Neural Nets and Symbolic Reasoning

Integrating Connectionism and Symbolism: Nonmonotonic Reasoning and Hopfield Nets
Outline

- Introduction
- Neural networks as dynamical systems
- Information states as neural activation patterns
- Asymptotic updates and nonmonotonic inference
- Weight-annotated Poole systems and Hopfield networks
- The link to Optimality Theory
1 Introduction

Puzzle: Gap between symbolic and subsymbolic (neuron-like) modes of processing

- **Aim:** Overcoming the gap by viewing symbolism as a high-level description of the properties of neural networks
- **Method:** standard methods of model-theoretic and algebraic semantics. Neural (Re)interpretation of information states as activation states of a neuronal network.
- **Main thesis:** Certain activities of connectionist networks can be interpreted as nonmonotonic inferences. In particular, there is a strict correspondence between certain network types and particular nonmonotonic inferential systems
Intended results

• Better understanding of connectionist networks: Nonmonotonic logic and algebraic semantics as descriptive and analytic tools for analyzing their emerging properties

• New methods for performing nonmonotonic inferences: Connectionist methods (randomised optimisation: simulated annealing) can be adopted for realizing symbolic inferences

• Certain logical systems are singled out by giving them a "deeper justification".

• Understanding Optimality Theory: Which assumptions have a deeper foundation and which ones are pure stipulations?
2 Neural networks as dynamical systems

A neural network \(N \) can be defined as a quadruple \(<S,F,W,G>:\)

- **S**: Space of all possible states
- **W**: Set of possible configurations. \(w \in W \) describes for each pair \(i,j \) of "neurons" the connection \(w_{ij} \) between \(i \) and \(j \)
- **F**: Set of activation functions. For a given configuration \(w \in W \): the function \(f_w \in F \) describes how the neuron activities spread through that network (fast dynamics)
- **G**: Set of learning functions (slow dynamics)
Hopfield network - fast dynamics

Let the interval $[-1,+1]$ be the working range of each neuron

+1: maximal firing rate
0: resting
-1: minimal firing rate

$S = [-1, 1]^n$

$w_{ij} = w_{ji}$, $w_{ii} = 0$

ASYNCHRONOUS UPDATING:

$s_i(t+1) = \begin{cases}
\theta (\sum_j w_{ij} s_j(t)), & \text{if } i = \text{rand}(1,n) \\
 s_i(t), & \text{otherwise}
\end{cases}$
Summarizing the main results

Theorem 1 (Cohen & Großberg 1983)
Hopfield networks are resonance systems (i.e. \(\lim_{n \to \infty} f^n(s) \) exists and is a resonance for each \(s \in S \) and \(f \in F \))

Theorem 2 (Hopfield 1982)
\[E(s) = -\frac{1}{2} \sum_{i,j} w_{ij} s_i s_j \] is a *Lyapunov-function* of the system in the case of asynchronous updates. The output states \(\lim_{n \to \infty} f^n(s) \) can be characterized as *the local minima* of \(E \)

Theorem 3 (Hopfield 1982)
The output states \(\lim_{n \to \infty} f^n(s) \) can be characterized as *the global minima* of \(E \) if certain stochastic update functions \(f \) are considered (faults!).
3 Information states as neural activation patterns

Activation states can be partially ordered in accordance with their informational content

+1: maximal firing rate indicating maximal specification
-1: minimal firing rate
0: resting indicating underspecification
S = \{-1,0,+1\}^n

s \geq t \text{ iff } s_i \geq t_i \geq 0 \text{ or } s_i \leq t_i \leq 0, \text{ for all } 1 \leq i \leq n \text{ read: } s \text{ is at least as specific as } t

This poset doesn't form a lattice!
Extend it to a lattice by introducing impossible activation states:

\[s \geq t \ \text{iff} \ s_i = \text{nil} \text{ or } s_i \geq t_i \geq 0 \text{ or } s_i \leq t_i \leq 0, \text{ for all } 1 \leq i \leq n \]

\[s \odot t = \sup\{s, t\} \ \text{(CONJUNCTION)} \]

* simultaneous realization of two activation states

\[s \oplus t = \inf\{s, t\} \ \text{(DISJUNCTION)} \]

* generalization of two instances of information states.

