Neural Nets and Symbolic Reasoning
Is language governed by rules?
Models of past tense acquisition

See Chapter 5

William Bechtel and Adele Abrahamsen
Outline

- Is language use governed by rules?
- Rumelhart and McClelland's model
- Pinker and Prince's arguments for rules
- Plunkett and Marchman's simulation
- General conclusions
1 Is language use governed by rules?
Explicit inaccessible rule view

- Linguists stress the importance of rules and representations in describing human behaviour. Both are composed of sequences of symbols.
- We know the rules of language, in that we are able to speak grammatically, or even to make judgements of whether a sentence is or is not grammatical.
- This does not mean we know the rule in a conscious, accessible way (like the rules of chess).
- It has been held (Chomsky, Pinker, …) that our knowledge of language is stored explicitly as rules. Only we cannot describe them verbally because they are written in a special code only the language processing system can understand.
Alternative

- **No explicit inaccessible rules.** Our performance is characterisable by rules, but they are emergent from the system, and are not explicitly represented anyway.

- **Honeycomb: structure could be described by a rule, but this rule is not explicitly coded.** Regular structure of honeycomb arises from interaction of forces that wax balls exert on each other when compressed.

- **Parallel distributed processing view:** no explicit (albeit inaccessible) rules.

- **Connectionism not necessarily in conflict with the rule and representation view** if rules and representations are assumed to be emerging at a certain level of description.
"...lawful behaviour and judgements maybe produced by a mechanism in which there is no explicit representation of the rule. Instead, we suggest that the mechanisms that process language and make judgements of grammaticality are constructed in such a way that their performance is characterizable by rules, but that the rules themselves are not written in explicit form anywhere in the mechanism..."

- **Eliminative or integrative position?**

Rumelhart & McClelland (1986) developed a connectionist model of past tense acquisition in English which challenged the classical rule view.
Stages of past tense acquisition in children

Stage 1 (1-2 years)
Past tense of a few specific verbs, some regular (e.g. looked, needed), most irregular (came, got, went, took, gave). Children initially memorize forms

Stage 2 (2-5 years)
Evidence of general rule for past-tense, i.e. add *ed* to stem of verb. Children often overgeneralise irregulars, e.g. *camed* or *comed* instead of *came*. Ability to generate past tense for an *invented* word, e.g. *rick*. Subjects say *ricked* when using the 'word' in the past-tense

Stage 3
Children produce correct forms for both regular and irregular verbs.
The U shaped learning curve

Slightly older child: *Daddy came home*
Older child: *Daddy comed/camed home*
Even older child: *Daddy came home*
The traditional view

(1) The child memorizes some verbs, using memorization alone to produce correct inflected form.

(2) The child discovers grammar (e.g. $X \rightarrow X_{d}$), and in burst of joy and enthusiasm, produces forms like singed, brought, seed, goed, etc. Close temporal coincidence: overregularization kicks in when children first come to inflect regulars consistently.

(3) Very gradually child memorizes the irregulars, to the point of producing them with adult reliability. Exceptions block regularities!

Be careful: Overregularization is vivid and interesting, so the non-careful investigator overestimates its occurrence. It occurs rather rarely (2.5% is typical, some kids higher, some lower).
2 Rumelhart and McClelland's model

David E. Rumelhart
The basic idea
To capture order information the wickelfeature method of encoding words was used.

Wickelphones: represent target phoneme and immediate context.

- e.g. came /kAm/: #K_{a}, kA_{m}, aM# (# markes word boundaries).
- Hence, 3 Wickelphones are used to encode /kAm/.

If we distinguish 35 different phonemes we have $35^3 = 42875$ Wickelphones. If we use one input unit and one output unit for each Wickelphone we need a connection matrix with $35^3 \times 35^3 = 2 \cdot 10^9$ individual weights to represent all their possible connections.
42875 Wickelphones are coarse-coded onto 1210 wickelfeatures, where 16 wickelfeatures correspond to each wickelphone.

\[\text{e.g. } kA_m = \begin{array}{ccc} 1 & (\text{Interrupted, Low, Voiced}) \\ 2 & (\text{Back, Low, Front}) \\ 3 & (\text{Stop, Low, Nasal}) \\ 4 & (\text{Unvoiced, Low, Voiced}) \\ \vdots & 16 \\ \end{array} \]

\[11 \ 10 \ 11 \quad \text{1210 different wickelfeatures} \]

11 (10) units to represent the feature specifications of a single phoneme. These features are sufficient to represent similarities between phonemes.
Importance of \textit{wickelfeatures}

- The representations generated with the help of \textit{wickelfeatures} are distinctive enough that different words can be distinguished (using some redundancies instead of 1210 only 460 \textit{wickelfeatures} are required!)

- They overlap enough to support \textit{generalization} on the basis of the similarity structure of the verb stem

- \textbf{Transfer effects}: Having learned that \textit{sing} produces \textit{sang}, for example, the network can be presented with \textit{ring} and produce \textit{rang}.
Procedure

• 506 verbs divided into three sets:
 – 10 high-frequency verbs (8 irregular; 2 regulars: *live, look*)
 live – lived, look – looked, come – came, get – got, give – gave, make – made, take – took,
 go – went, have – had, feel – felt
 – 410 medium-frequency verbs (76 irregular)
 – 86 low-frequency verbs (14 irregular)

• **Training I:** 10 high-frequency verbs for 10 epochs (Delta rule)
• **Training II:** 410 medium-frequency verbs added, for 190 epochs

• Testing: During learning the performance of the presented 420 verbs was registered. Afterwards, the 86 lower-frequency verbs were presented and the transfer responses were recorded.
• Network effectively learned the past tense of both regular and irregular verbs. The overall degree of transfer was 91% correctly generated *wickelfeatures* (92% for regular, 84% for irregular).

