Neural Nets and Symbolic Reasoning Hopfield Networks

0	-2	-2	2	-2	4	0	2	-2	2	0	2	0	0	0	-2
-2	0	4	0	0	-2	-2	0	0	0	2	0	-2	-2	-2	0
-2	4	0	0	0	-2	-2	0	0	0	2	0	-2	-2	-2	0
2	0	0	0	0	2	2	0	0	0	2	0	-2	2	2	0
-2	0	0	0	0	-2	2	0	4	-4	-2	0	-2	2	2	0
4	-2	-2	2	-2	0	0	2	-2	2	0	2	0	0	0	-2
0	-2	-2	2	2	0	0	-2	2	-2	0	-2	0	4	4	2
2	0	0	0	0	2	-2	0	0	0	-2	4	-2	-2	-2	-4
-2	0	0	0	4	-2	2	0	0	-4	-2	0	-2	2	2	0
-2 2	0 0	0 0	0 0	4 -4	-2 2	2 -2	0 0	0 -4	-4 0	-2 2	0 0	-2 2	2 -2	2 -2	0 0
-2 2 0	0 0 2	0 0 2	0 0 2	4 -4 -2	-2 2 0	2 -2 0	0 0 -2	0 -4 -2	-4 0 2	-2 2 0	0 0 -2	-2 2 0	2 -2 0	2 -2 0	0 0 2
-2 2 0 2	0 0 2 0	0 0 2 0	0 0 2 0	4 -4 -2 0	-2 2 0 2	2 -2 0 -2	0 0 -2 4	0 -4 -2 0	-4 0 2 0	-2 2 0 -2	0 0 -2 0	-2 2 0 -2	2 -2 0 -2	2 -2 0 -2	0 0 2 -4
-2 2 0 2 0	0 0 2 0 -2	0 0 2 0 -2	0 0 2 0 -2	4 -4 -2 0 -2	-2 2 0 2 0	2 -2 0 -2 0	0 -2 4 -2	0 -4 -2 0 -2	-4 0 2 0 2	-2 2 0 -2 0	0 0 -2 0 -2	-2 2 0 -2 0	2 -2 0 -2 0	2 -2 0 -2 0	0 0 2 -4 2
-2 2 0 2 0 0	0 2 0 -2 -2	0 2 0 -2 -2	0 2 0 -2 2	4 -4 -2 0 -2 2	-2 2 0 2 0 0	2 -2 0 -2 0 4	0 -2 4 -2 -2	0 -4 -2 0 -2 2	-4 0 2 0 2 -2	-2 2 0 -2 0 0	0 -2 0 -2 -2	-2 2 0 -2 0 0	2 -2 0 -2 0 0	2 -2 0 -2 0 4	0 2 -4 2 2
-2 2 0 2 0 0 0	0 2 0 -2 -2 -2	0 2 0 -2 -2 -2	0 2 0 -2 2 2	4 -4 -2 0 -2 2 2	-2 2 0 2 0 0 0	2 -2 0 -2 0 4 4	0 -2 4 -2 -2 -2	0 -4 -2 0 -2 2 2	-4 0 2 0 2 -2 -2	-2 2 0 -2 0 0 0	0 -2 0 -2 -2 -2	-2 2 0 -2 0 0 0	2 -2 0 -2 0 4	2 -2 0 -2 0 4 0	0 2 -4 2 2 2

Outline

- The idea of pattern completion
- The fast dynamics of Hopfield networks
- Learning with Hopfield networks
- Emerging properties of Hopfield networks
- **Conclusions**

1 The idea of pattern completion

Example from visual recognition

- Noisy or underspecified input
- Mechanism of pattern completion (using *stored* images)
- Stored patterns are addressable by *content*, not *pointers* (as in traditional computer memories)

- a. *a fast car* [one that moves quickly]
- b. *a fast typist* [a
 - c. *a fast book*
 - d. *a fast driver*

[one that moves quickly] [a person that performs the act of typing quickly] [one that can be read in a short time] [one who drives quickly]

Example from semantics: A red apple

A red apple?

What color is an apple?Q₁ What color is its peel?Q₂ What color is its pulp?