The COMPLEMENT \(s^* \) reflects a lack of information.
De Morgan lattice, cont.

\[(1)\quad (s \circ t)_i = \begin{cases} \max(s_i, t_i), & \text{if } s_i, t_i \geq 0 \\ \min(s_i, t_i), & \text{if } s_i, t_i \leq 0 \\ \text{nil, elsewhere} \end{cases} \]

\[(2)\quad (s \oplus t)_i = \begin{cases} \min(s_i, t_i), & \text{if } s_i, t_i \geq 0 \\ \max(s_i, t_i), & \text{if } s_i, t_i \leq 0 \\ s_i, & \text{if } t_i = \text{nil} \\ t_i, & \text{if } s_i = \text{nil} \\ 0, & \text{elsewhere}' \end{cases} \]

\[(3)\quad (s^*)_i = \begin{cases} 1-s_i, & \text{if } s_i > 0 \\ -1-s_i, & \text{if } s_i < 0 \\ \text{nil, if } s_i = 0 \\ 0, & \text{if } s_i = \text{nil} \end{cases} \]
4 Asymptotic updates and nonmonotonic inference

• In general, updating an information state s may result in an information state $f \ldots f(s)$ that doesn't include the information of s

• In what follows it is important to interpret updating as specification

• If we want s to be informationally included in the resulting update, we have to clamp s somehow in the network

• Balkenius & Gärdenfors (1991). Let f designate the original update function (1) and \hat{f} the clamped one:

$$f(s) = f(s) \circ s;$$

$$\hat{f}^{n+1}(s) = f(\hat{f}^n(s)) \circ s$$
Definition 1 (asymptotic updates)

\[\text{ASUP}_w(s) = \text{def } \{ t: t = \lim_{n \to \infty} f^n(s) \} \]

Definition 2 (E-minimal specifications of s)

\[\text{min}_E(s) = \text{def } \{ t: t \geq s \text{ and there is no } t' \geq s \text{ such that } E(t') < E(t) \} \]

Consequence of Theorem 3

\[\text{ASUP}_w(s) = \text{min}_E(s), \text{ where } E(s) = -\sum_{i<j} w_{ij} s_i s_j \text{ (energy function)} \]

(Remark: \(E(s) = -\frac{1}{2} \sum_{i,j} w_{ij} s_i s_j = -\sum_{i<j} w_{ij} s_i s_j \quad \therefore \text{symmetry!} \))
Example

$$w = \begin{pmatrix} 0 & 0.2 & 0.1 \\ 0.2 & 0 & -1 \\ 0.1 & -1 & 0 \end{pmatrix}$$

$$E(s) = -0.2s_1s_2 - 0.1s_1s_3 + s_2s_3$$

$$\langle 1 \ 0 \ 0 \rangle \leq \langle 1 \ 0 \ 0 \rangle \quad 0$$
$$\langle 1 \ 0 \ 1 \rangle \quad -0.1$$
$$\langle 1 \ 1 \ 0 \rangle \quad -0.2$$
$$\langle 1 \ 1 \ 1 \rangle \quad 0.7$$
$$\langle 1 \ 1 \ -1 \rangle \quad -1.1$$

$$\text{ASUP}_w(\langle 1 \ 0 \ 0 \rangle) = \min_{E(s)} = \langle 1 \ 1 \ -1 \rangle$$
Nonmonotonic consequence relation.

Definition 3 (Nonmonotonic consequence relation)

\[s \models_w t \iff s' \geq t \text{ for each } s' \in \text{ASUP}_w(s) \]

In our example

\[<1 0 0> \models_w <1 1-1> \]
\[<1 0 0> \models_w <0 1 0> \]

Theorem 4 (cumulative consequence relation)

Let \(\models_w \) be a relation between information states as defined in Definition 3, then

(i) \(s \geq t \), then \(s \models_w t \) \hspace{2cm} (SUPRACLASSICALITY)
(ii) \(s \models_w s \) \hspace{2cm} (REFLEXIVITY)
(iii) \(s \models_w t \) and \(s \circ t \models_w u \), then \(s \models_w u \) (CUT)
(iv) \(s \models_w t \) and \(s \models_w u \), then \(s \circ t \models_w u \). (CAUTIOUS MONOTONICITY)
5 Weight-annotated Poole systems and Hopfield networks

Consider the knowledge base in

<table>
<thead>
<tr>
<th>Connectionist Systems</th>
<th>Symbol Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>- connection matrix</td>
<td>- strong and weak (default-)</td>
</tr>
<tr>
<td>- energy function</td>
<td>- rules</td>
</tr>
</tbody>
</table>

At least for Hopfield systems there is a strict relationship between connectionist and symbolic knowledge bases.
1. Assigning activation states to each atomic symbol of an elementary language L_{At}, e.g.

\[\downarrow p_1 \downarrow = \langle 1 \ 0 \ldots \ 0 \rangle \]
\[\downarrow p_2 \downarrow = \langle 0 \ 1 \ldots \ 0 \rangle \]
\[\ldots \]
\[\downarrow p_n \downarrow = \langle 0 \ 0 \ldots \ 1 \rangle \]

2. Assigning combinations

\[\downarrow \alpha \wedge \beta \downarrow = \downarrow \alpha \downarrow \circ \downarrow \beta \downarrow , \quad \downarrow \neg \beta \downarrow = -\downarrow \beta \downarrow \]

3. Translating Hopfield networks into weight-annotated Poole systems:
 Translate the connections w_{ij} into weight-annotated defaults $p_i \leftrightarrow \text{sign}(w_{ij}) \ p_j$ plus weight $|w_{ij}|$, for $1 \leq i < j \leq n$.

