represent an agent's knowledge of the rules. From a math-

ematical point of view, these are much simpler objects than expectation

frames, and so far I have done nothing to show that it is really necessary

to make things as complex as they are now.

There is a simpler version of the present theory in which selection

functions are used as one of the components in an information state. In

many cases this simpler version works just as well as the present one.

Actually, so long as we restrict ourselves to cases in which for each do-

main at most one (non trivial) default has to be taken into account, both

versions amount to the same thing. But as soon as we have more than one

rule in the same domain differences obtain.

Students normally are adult

Students normally are not employed

John is a student

John is employed

Presumably, John is an adult

Students normally are adult

Students normally are not employed

Adults normally are employed

Adults normally know how to drive a car

Peter is a student

     Presumably, Peter knows how to drive a car

These are instances of a principle that is sometimes called the principle of

Independence. If an object is exceptional in one respect, this does not nec-

essarily mean it will be exceptional in other respects as well. Often you

may rest assured that in other respects it will be normal. As the examples

show, this holds not only if the object concerned happens to be an acciden-

tal exception to one of the rules you are acquainted with, but also if it is a

non accidental exception. Given the premises of the left example, John

happens to be an exception to the rule that students are not employed. So,

John is not a normal student — not entirely normal at least. However, this
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is no reason to think that the rule that students normally are adults does

not apply. You may still presume that John is an adult. You may do so

given Reiter's theory, you may do so given the theory presented here, but

you may not do so given Delgrande's or Asher&Morreau's theory. As for

the example on the right, a formal analysis reveals that the optimal Peter

— the Peter that conforms to as many applicable standards of normality as

possible — is an adult who is a non accidental exception to the rule that

adults are employed, but who knows how to drive a car anyway. The only

other theories I know of that give the same outcome here are the theories

of inheritance to which I shall turn below.

The principle of Independence comes out valid mainly because a pat-

tern πd can be more than just a bipartition of d in normal and abnormal

elements. I believe this principle embodies an essential feature of common

sense reasoning. So, I cannot but conclude that selection functions are not

the right kind of entities to model an agent's knowledge of the rules.

The expressive power of our formalism is limited. However, it is suffi-

ciently rich to express everything expressible in a semantic network. The

theory presented here supplies a semantics for multiple inheritance net-

works in which cyclic paths and complex predicates are allowed. It yields a

decidable non-monotonic notion of logical consequence, viz. validity1,

which is comparable to the ‘support’-relation in inheritance theory. It can

be used as a basis for answering questions of soundness and completeness:

Given an inference algorithm for a suitable10 class of nets, is it the case

that a net Γ belonging to this class supports a conclusion φ iff it is valid1 to

infer presumably 

 

φ from the rules and the facts that make up Γ?

For all algorithms I am acquainted with, the answer to this question is

no. The algorithm for which the answer comes closest to yes is the one

presented in Horty 

 

&  

 

Thomason 

 

&  

 

Touretzky 

 

[1987]. For the examples dis-

cussed so far this algorithm gives the same outcome as the theory presen-

ted here. Still, from our point of view, the algorithm is not sound. If it

were, the next argument, would be valid in our sense of the word, but it is

not
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Quakers normally are pacifist

Republicans normally are not pacifist

Pacifists normally are anti-military

Republicans normally are football fans

Football fans normally are not anti

military

John is both a Quaker and a republican

Presumably, John is not anti military

•

x

• •  

•

˚

•

F P

QR

A

In our formalism this argument, which exemplifies the case of cascaded

ambiguities, has the form:

q 

 

~> 

 

p, p 

 

~> 

 

a, r 

 

~>¬p, r 

 

~> 

 

f, f 

 

~> 

 

¬a, q 

 

∧ 

 

r / presumably ¬a.

The state of somebody who has just learned all these premises is highly

ambiguous. There turn out to be four optimal objects: {q, 

 

r, 

 

f}, {q,  

 

r, 

 

f, 

 

p},

{q,  

 

r, 

 

p, 

 

a} and {q, 

 

r, 

 

f, 

 

p, 

 

a}. Therefore, it is neither valid to expect that x

is anti-military, nor that x is not anti-military.

Here is an example showing that from our point of view, the algorithm

of Horty cum suis is not complete either. A defeasible version of Modus

Tollens is valid in our sense of the word, but the net representing the

premises of the argument given below does not support its conclusion.

Adults normally have a driver’s licence.

John does not have a driver’s license.