- a. a red apple
- b. a sweet apple
- c. a reddish grapefruit
- d. a white room/ a white house

[red peel]
[sweet pulp]
[reddish pulp]
[inside/outside]

2 The fast dynamics of Hopfield networks

E	🗖 🛃 🛛 🗙 xhopf									► 🛃 🛛 xhopf 🛛 🖂								1	xhopf											
File	Actions Settings Help					FI	File Actions Settings Help									File Actions Settings H						Help								
										I										II										
																				II										
										⊫	\top									II										
										⊫										II										
										⊫										II										
										⊫										II										
										⊫										II										
										⊫										II										
																				II										
											Г																			
											\top																			
									-																					

A neural network N can be defined as a quadruple <<u>S</u>,<u>F</u>,<u>W</u>,<u>G</u>>:

- S: Space of all possible states
- W: Set of possible configurations. w∈W describes for each pair i,j of "neurons" the connection w_{ij} between i and j
- F: Set of activation functions. For a given configuration w∈W: the function f_w∈F describes how the neuron activities spread through that network (fast dynamics)
- G: Set of learning functions (slow dynamics)

Discrete dynamic systems

$$\vec{s}(t+1) = g(\vec{s}(t))$$
 s(t) is a vector of the space of states S

Continuous dynamic systems

 $\frac{d}{dt}\vec{s}(t) = g(\vec{s}(t)) \qquad \text{the function } g \text{ describes the fast dynamics}$

Dynamical Systems + Neural Networks = Neurodynamics

- Tools from dynamical systems, statistics and statistical physics can be used. Very rich field.
- The triple *<***S**,**F**,**W***>* corresponds to the *fast* neurodynamics

The importance of recurrent systems

What can recurrent networks do?

- Associative memories
- Pattern completion
- Noise removal
- General networks (can implement everything feedforward networks can do, and even emulate Turing machines)
- Spatio-temporal pattern recognition
- Dynamic reconstruction

J.J.Hopfield (1982), "Neural networks and physical systems with emergent collective computational abilities", *Proceedings of the National Academy of Sciences* 79, 2554-2558.

An autoassociative, fully connected network with binary neurons, asynchronous updates and a Hebbian learning rule. The "classic" recurrent network

Computational properties of use to biological organisms or to the construction of computers can emerge as collective properties of systems having a large number of simple equivalent components (or neurons). The physical meaning of content-addressable memory is described by an appropriate phase space flow of the state of the system. ...

Concise description of the fast dynamics

Let the interval [-1,+1] be the *working range* of each neuron

+1: maximal firing rate0: resting-1 : minimal firing rate)

$$\begin{split} \mathbf{S} &= \left[\textbf{-1} , \, 1 \right]^{\,n} \\ \mathbf{w}_{ij} &= \mathbf{w}_{ji} \; , \, \mathbf{w}_{ii} = \mathbf{0} \end{split}$$

ASYNCHRONOUS UPDATING:

 $s_{i}(t+1) = \begin{cases} \theta (\Sigma_{j} w_{ij} \cdot s_{j}(t)), & \text{if } i = rand(1,n) \\ s_{i}(t), & \text{otherwise} \end{cases}$

- A state s in S is called a resonance of a dynamic system [S, f] iff
- 1. f(s) = s (equilibrium)
- 2. For each $\varepsilon > 0$ there exists a $0 < \delta \le \varepsilon$ such that for all $n \ge 1$ $|f_n(s')-s| < \varepsilon$ whenever $|s'-s| < \delta$ (stability)
- 3. For each $\varepsilon > 0$ there exists a $0 < \delta \le \varepsilon$ such that $\lim_{n \to \infty} f^n(s') = s$ whenever $|s'-s| < \delta$ (asymptotic stability)

- How can we be sure the dynamics converges to any attractor? Why cannot it enter an endless loop $s^1 \rightarrow s^2 \rightarrow s^3 \rightarrow s^1 \rightarrow \dots$?
- Answer (and the secret of the Hopfield network's popularity): the energy function (also called *Ljapunov* function).
- An energy function (Lyapunov function) always decreases monotonically as we change state and is bounded below. The descent to lower energy levels will have to end eventually at a local minimum.
- Energy landscapes are a popular (and somewhat dangerous) analogy.

Definition A neural network [S,W,F] is called a resonance system iff $\lim_{n\to\infty} f^n(s)$ exists and is a resonance for each $s \in S$ and $f \in F$.

Theorem 1 (Cohen & Großberg 1983)

Hopfield networks are resonance systems.

