Neural Nets and Symbolic Reasoning

Hopfield Networks
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1 The idea of pattern completion




Noisy Input Stored [mage

e Noisy or underspecified

input

e Mechanism  of  pattern

completion (using stored .-_
images) ¢
e Stored patterns are -
addressable by content, not
pointers (as 1n traditional
computer memories)
Stored Image Stored Image
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a fast car

a fast typist

a fast book

a fast driver

[one that moves quickly]

[a person that performs the
act of typing quickly]

[one that can be read in a
short time]

[one who drives quickly]



Example from semantics: 4 red apple

What color is an apple?
Q; What color is its peel?
Q, What color is its pulp?

a. a red apple red peel]

b. a sweet apple sweet pulp]

C. a reddish grapefruit ‘reddish pulp]
d. a white room/ a white house [inside/outside]



2 The fast dynamics of Hopfield networks
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A neural network N can be defined as a quadruple <S,F,W,G>:

e S: Space of all possible states

e W: Set of possible configurations. we W describes for each pair 1,j of

"neurons" the connection wj; between 1 and j

e F: Set of activation functions. For a given configuration we W: the

function f,,eF describes how the neuron activities spread through that

network (fast dynamics)

e (: Set of learning functions (slow dynamics)



Discrete dynamic systems

s (t + 1) = 8 (§ (t )) s(t) is a vector of the space of states S

Continuous dynamic systems

d . -
ES (1) = g(5(2)) the function g describes the fast dynamics

Dynamical Systems + Neural Networks =Neurodynamics

e Tools from dynamical systems, statistics and statistical physics can be

used. Very rich field.

e The triple <S,F,W> corresponds to the fast neurodynamics



What can recurrent networks do?

Associative memories

Pattern completion

Noise removal

General networks (can implement everything feedforward networks
can do, and even emulate Turing machines)

Spatio-temporal pattern recognition

Dynamic reconstruction
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J.J.Hopfield (1982), "Neural networks and physical systems with
emergent collective computational abilities", Proceedings of the
National Academy of Sciences 79, 2554-2558.

An autoassociative, fully connected network with binary neurons,
asynchronous updates and a Hebbian learning rule. The “classic”

recurrent network

Computational properties of use to biological organisms or to the construction
of computers can emerge as collective properties of systems having a large
number of simple equivalent components (or neurons). The physical meaning
of content-addressable memory is described by an appropriate phase space

flow of the state of the system. ...
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Concise description of the fast dynamics

Let the interval [-1,+1] be the

working range of each neuron

+1: maximal firing rate

0: resting

S=[-1,1]"

Wij = Wii , Wi = 0

ASYNCHRONOUS UPDATING:
0 (% wijsj(t)), 1f 1=rand(1,n)
si(t+l) = {

si(t), otherwise
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A state s in S is called a resonance of a dynamic system [S, f] iff
1. f(s) =s (equilibrium)

2. For each ¢>0 there exists a
0<0<g such that for all n>1
f, (s’)-s| < € whenever [s’-s| <0
(stability)

3. For each &>0 there exists a

0<06<g such that lim,_,,, f'(s’) = s

whenever s’-s|] < 0O

(asymptotic stability)
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How can we be sure the dynamics converges to any attractor? Why
cannot it enter an endless loop s' 55 > s —>§ —>...?

Answer (and the secret of the Hopfield network’s popularity): the
energy function (also called Ljapunov function).

An energy function (Lyapunov function) always decreases
monotonically as we change state and 1s bounded below. The descent
to lower energy levels will have to end eventually at a local
minimum.

Energy landscapes are a popular (and

somewhat dangerous) analogy.
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Definition A neural network [S,W,F] 1s called a resonance system iff

lim,_,., f'(s) exists and is a resonance for each s€S and feF.

Theorem 1 (Cohen & GroB3berg 1983)

Hopfield networks are resonance systems.

(The same holds for a large class of other systems: The McCulloch-Pitts
model (1943), Cohen-Grossberg models (1983), Rumelhart's Interactive
Activation model (1986), Smolensky's Harmony networks (1986), etc.)
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Lemma (Hopfield 1982)

The function E(s) = -%2 2. wysi s is a Ljapunov-function of the system
in the case of asynchronous updates.
That means:

e when the activation state of the network changes, E can either
decrease or remain the same.

Consequence: The output states lim,_,,, f'(s) can be characterized as the
local minima of the Ljapunov-function.

Remark: E(s) = -5 2 wijsiSj = -2.i<j Wi Sisj (symmetry!)
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For the proof we assume a discrete working space (s; =+t 1)
Let node 1 be selected for update:

si(t+1) =0 (Z; wyysi(1); sj(t+1) = si(t) for j=1
Case 1: s,(t+1) = s,(t), then E(t+1) — E(t) = 0

Case 2: si(t+1) = -s4(t) [binary threshold!, working space {-1, +1}]
We have E(s(t)) = -2.i; wj; si(t) sj(t). For the difference E(t+1)—E(t)
only the terms Wlth index 1=1, 1<j matter. Consequently,
E(HD-E() = - Sy wiysi(tH]) 0 + Sy wygsi (1) s(0) =
-2 wijsi(t+]) Sj(t) - Zj wijsi(ttl) si(t) = -2 si(tH1)-25 wy; si(t) <0

because the two factors have the same sign!
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e What 1s the Ljapunov-function E(x,y) for this system?

e What is the global minimum? (assuming binary activations *1)

18



Example

(V y3 E — 'Zi<j Wij Si SJ

E(x,y) =—-0.2x — 0.3y + xy

X y E
1 1 S
1 -1 -.9
-1 1 -1.1
-1 -1 1.5
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Theorem 2 (Hopfield 1982)

The output states lim,,, f'(s) can be
characterized as the global minima of the

Ljapunov-function if certain stochastic

asynchronous

update functions f are considered updates

asynchronous updates with fgll

("simulated annealing").