Presumably, John is not adult .

p 

 

~> 

 

q

¬q

presumably ¬p

To see why this argument is valid, set W 

 

= 

 

{ w0, 

 

w1, 

 

w2, 

 

w3}, where w0 

 

= 

 

∅

w1 

 

= 

 

{p}, w2 

 

= 

 

{q}, and w3 

 

= 

 

{p,  

 

q} . Consider 0 

 

[p 

 

~> 

 

q] 

 

[¬q]. Of the worlds

in |

 

|

 

 

 

¬q|

 

|

 

, the world w0 is complies with the |

 

|

 

 

 

p|

 

|

 

 

 

-default |

 

|

 

 

 

q|

 

|

 

. The world w1,

however, does not. And since for no domain d extending |

 

|

 

 

 

¬q|

 

|

 

 it holds that

nπd 

 

⊆ 

 

{ w1}, the |

 

|

 

 

 

p|

 

|

 

 

 

-default |

 

|

 

 

 

q|

 

|

 

 applies within |

 

|

 

 

 

¬q 

 

|

 

|

 

. Hence, someone in

state 0 

 

[p 

 

~> 

 

q] 

 

[¬q] will expect the real world to be like w0 rather than like

w1. And in w0 the proposition |

 

|

 

 

 

p 

 

|

 

|

 

 does not hold.

It is instructive to compare the above argument with the following:
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Students normally are adults

Adults normally are not students

John is a student

Presumably, John is an adult

p 

 

~> 

 

q
q 

 

~>¬p
p
presumably q

Note that the inheritance net corresponding to this argument is cyclic. At

first sight, the premises of the argument may seem ambiguous: by Modus

Ponens one can infer presumably 

 

q, and by Modus Tollens one can infer

presumably 

 

¬q. However, a closer inspection of the state

0 

 

[p~> 

 

q] 

 

[q 

 

~>¬p] 

 

[p] reveals that Modus Ponens takes precedence over

Modus Tollens: Let W be like above. The crucial point is that the

|

 

|

 

 

 

q|

 

|

 

 

 

-default |

 

|

 

 

 

¬p|

 

|

 

 does not apply within |

 

|

 

 

 

p|

 

|

 

 because nπ|

 

|

 

 

 

p|

 

|

 

 

 

= 

 

{ w3} and

{ w3}  

 

⊆ 

 

|

 

|

 

 

 

q 

 

|

 

|

 

 

 

~ 

 

|

 

|

 

 

 

¬p 

 

|

 

|

 

. The |

 

|

 

 

 

p|

 

|

 

 

 

-default |

 

|

 

 

 

q|

 

|

 

, on the other hand, does apply

within |

 

|

 

 

 

p|

 

|

 

. So, the real world will be like w3 rather than like w1, which

means that 0 

 

[p~> 

 

q] 

 

[q 

 

~>¬p] 

 

[p] |

 

|

 

−

 

 presumably q.

By now it will be clear that the theory of defaults developed in this paper

differs from all other theories not only in its explanations but also in its

predictions. I will leave it to the readers who have missed their favourite

examples to check these for themselves, and conclude this section by

pointing out some more general peculiarities.

First a reminder: the logic generated by the validity notion that we

have been using is not closed under substitution. For example, we saw in

the previous section that the following argument is valid

q 

 

~> 

 

p, p 

 

~> 

 

r, q |

 

|

 

−

 

 presumably 

 

r (*)

However, (*) is only valid for predicates that are independent — or at

least not known to be dependent. If we substitute ‘¬q’ for ‘r’, we find

q 

 

~> 

 

p, p 

 

~>¬q, q |

 

|

 

−

 

/ presumably 

 

¬q

As an introduction to the second point, consider the rules ‘Students are

normally adults’ and ‘Adults are normally employed’. Suppose these are

the only rules you are acquainted with. Given (*), it is correct to infer for

any student x (of whom you don't know more than this) that x is pre-

sumably employed. This does not mean, however, that it is correct to

conclude that students normally are employed. That is:
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q 

 

~> 

 

p, p 

 

~> 

 

r |

 

|

 

−

 

/ q 

 

~> 

 

r   (**)

The Hypothetical Syllogism is not valid; we only have a defeasible version

of it, exemplified by (*). The conclusion of (*) is defeasible. It will be

defeated when for example you learn that students normally are not em-

ployed. The conclusion of (**), on the other hand, is not defeasible. Rules

are persistent.