(The same holds for a large class of other systems: The McCulloch-Pitts model (1943), Cohen-Grossberg models (1983), Rumelhart's Interactive Activation model (1986), Smolensky's Harmony networks (1986), etc.)

Lemma (Hopfield 1982)

The function $E(s) = -\frac{1}{2} \sum_{i,j} w_{ij} s_i s_j$ is a *Ljapunov-function* of the system in the case of asynchronous updates.

That means:

• when the activation state of the network changes, E can either decrease or remain the same.

Consequence: The output states $\lim_{n\to\infty} f^n(s)$ can be characterized as *the local minima* of the Ljapunov-function.

Remark: $E(s) = -\frac{1}{2} \sum_{i,j} w_{ij} s_i s_j = -\sum_{i < j} w_{ij} s_i s_j$ (symmetry!)

For the proof we assume a discrete working space ($s_i = \pm 1$) Let node 1 be selected for update: $s_1(t+1) = \theta (\Sigma_j w_{1j} \cdot s_j(t)); s_j(t+1) = s_j(t)$ for $j \neq 1$

Case 1: $s_1(t+1) = s_1(t)$, then E(t+1) - E(t) = 0

Case 2: $s_1(t+1) = -s_1(t)$ [binary threshold!, working space $\{-1, +1\}$] We have $E(s(t)) = -\sum_{i \le j} w_{ij} s_i(t) s_j(t)$. For the difference E(t+1)-E(t)only the terms with index i=1, 1<j matter. Consequently, $E(t+1)-E(t) = -\sum_{j>1} w_{1j} s_1(t+1) s_j(t) + \sum_{j>1} w_{1j} s_1(t) s_j(t) =$ $-\sum_j w_{1j} s_1(t+1) s_j(t) - \sum_j w_{1j} s_1(t+1) s_j(t) = -2 s_1(t+1) \cdot \sum_j w_{1j} s_j(t) < 0$ because the two factors have the same sign!

Example

- What is the Ljapunov-function E(x,y) for this system?
- What is the global minimum? (assuming binary activations ± 1)

$$E = \textbf{-} \sum_{i < j} \, \mathcal{W}_{ij} \, s_i \, s_j$$

$$E(x,y) = -0.2x - 0.3y + xy$$

X	У	Е
1	1	.5
1	-1	9
-1	1	-1.1
-1	-1	1.5

Theorem 2 (Hopfield 1982)

The output states $\lim_{n\to\infty} f^n(s)$ can be characterized as *the global minima* of the Ljapunov-function if certain stochastic update functions f are considered ("simulated annealing").

What we need is a probability distribution for the states P(s) for each time and a stochastic update rule which respects that there is some stochastic disturbance during updating the activation vectors.

How to escape local minima?

- One idea: add randomness, so that we can go uphill sometimes. Then we can escape shallow local minima and more likely end up in deep minima. We can use a *probabilistic update rule*.
- Too little randomness: we end up in local minima. Too much, and we jump around instead of converging.
- Solution by analogy from thermodynamics: annealing through slow cooling. Start the network in a high temperature state, and slowly decrease the temperature according to an annealing schedule.

What is a plausible probability distribution for activation states?

- Assume that the probability of an activation state is an function of its energy: P(s) = f(E(s))
- 2. Assume independent probability distributions for independent subnets $E(s \oplus s') = E(s) + E(s'); P(s \oplus s') = P(s) \cdot P(s')$

(*) $f(E+E') = f(E) \cdot f(E')$

Assume f is a continuous function that satisfies f, then it must be an exponential function. Hence,

$$P(\mathbf{s}) = \text{const} \cdot e^{k \cdot E(\mathbf{s})}, \text{ or with } k = -1/T:$$
$$P(\mathbf{s}) = \text{const} \cdot e^{-E(\mathbf{s})/T}$$

Assume (without restricting generality) that unit 1 is selected for updating at time t and has activity -1 at time t. Should it flip from -1 to +1 at time t+1? The energy $E = -\sum_{i < j} w_{ij} s_i s_j$ is relevant!

t:
$$s_1 = -1, s_2, ..., s_n$$

t+1 $s_1 = -1, s_2, ..., s_n$ $s_1 = +1, s_2, ..., s_n$
Energy E
Prob $c \cdot \exp(-E/T)$ $c \cdot \exp((-E+2\sum_j w_{1j} s_j)/T)$ $s_1 = +1$

If $\sum_{j} w_{1j} s_{j}$ is positive, then flip the activation with a probability that increases exponentially with the energy difference $2\sum_{j} w_{1j} s_{j}$: $P(s_{1} = +1) = \sigma(2(\sum_{j} w_{1j} s_{j})/T)$ with the sigmoid function σ . Classical rule for $T \rightarrow 0$ At each step, select a unit and calculate the energy difference ΔE between its current state and its flipped state.

