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1  The idea of pattern completion 
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Example from visual recognition 
 

• Noisy or underspecified 
input 

 

• Mechanism of pattern 
completion (using stored 
images) 

 

• Stored patterns are 
addressable by content, not 
pointers (as in traditional 
computer memories) 
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Example from semantics: A fast car 
 

 
 a. a fast car   [one that moves quickly] 

 b. a fast typist  [a person that performs the 
act of typing quickly] 

 c. a fast book  [one that can be read in a 
short time] 

 d. a fast driver  [one who drives quickly] 
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Example from semantics: A red apple 
 
        A red apple? 

        
       What color is an apple? 
       Q1 What color is its peel? 
       Q2 What color is its pulp? 
 

       
a. a red apple    [red  peel] 
b. a sweet apple   [sweet pulp] 
c. a  reddish grapefruit          [reddish pulp] 
d. a white room/ a white house [inside/outside] 
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2  The fast dynamics of Hopfield networks 
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Abstract description of neural networks 

 
A neural network N can be defined as a quadruple <S,F,W,G>: 
 

• S: Space of all possible states 
 

• W:  Set of possible configurations. w∈W describes for each pair i,j of 
"neurons" the connection wij between i and j 

 

• F: Set of activation functions. For a given configuration w∈W: the 
function fw∈F describes how the neuron activities spread through that 
network  (fast dynamics) 

 

• G: Set of learning functions (slow dynamics) 
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Dynamic systems 

 
Discrete dynamic systems 

))(()1( tsgts rr
=+   s(t) is a vector of the space of states S 

 

Continuous dynamic systems  

))(()( tsgts
dt
d rr

=  the function g describes the fast dynamics 

 

Dynamical Systems + Neural Networks =Neurodynamics 
• Tools from dynamical systems, statistics and statistical physics can be 

used. Very rich field. 
• The triple <S,F,W> corresponds to the fast neurodynamics 
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The importance of recurrent systems  

 
What can recurrent networks do? 
 

• Associative memories 

• Pattern completion 

• Noise removal 

• General networks (can implement everything feedforward networks 

can do, and even emulate Turing machines) 

• Spatio-temporal pattern recognition 

• Dynamic reconstruction 
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Hopfield networks  

 
J.J.Hopfield (1982), "Neural networks and physical systems with 
emergent collective computational abilities", Proceedings of the 
National Academy of Sciences 79, 2554-2558. 
 

An autoassociative, fully connected network with binary neurons, 
asynchronous updates and a Hebbian learning rule. The “classic” 
recurrent network  

 
Computational properties of use to biological organisms or to the construction 
of computers can emerge as collective properties of systems having a large 
number of simple equivalent components (or neurons). The physical meaning 
of content-addressable memory is described by an appropriate phase space 
flow of the state of the system. … 
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 Concise description of the fast dynamics 
 
Let the interval [-1,+1] be the 
working range of each neuron  
 

+1: maximal firing rate 
  0: resting 
-1 : minimal firing rate) 
 

S = [-1, 1] n 

wij = wji , wii = 0 
 

ASYNCHRONOUS UPDATING: 
            θ (Σj wij⋅sj(t)),  if  i = rand(1,n) 
s i(t+1)  = 
            si(t),  otherwise 
 

Step 3 Step 4

Step 98651 Step 98652

Step 1 Step 2
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Definition of resonances of a dynamical system 

 
A state 0   s in S is called a resonance of a dynamic system [S, f] iff 
 

1. f(s) = s   (equilibrium) 
  

2. For each ε>0  there exists a 
0<δ≤ε such that for all n≥1 
|fn (s’)-s| < ε  whenever |s’-s| < δ   

  (stability) 
 

3. For each ε>0 there exists a 
0<δ≤ε such that limn→∞ fn(s’) = s  
whenever      |s’-s| < δ  
               (asymptotic stability) 

reinhard
Rechteck
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Energy and convergence  

 
• How can we be sure the dynamics converges to any attractor? Why 

cannot it enter an endless loop    s1 → s2 → s3 → s1 → . . . ? 

• Answer (and the secret of the Hopfield network’s popularity): the 
energy function (also called Ljapunov function). 

• An energy function (Lyapunov function) always decreases 
monotonically as we change state and is bounded below. The descent 
to lower energy levels will have to end eventually at a local 
minimum. 