Local Representation
A triple $T = <At, \Delta, g>$ is called a \textit{weight-annotated Poole system} iff
(i) Δ is a set of consistent sentences built on the basis of At (hypotheses)
(ii) $g: \Delta \Rightarrow [0,1]$ (the weight function)

\textit{A scenario of a formula α in T} is a subset Δ' of Δ such that $\Delta' \cup \{\alpha\}$ is consistent

\textit{The weight of scenario Δ'} is $G(\Delta') = \sum_{\delta \in \Delta'} g(\delta) - \sum_{\delta \in (\Delta - \Delta') } g(\delta)$

\textit{Inference:} $\alpha \leadsto_T \beta$ iff for each maximal scenario Δ' of α in T: β is an ordinary consequence of $\Delta' \cup \{\alpha\}$ (nonmonotonic inference as entailment in maximal scenarios)
Correspondence theorem

Theorem 4: Let \(\alpha \) and \(\beta \) be formulas that are conjunctions of literals. Assume further that the Poole system \(T \) is *associated* with the connection matrix \(w \). Then

\[
\models_{w} \alpha \quad \models_{w} \beta \quad \text{iff} \quad \alpha \sim_{T} \beta
\]

\[
\Delta = \{ p_{1} \leftrightarrow_{0.2} p_{2}, \quad p_{1} \leftrightarrow_{0.1} p_{3}, \quad p_{2} \leftrightarrow_{1.0} \neg p_{3} \}
\]

\[
\mathcal{A}_{T} = \{ p_{1}, p_{2}, p_{3} \}\]
At = \{p_1, p_2, p_3\}

\Delta = \{p_1 \leftrightarrow_{0.2} p_2, p_1 \leftrightarrow_{0.1} p_3, p_2 \leftrightarrow_{1.0} \neg p_3\}

some (relevant) scenarios of p_1:
\{
\} -1.3
\{p_1 \leftrightarrow p_2\} -0.9
\{p_1 \leftrightarrow p_2, p_1 \leftrightarrow p_3\} -0.7
\{p_1 \leftrightarrow p_2, p_2 \leftrightarrow \neg p_3\} 1.1
\{p_1 \leftrightarrow p_3, p_2 \leftrightarrow \neg p_3\} 0.9

Consequently:
p_1 \triangleright_T p_2, p_1 \triangleright_T \neg p_3

corresponding to:
<1 0 0> |\sim w <1 1-1> \geq <0 1 0> \circ <0 0 -1>
Conclusions

- Symbolic systems can be used to understand connectionist systems
- Connectionist systems can be used to perform inferences
- As with weight-annotated Poole systems, Hopfield systems can be interpreted as looking for an optimal satisfaction of a system of conflicting constraints.
6 The link to Optimality Theory
Example from phonology

<table>
<thead>
<tr>
<th>−back</th>
<th>+back</th>
</tr>
</thead>
<tbody>
<tr>
<td>/i/</td>
<td>/u/</td>
</tr>
<tr>
<td>/e/</td>
<td>/o/</td>
</tr>
<tr>
<td>/æ/</td>
<td>/ʃ/</td>
</tr>
<tr>
<td></td>
<td>/a/</td>
</tr>
</tbody>
</table>

The phonological features may be represented as by the atomic symbols BACK, LOW, HIGH, ROUND. The generic knowledge of the phonological agent concerning this fragment may be represented as a Hopfield network using *exponential weights* with basis $0 < \varepsilon \leq 0.5$.
Exponential weights and strict constraint ranking

Strong Constraints: LOW → ¬HIGH; ROUND → BACK

Assigned Poole-system
VOC ↔ε¹ BACK; BACK ↔ε² LOW
LOW ↔ε⁴ ¬ROUND; BACK ↔ε³ ¬HIGH

Keane's marked-ness conventions
• As with weight-annotated Poole systems, OT looks for an optimal satisfaction of a system of conflicting constraints

• The exponential weights of the constraints realize a strict ranking of the constraints:

• Violations of many lower ranked constraints count less than one violation of a higher ranked constraint.

• The grammar doesn't count!