If $\Delta E \ge 0$ don't flip the unit.

If $\Delta E < 0$, flip the unit with probability $\sigma(-\Delta E/T)$.

After around n such steps, lower the temperature further and repeat the cycle again.

Geman and Geman (1984)

If the temperature in cycle *k* satisfies $T_k \ge \frac{T_0}{\log(1+k)}$ for every *k* and T_0 is large enough, then the system will with probability one converge to the minimum energy configuration.

3 Learning with Hopfield networks

Generalized Hebbian rule for a single neuron confronted with a input vector \mathbf{s}^d , working space $S = \{-1, 1\}$ $\Delta \mathbf{w} = \eta \cdot \mathbf{s}^d \cdot \mathbf{r}^d \quad d \in D$

Hopfield used this rule for his networks: $\Delta w_{ij} = \eta \cdot s_j^{\ d} \cdot r_i^{\ d} \quad \text{or equivalently}$ $\Delta w_{ij} = \eta \cdot s_j^{\ d} \cdot s_i^{\ d} \quad d \in D \quad \text{and } i \neq j!$ In this case, the resulting connection matrix can be shown to be

 $\mathbf{w}_{ij} = \frac{1}{N} \cdot \sum_{d \in D} s_j^d \cdot s_i^d$ for $i \neq j$; zero for i = j

• Consider a network with 3 neurons. Teach the system with the input vector (1 1 1). What is the weight matrix?

• Take the same system, but now teach the system with two input vectors (1 1 1) and (-1 -1 -1). Is there a behavioural difference that corresponds by adding the second input vector? Take the activation function to be a binary threshold.

• Consider a network with 3 neurons. Teach the system with the input vector (1 1 1). What is the weight matrix?

$$w = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

• Take the same sytem, but now teach the system with two input vectors (1 1 1) and (-1 -1 -1). Is there a behavioural difference that corresponds by adding the second input vector? Take the activation function to be a binary threshold.

$$w = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$
 No behavioural difference to the case before

4 Emerging properties of Hopfield networks

Store a set of patterns $\{s^d\}$ in such a way that when presented with a pattern s^x it will respond with the stored pattern that is most similar to it. Maps patterns to patterns of the same type. (e.g. a noisy or incomplete record maps to a clear record).

- Mechanism of pattern completion: The stored patterns are attractors. If the system starts outside any of the attractors it will begin to move towards one of them.
- Stored patterns are addressable by *content*, not *pointers* (as in traditional computer memories)

See the link <u>Hopfield network as associative memory</u> on the website

Some properties

- The inputted patterns of activation are resonances. However, they are not the only resonances of the system
- The state (-1, -1, ..., -1) is always a resonance
- If **s** is a resonance, so is **-s**

- How many patterns can a *n* unit network store?
- The more patterns added, the more crosstalk and spurious states (second. resonances). The larger the network, the greater the capacity.
- It turns out that the capacity is 50 roughly proportional to **n**: Note % scale $M = \alpha \cdot n$, where M is the number errors discontinuity of inputted pattern that can be correctly reproduced (with an error 0 0.13 probability of p) 0.11 0.12 0.14 0.15 α

 $\alpha = 0.138$

- If we want $p_{error} = 0.01$, then $M = 0.105 \cdot n$. This is an upper bound.
- At M = 0.138 n patterns the network
 suddenly breaks down and cannot recall anything useful ("catastrophic forgetting").

- The behaviour around $\alpha = 0.138$ corresponds to a phase transition in physics (solid – liquid).
- Physical analogy: spin glasses. Unit states correspond to spin states in a solid. Each spin is affected by the spins of the others plus thermal noise, and can flip between two states (1 and -1).

5 Conclusions

- Hopfield nets are "the harmonic oscillator" in modern neurodynamics
- the idea of resonance systems
- the idea of simulated annealing
- the idea of content addressable memory
- very simple learning theory based on the generalized Hebbian rule.