There are more examples of this kind. Ever so often we find that

φ1 

 

~> 

 

ψ1,...,φn 

 

~> 

 

ψn, χ 

 

|

 

|

 

−

 

 presumably 

 

θ,

whereas

φ1 

 

~> 

 

ψ1,...,φn 

 

~> 

 

ψn 

 

|

 

|

 

−

 

/ χ 

 

~> 

 

θ.

For instance, as we saw, a defeasible form of Modus Tollens is valid:

p 

 

~> 

 

q, ¬q 

 

|

 

|

 

−

 

presumably 

 

¬p,

but Contraposition fails:

p 

 

~> 

 

q 

 

|

 

|

 

−

 

/ ¬q 

 

~>¬p.

We also have

p 

 

~> 

 

q, p 

 

∧ 

 

r 

 

|

 

|

 

−

 

 

 

presumably 

 

q,

but Strengthening the Antecedent is not allowed:

p 

 

~> 

 

q 

 

|

 

|

 

−

 

/ (p 

 

∧ 

 

r) 

 

~> 

 

q.

Well known principles of implication like the Hypothetical Syllogism,

Contraposition and Strengthening the Antecedent fail for the default ar-

row ~>. So, naturally the question if there any left which do hold. If the

arrow ~> is not a strict implication, as the failure of these principles

shows, is it then perhaps a variable strict implication? If it were, the next

principles, which give a complete characterisation of the interplay of any

variable strict implication with the classical connectives, would hold:

Conditional Identity (CI)11 : φ  

 

~> 

 

ψ |

 

|

 

−

 

 φ  

 

~> 

 

φ
Conjunction of Consequents (CC) : φ  

 

~> 

 

ψ, φ 

 

~> 

 

χ |

 

|

 

−

 

 φ  

 

~> 

 

(ψ 

 

∧ 

 

χ)

Weakening the Consequent (CW) : φ  

 

~> 

 

ψ |

 

|

 

−

 

 φ 

 

~> 

 

(ψ 

 

∨ 

 

χ)

Strengthening with a Consequent 

 

(ASC) 

 

: φ  

 

~> 

 

ψ, φ 

 

~> 

 

χ |

 

|

 

−

 

 (φ  

 

∧ 

 

ψ) 

 

~> 

 

χ
Disjunction of Antecedents (AD) : φ  

 

~> 

 

χ, ψ 

 

> 

 

χ |

 

|

 

−

 

 (φ  

 

∨ 

 

ψ) 

 

~> 

 

χ
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It turns out that only the first two of these principles are valid. The

remaining three are almost valid. For example, for any state σ the follow-

ing holds:

σ 

 

[φ 

 

~> 

 

ψ] 

 

[φ 

 

~>¬(ψ 

 

∨ 

 

χ)] 

 

= 

 

0;

σ 

 

[φ 

 

~> 

 

ψ] 

 

[φ 

 

~> 

 

χ] 

 

[(φ 

 

∧ 

 

ψ) 

 

~>¬χ] 

 

= 

 

0;

σ 

 

[φ 

 

~> 

 

χ] 

 

[ψ 

 

~> 

 

χ] 

 

[(φ 

 

∨ 

 

ψ) 

 

~> 

 

¬χ] 

 

= 

 

0.

For a principle like the Hypothetical Syllogism, something analogous does

not hold. It is very well possible that

σ 

 

[φ 

 

~> 

 

ψ] 

 

[ψ 

 

~> 

 

χ] 

 

[φ 

 

~> 

 

¬χ] 

 

≠ 

 

0.

Here is another specification of ‘almost valid’: Let ∆ be any sequence of

rules. Then we have the following:

∆, φ 

 

~>ψ, φ |

 

|

 

−

 

 presumably(ψ 

 

∨ 

 

χ);

∆, φ 

 

~> 

 

ψ, φ 

 

~> 

 

χ, φ 

 

∧ 

 

ψ |

 

|

 

−

 

 presumably 

 

χ;

∆, φ 

 

~> 

 

χ, ψ 

 

~> 

 

χ, φ 

 

∨ 

 

ψ |

 

|

 

−

 

 presumably 

 

χ.

These are defeasible versions of CW, ASC and AD, but they have a special

property: their conclusions can only be defeated by factual information.

So, here, too, there is a big difference with a principle like the Hypothe-

tical Syllogism, since

φ  

 

~> 

 

¬χ, φ 

 

~> 

 

ψ, ψ 

 

~> 

 

χ, φ 

 

|

 

|

 

−

 

/ presumably 

 

χ.