What we need 1s a probability distribution for the states P(s) for each
time and a stochastic update rule which respects that there 1s some

stochastic disturbance during updating the activation vectors.
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How to escape local minima?

e One 1dea: add randomness, so that we can go uphill sometimes. Then
we can escape shallow local minima and more likely end up in deep

minima. We can use a probabilistic update rule.

e Too little randomness: we end up 1n local minima. Too much, and we

jump around instead of converging.

e Solution by analogy from thermodynamics: annealing through slow
cooling. Start the network in a high temperature state, and slowly

decrease the temperature according to an annealing schedule.
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What is a plausible probability distribution for activation states?

1. Assume that the probability of an activation state 1s an function of its
energy: P(s) = {(E(s))

2. Assume independent probability distributions for independent subnets
E(s®s') = E(s) + E(s'); P(s®s') = P(s) - P(s")

(*) f(E+E") = {(E) - f(E')

Assume f 1s a continuous function that satisfies f, then 1t must be an

exponential function. Hence,

P(s) = const - " | or with k = - 1/T:

P(s) = const - ¢
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Assume (without restricting generality) that unit 1 1s selected for
updating at time t and has activity —1 at time ¢. Should it flip from —1 to

+1 at time t+1? The energy E = —2.i; wy; s; s; is relevant!

t: s;=—1

t+1 s;=-—1 s;=+1

Energy E E — 2> wy; s;

Prob ¢ - exp(—E/T) c - exp((-E+2%; wy; s; )/T)

If 2 wy; s; is positive, then flip the activation with a probability that
increases exponentially with the energy difference 22, wy; s; :
P(s;=+1) =o(2(2; wy; s; )/T) with the sigmoid function o.

Classical rule for T — 0
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At each step, select a unit and calculate the energy difference AE

between its current state and its flipped state.

If AE > 0 don't flip the unit.
If AE <0, flip the unit with probability c(-AE/T).

After around n such steps, lower the temperature further and repeat the

cycle again.

Geman and Geman (1984)
If the temperature in cycle k satisfies Ti > /% for every kand Ty is
large enough, then the system will with probability one converge to the

minimum energy configuration.
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3 Learning with Hopfield networks
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Generalized Hebbian rule for a single neuron confronted with a input
vector s, working space S = {-1, 1}
Aw = 1 sr?  deD

Hopfield used this rule for his networks:
Aw;; = n- st ri'  orequivalently
Aw;; = 1 sJ ) deD and i#j!

In this case, the resulting connection matrix can be

shown to be

1 d d . ..
Wi = /N 2Zdep Sy S;  for 1#); zero for 1)
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e Consider a network with 3 neurons. Teach the system with the input
vector (1 1 1). What 1s the weight matrix?

e Take the same system, but now teach the system with two input
vectors (1 1 1) and (-1 -1 -1). Is there a behavioural difference that
corresponds by adding the second input vector? Take the activation

function to be a binary threshold.
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e Consider a network with 3 neurons. Teach the system with the input
vector (1 1 1). What 1s the weight matrix?
0 1 1
w=|1 0 1
1 1T O
e Take the same sytem, but now teach the system with two input
vectors (1 1 1) and (-1 -1 -1). Is there a behavioural difference that
corresponds by adding the second input vector? Take the activation

function to be a binary threshold.

0O 1 1
w=|1 0 1 No behavioural difference to the case before
1 1 O
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4 Emerging properties of Hopfield networks

S
O e
L
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Store a set of patterns { s } in such a way that when presented with a
pattern s™ it will respond with the stored pattern that is most similar
to 1it. Maps patterns to patterns of the same type. (€.g. a noisy or

incomplete record maps to a clear record).

e Mechanism of pattern completion: The stored
patterns are attractors. If the system starts
outside any of the attractors it will begin to

move towards one of them.

e Stored patterns are addressable by content, not

pointers (as 1n traditional computer memories)

See the link Hopfield network as associative memory on the website
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The 1nputted patterns of
activation are resonances.
However, they are not the only

resonances of the system

The state (-1, -1, ..., -1) is

always a resonance

If s is a resonance, S0 1S -

Main resonances
@® Secondary resonances
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e How many patterns can a n unit network store?

e The more patterns added, the more crosstalk and spurious states

(second. resonances). The larger the network, the greater the capacity.

e It turns out that the capacity is
50

roughly  proportional to n:
l‘.r

. (]
M = a - n, where M 1s the number ecrmors

of mputted pattern that can be
correctly reproduced (with an error

probability of p)

A

Notc
scale
discontinuity

r_
| L ) S )
gl 012 013 0l4 045
(04
T o =0.138
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If we want peror = 0.01, then A

o L
M = 0.105 - n. This 1s an upper bound. L Nove

% i scale
At M =0.138: n patterns the network erors ] comtinuity
suddenly breaks down and cannot i/
recall anything useful (“catastrophic o B——/—", ., ,

. a1t 0.12 013 014 045
forgetting”). o
t o =0.138

The behaviour around o = 0.138
corresponds to a phase transition in physics (solid — liquid).

Physical analogy: spin glasses. Unit states correspond to spin states in
a solid. Each spin 1s affected by the spins of the others plus thermal

noise, and can flip between two states (1 and -1).
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5 Conclusions

Hopfield nets are "the harmonic oscillator" in modern

neurodynamics

the idea of resonance systems

the 1dea of simulated annealing

the 1dea of content addressable memory

very simple learning theory based on the generalized Hebbian rule.
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