• Energy landscapes are a popular (and 
somewhat dangerous) analogy.  
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 Resonance systems 

 
Definition  A neural network [S,W,F] is called a resonance system iff 
limn→∞ fn(s) exists and is a resonance for each s∈S and f∈F.  
 

Theorem 1 (Cohen & Großberg 1983) 
Hopfield networks are resonance systems. 
(The same holds for a large class of other systems: The McCulloch-Pitts 
model (1943), Cohen-Grossberg models (1983), Rumelhart's Interactive 
Activation model (1986), Smolensky's Harmony networks (1986), etc.) 
 

 



 16

Ljapunov-function 
  

Lemma (Hopfield 1982) 
The function E(s) = -½ ∑i,j wij si sj  is a Ljapunov-function of the system 
in the case of asynchronous updates.  
That means:  
• when the activation state of the network changes, E can either 

decrease or remain the same.  
 
Consequence: The output states limn→∞ fn(s) can be characterized as the 
local minima of the Ljapunov-function.   
 
Remark: E(s) = -½ ∑i,j wij si sj  = -∑i<j wij si sj  (symmetry!) 
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Proof 
  

For the proof we assume a discrete working space (si = ± 1) 
Let node 1  be selected for update:  
s1(t+1) = θ (Σj w1j⋅sj(t)); sj(t+1) = sj(t) for j≠1 
 

Case 1: s1(t+1) = s1(t), then E(t+1) – E(t) = 0 
 

Case 2: s1(t+1) = -s1(t) [binary threshold!, working space {-1, +1}] 
We have E(s(t)) = -∑i<j wij si(t) sj(t). For the difference E(t+1)–E(t)  
only the terms with index i=1, 1<j matter. Consequently,  

     E(t+1)–E(t) =  - ∑j>1 w1j s1(t+1)  sj(t)  +  ∑j>1 w1j s1(t)  sj(t) = 
-∑j w1j s1(t+1) sj(t) - ∑j w1j s1(t+1)  sj(t) = -2 s1(t+1)⋅∑j w1j  sj(t) < 0  
because the two factors have the same sign! 
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Example 
 

 
 
 
 
 
 
 
 
• What is the Ljapunov-function E(x,y) for this system? 
• What is the global minimum? (assuming binary activations ±1) 

0.3 

-1 

0.2

1

x y
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Example 
 

 
 

E = -∑i<j wij si sj   
 
 
 
 
    E(x,y) = –0.2x – 0.3y + xy 

 
x y E 
1 
1 
-1 
-1 

1 
-1 
1 
-1 

.5 
-.9 
-1.1 
1.5 

0.3

-1 

0.2

1

x y
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Global Minima 
  

 
 

Theorem 2 (Hopfield 1982) 
The output states limn→∞ fn(s) can be 
characterized as the global minima of the 
Ljapunov-function if certain stochastic 
update functions f are considered 
("simulated annealing"). 

 
What we need is a probability distribution for the states P(s) for each 
time and a stochastic update rule which respects that there is some 
stochastic disturbance during updating the activation vectors. 

E start

A

Basynchronous
updates

asynchronous updates with fault
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Simulated annealing 
  

How to escape local minima? 
 

• One idea: add randomness, so that we can go uphill sometimes. Then 
we can escape shallow local minima and more likely end up in deep 
minima. We can use a probabilistic update rule. 

 

• Too little randomness: we end up in local minima. Too much, and we 
jump around instead of converging. 

 

• Solution by analogy from thermodynamics: annealing through slow 
cooling. Start the network in a high temperature state, and slowly 
decrease the temperature according to an annealing schedule. 
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Deriving a probability distribution 
  

What is a plausible probability distribution for activation states? 
1. Assume that the probability of an activation state is an function of its 

energy: P(s) = f(E(s))  
2. Assume independent probability distributions for independent subnets 

E(s⊕s') = E(s) + E(s');  P(s⊕s') = P(s) ⋅ P(s')  
 

(*) f(E+E') = f(E) ⋅ f(E') 
 

Assume f is a continuous function that satisfies f, then it must be an 
exponential function. Hence, 

P(s) = const ⋅ ek⋅E(s) , or with k = - 1/T: 
P(s) = const ⋅ e-E(s)/T  
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A probabilistic update rule 
  

Assume (without restricting generality) that unit 1 is selected for 
updating at time t  and has activity −1 at time t. Should it flip from −1 to 
+1 at time t+1? The energy E = –∑i<j wij si sj  is relevant! 
 

t:     s1 = –1, s2, …, sn   
t+1   s1 = –1, s2, …, sn       s1 = +1, s2, …, sn    
Energy E       E – 2∑j w1j  sj 
Prob  c ⋅ exp(–E/T)   c ⋅ exp((–E+2∑j w1j  sj )/T) 
 

If  ∑j w1j  sj is positive, then flip the activation with a probability that 
increases exponentially with the energy difference 2∑j w1j  sj : 
P(s1 = +1) = σ(2(∑j w1j  sj )/T)  with the sigmoid function σ.   
Classical rule for T → 0 
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The Metropolis algorithm 
  

At each step, select a unit and calculate the energy difference ∆E 
between its current state and its flipped state. 
 