I have not been able to find a good intuitive explanation why the

principles ASC and AD should not hold. Only for the case of CW have I

an argument showing that something would be wrong if this principle

were valid. Indeed, it is perfectly alright that

φ  

 

~> 

 

ψ  |

 

|

 

−

 

/ φ 

 

~> 

 

(ψ 

 

∨ 

 

χ)

Here, I can repeat what I wrote near the end of the previous section. As

the next examples show, a sentence of the form φ 

 

~> 

 

(ψ 

 

∨ 

 

χ) is in certain

respects stronger than φ 

 

~> 

 

ψ.
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— Tigers normally have four legs. Shere Khan is a tiger. Shere Khan does not have four

legs. So, presumably Shere Khan has five legs.

— Tigers normally have four or five legs. Shere Khan is a tiger. Shere Khan does not

have four legs. So, presumably Shere Khan has five legs.

The second argument is valid, the first is not. The rule ‘Tigers normally

have four or five legs’ indicates what one can expect in case one encoun-

ters a tiger that does not have four legs; the rule ‘Tigers normally have

four legs’ does not. No wonder an agent might be willing to accept the lat-

ter without wanting to accept the former.

6  CONCLUDING REMARKS

The aim of this paper has been twofold: (i) to introduce the framework of

update semantics, and to explain what kind of semantic phenomena may be

successfully analysed within it; and (ii) to give an analysis of one such

phenomenon: default reasoning.

Within the framework of update semantics default reasoning is not

considered a special kind of reasoning with ordinary sentences, but an

ordinary kind of reasoning with a special kind of sentences. It is just as

valid to conclude ‘Presumably x is B’ from ’x is A’ and ‘A's are normally

B’ as it is to conclude ‘x is B’ from ‘x is A’ and the ‘All A's are B’. One

does not have to set ones mind to a different mode of reasoning to get the

former. In both cases the same validity notion is at stake, which for ordi-

nary descriptive sentences yields the same monotonic logic as the classical

notion. However, as soon as the language is enriched with sentences that

express default rules and operators like ‘presumably’ the logic gets non-

monotonic, because sentences starting with ‘presumably’ are special —

they are non-persistent.

The specific theory of defaults developed in the preceding sections is

not the only possible one within the framework of update semantics.

Indeed, one would hope that somebody will come up with a more elegant

formalisation of the same intuitive ideas. Still, I think that these intuitive

ideas, culminating in the coherence criterion and the applicability crite-

rion, are sound, and I take the fact that the theory behaves a lot better than

other theories in predicting the capricious logical behaviour of defaults to

be evidence in favour of this position.
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I hope that the ideas set out in this paper will be helpful not only to

logicians interested in defaults, but also to linguists interested in the se-

mantics of generic sentences. I realise, however, that what I offer here is

at best one missing piece in a giant puzzle — nobody knows how many

pieces are still missing, let alone how they fit together. I have given a lo-

gical analysis of one particular kind of generic sentence, viz. sentences of

the form ‘P's normally are Q’. And whatever merits this analysis may

have, it does not say anything about the relation between this particular

kind of generic sentence and other kinds. It does not explain why a sen-

tence of the form

 (i) P's normally are Q

so often conveys the same information as (ii)-(iv):
(ii) the P is Q

(iii) P's are Q

(iv) a P is Q

It does not even explain why such sentences are often equivalent to:

(v) Normally P's are Q

In the AI-literature, these sentence forms are often used interchange-

ably. And, indeed, there are many instances where all of them seem to

have the same impact. Compare for example:
 (i)' Tigers normally have four legs

(ii)' The tiger has four legs

(iii)' Tigers have four legs

(iv)' A tiger has four legs

(v)' Normally tigers have four legs

But linguists, much more so than logicians, have always been aware of the

differences between these sentence forms. If sentences of the form (i)-(v)

really were always equivalent, we could say:

(i)" Tigers normally are extinct

and mean the same as we would mean with (ii)" or (iii)"
(ii)" The tiger is extinct

Likewise, if (i) and (ii) really were equivalent, the sentence
(iii) ''' Tigers eat people

would imply

(i) ''' Tigers normally eat people

And what to think of the next sentence?
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 (iv)''''   A tiger is available

Whatever this means, it is not equivalent to

(i) ''''  Tigers normally are available

which in its turn differs widely in meaning from

(v)'''' Normally tigers are available

This is just a sample from the long list of problems surrounding

generic sentences12. Since Carlsson[1977] it is clear that part of the solu-

tion lies in a proper subcategorization of predicates, some being exclu-

sively predicable of kinds, other primarily of individuals, and still other

primarily of temporal stages of individuals. But so far there is no theory

explaining when a generic sentence can get a default reading, and how

such a reading comes about. This paper does not offer such a theory either

— at best it explains what a default reading amounts to.13
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1  This notion of meaning underlies much recent work in formal semantics. Its origin can be
traced back to Robert Stalnaker's work on presupposition and assertion. (See for instance
Stalnaker[1974]). It took further shape in the work of Hans Kamp and Irene Heim on
anaphora, and in Peter Gärdenfors's work on the dynamics of belief (See for example
Kamp[1981], Heim[1982], and Gärdenfors[1984]). The most direct inspiration for the
present paper came from the work of Jeroen Groenendijk and Martin Stokhof on Dynamic
Predicate Logic. (See Groenendijk, J. and M. Stokhof[1991]).
2  See Beaver[1991] and Zeevat[1992] for more elaborated views.
3  I use the phrases ‘knowledge’ and ‘knowledge state’ where the reader might prefer
‘beliefs’ and ‘belief state’. Actually, I want the information states σ to represent some-

thing in between: if σ is the state of a given agent, it should stand for what the agent
regards as his or her knowledge. Things the agent would qualify as mere beliefs do not
count. But it might very well be that something the agent takes as known, is in fact false.
4   It is not possible to formalise this example within in the present system, because the set
s in an information state <ε, 

 

s>models the agent‘s knowledge of the ‘actual’ situation. It
would be more general to work with states <ε, ƒ>, where ε is a pattern on W (just like
above) and ƒ is a function which assigns to every point of time t a subset ƒ(t) of W , rep-
resenting the agent’s knowledge of the situation at time t. In so doing, we could also for-
mally deal with an agent’s expectations about tomorrow‘s weather.
5   In trying to get to grips with the definition of an information state, the reader may have
wondered why the pattern ε in a state <ε, s> is taken to be a pattern on W rather than s.
Could not <ε 

 

∩(sxs)> do the job that is now done by <ε, s>? The answer to this question
is no: under the alternative definition rules would no longer be persistent.
6  We restrict our attention here to a language in which the necessity operator only occurs
as the outermost operator of a sentence. It is not difficult to extend the theory in such a
manner that not only default rules but also strict rules can be understood by our agents.
Here is the basic idea: A state σ is a pair <ε 

 

, 

 

s> just like before, only now ε is a pattern on
a subset V of W of rather than on W itself. As the next update clause shows, V is de-
termined by the strict rules the agent is acquainted with: a world w is an element of V just
in case every proposition that the agent considers necessary holds in w.
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7  I cannot prove that it is impossible for there to be an update system for which the fol-
lowing would hold:

(i) normally 

 

p ||- normally 

 

(p 

 

∨ 

 

q);
(ii) normally 

 

p, ¬p 

 

||-/ 

 

presumably q;
(iii) normally 

 

(p 

 

∨ 

 

q), ¬p 

 

||- presumablyq.
However, if you want such a system you will have to give up Sequential Cut. (To see
why, suppose (i) holds. Given Sequential Cut and (ii), it follows that normally 

 

p, nor-
mally 

 

(p 

 

∨ 

 

q), ¬p 

 

||-/ 

 

presumably q. But this is almost as bad as not having (iii).
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8  Things go also wrong if one equates ‘if q, then normally ¬p’ with ‘q 

 

⊃ normally ¬p’.
This sentence would at best bring the agents in a state in which they believe that either q
happens to be false in the actual world, or p is normally not the case.  (NB: Officially
q 

 

⊃normally ¬p is not a sentence of LA
2 ).

9  A selection function is a function ƒ that assigns to each subset d of W, a subset ƒ(d) of
d. Intuitively, ƒ(d) contains the normal elements of d.
10   Here ‘suitable’ means ‘everything that can be said in the net language, can be said in
the language LA3 ’ . I am going to be rather sloppy in distinguishing between the two.
11  In most conditional logics CI holds unrestictedly: ||- φ 

 

~> 

 

φ. I had to make one proviso:
φ 

 

~> 

 

φ is only valid for non-contradictory φ. (In absurd circumstances nothing is normal)
12   See Krifka[1987] for a mind boggling overview.
13  This paper had many drafts.  The first was published in Report 2.5.A of the ESPRIT
Basic Research Action 3175, DYANA, Centre for Cognitive Science, Edinburgh, 1990.