If ∆E ≥ 0 don't flip the unit. 
If ∆E < 0, flip the unit with probability σ(-∆E/T). 
 

After around n such steps, lower the temperature further and repeat the 
cycle again. 
 
Geman and Geman (1984) 
If the temperature in cycle k satisfies                       for every k and T0 is 
large enough, then the system will with probability one converge to the 
minimum energy configuration. 
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3  Learning with Hopfield networks 
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The basic idea 
   

Generalized Hebbian rule for a single neuron confronted with a input 
vector sd,  working space S = {-1, 1} 
∆w =  η⋅sd⋅rd     d∈D 

 

Hopfield used this rule for his networks: 
∆wij =  η⋅sj

d⋅ri
d     or equivalently 

∆wij =  η⋅sj
d⋅si

d     d∈D   and i≠j! 

In this case, the resulting connection matrix can be 
shown to be   
wij =  1/N ⋅ Σd∈D sj

d⋅si
d     for i≠j; zero for i=j 
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 Example 
 

 

• Consider a network with 3 neurons. Teach the system with the input 
vector (1 1 1). What is the weight matrix? 

 
 
 
• Take the same system, but now teach the system with two input 

vectors (1 1 1) and (-1 -1 -1). Is there a behavioural difference that 
corresponds by adding the second input vector? Take the activation 
function to be a binary threshold. 
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 Example 
 

 

• Consider a network with 3 neurons. Teach the system with the input 
vector (1 1 1). What is the weight matrix? 
















=

011
101
110

w  

• Take the same sytem, but now teach the system with two input 
vectors (1 1 1) and (-1 -1 -1). Is there a behavioural difference that 
corresponds by adding the second input vector? Take the activation 
function to be a binary threshold. 

  















=

011
101
110

w     No behavioural difference to the case before
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4   Emerging properties of Hopfield networks 
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Auto-associative memory 
 

Store a set of patterns { sd } in such a way that when presented with a 
pattern sx it will respond with the stored pattern that is most similar 
to it. Maps patterns to patterns of the same type. (e.g. a noisy or 
incomplete record maps to a clear record). 
 

• Mechanism of pattern completion: The stored 
patterns are attractors. If the system starts 
outside any of the attractors it will begin to 
move towards one of them.  

• Stored patterns are addressable by content, not 
pointers (as in traditional computer memories) 

 

See the link Hopfield network as associative memory on the website 
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Some properties 
 
 
• The inputted patterns of 

activation are resonances. 
However, they are not the only 
resonances of the system 

 

• The state (-1, -1, …, -1) is 
always  a resonance 

 

• If s is a resonance, so is -s 
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Capacity 
 

• How many patterns can a n unit network store? 
• The more patterns added, the more crosstalk and spurious states 

(second. resonances). The larger the network, the greater the capacity. 
• It turns out that the capacity is 

roughly proportional to n:  
M = α ⋅ n, where M is the number 
of inputted pattern that can be 
correctly reproduced (with an error 
probability of  p)  
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Phase transition 
 

 

• If we want perror = 0.01, then  
M = 0.105 ⋅ n. This is an upper bound. 

• At  M = 0.138⋅ n  patterns the network 
suddenly breaks down and cannot 
recall anything useful (“catastrophic 
forgetting”). 

• The behaviour around α = 0.138 
corresponds to a phase transition in physics (solid – liquid). 

• Physical analogy: spin glasses. Unit states correspond to spin states in 
a solid. Each spin is affected by the spins of the others plus thermal 
noise, and can flip between two states (1 and -1). 
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5   Conclusions 
 

 Hopfield nets are  "the harmonic oscillator" in modern 
neurodynamics 

 

 the idea of resonance systems 
 

 the idea of simulated annealing 
 

 the idea of content addressable memory 
 

 very simple learning theory based on the generalized Hebbian rule.  
 
 