• Matched human performance in learning and error patterns
 - U-shaped curve
 - Regular before irregular
 - Overregularization

• Matched the observed differences between different verb classes.
1. **By epoch 10**: 85% correct (both regular and irregular)
2. Performance correct on the irregular verbs dropped approximately 10%.
3. The irregular verbs began to improve again **by epoch 20** (gradually increasing to 95% by epoch 160.)
Response strength for high-frequency irregular verbs. The response strength reflects the proportion of a certain answer type compared with competing alternatives (e.g. for come the possible Past Tense forms are came, comed, camed, come). Interestingly, the response strength increases considerably during phase 2 (epoch 10-30) for wrongly regularized forms (like comed & camed).
Differences between different verb classes

- **No-change verbs** (*beat, fit, set, spread, ...*): Bybee & Slobin found that verbs not ending in *t/d* were predominantly regularized and verbs ending in *t/d* were predominantly used as no-change verbs. Interestingly, the model had a propensity *not* to add an additional ending to verbs already ending in *t/d*! (already after 15 epochs of learning)

- **Verbs that undergo a vowel change**: 2 types of **overregularization error**: (a) stem+*ed* (*comed, singed*)
 (b) past+*ed* (*camed, sanged*)

 Kuszaj (1977): Errors of type (b) are most frequent in older children. This is predicted by the model!
3 Pinker and Prince's arguments for rules
1. **The u-shaped learning problem**: “Rumelhart and McClelland's actual explanation of children's stages of regularization of the past tense morpheme is demonstrably incorrect.”

2. **The “ated” problem**: “Their explanation for one striking type of childhood speech error is also incorrect.”

3. **Errors are not based on sounds**. Elementary linguistic facts are not taken into account.

4. **Wickelfeatures are not appropriate**. Different demonstrations clearly rule out *wickelfeatures*.

5. **The phonological regularities problem**: “The model fails to capture central generalizations about English sound patterns.”
The U-shaped learning problem

- In training phase I, the model was given an input set that was very small and rich in irregular forms. Presumably, the failure to overgeneralize the regular rule at this point was due not only to the high proportion of irregulars, but also to the small size of the learning set.

- In training phase II, Rumelhart & McClelland shifted the nature of the input radically and included a full complement of regular verbs. This shift led to the onset of overgeneralization of the regular rule.

- One can argue that this sort of fiddling with the input data is an illegitimate way of deriving the desired phenomenon.

- Proportion of regular verbs in parental speech is constant throughout relevant period (30%).
The "ated" problem

- The right prediction of errors such as *ated* or *wented* is not enough. The mechanism which produced them matters.
- In the Rumelhart & McClelland model, the form *ated* was produced by activating a *vowel change pattern* and the final *ed-* pattern.
- These errors are really produced by a *coding error*. The fact that children produce errors such as *ating* or *wenting* is good evidence that children occasionally fail to code the irregular past as clearly past.
 - Evidence 1: *Reduplications* such as *jumpeded* appear.
 - Evidence 2: Comparison of *experimentally elicited forms* and spontaneously produced errors: When children are asked to produce the past tense directly from the present tense *eat* errors of the *ated* type nearly totally disappear.
Errors are not based on sounds

- Homophonous verbs can have different past tense forms

 ring-rang,

 wring-wrung

 ring-ringed (secondary sense of “to form a ring about something”)

 Since the verb-learning model takes a single phonological form as its input, it will not know when to produce “rang,” “wrung,” or “ringed.”

- *Do, have, be* never overregularized as auxiliaries, but are over-regularized as main verbs

- Denominal/deadjectival verbs are always regular, even when based on irregular verbs (*grandstanced, high-sticked*).
Wickelfeatures are not appropriate

- **The “algalgal” problem:** “The model is incapable of representing certain kinds of words.” Same set of *wickelfeatures* for words like *algalgal* “ramrod straight” and *algal* “straight” in the Australian language *Oykangand*

- **The “slit-silt” problem:** “It is incapable of explaining patterns of psychological similarity among words.” *Wickelphonology* cannot explain the high similarities between *slit* and *silt*, for example

- **The “pit-tip” problem:** “It easily models many kinds of rules that are not found in any human language.” No real transformation connects a string with its mirror image. Unfortunately, such transformations are simple to learn using *wickelfeatures*: $A_B C \rightarrow C_B A$.
The phonological regularities problem

- An important criteria against which any model should be judged is its ability to capture “significant generalizations.” The verb-learning model fails in this regard

- An English speaker who knows that “Bach” should be pronounced as /bax/ would also automatically realize that the past tense of the neologistic verb “to Bach” would be /baxt/ and not /baxd/ or /baxId/

- The present model has trouble producing /baxt/ because it has no clear featural representation of the English sound system

- However, this is a problem that can be addressed merely through a change in the phonological representation. What is needed is a clear segmental feature representation.
Although the Past-tense model can be criticised, it is best to evaluate it in the context of the time (1986) when it was first presented. At the time, it provided a tangible demonstration that

- it's possible to use neural net to model an aspect of human learning
- it's possible to capture apparently rule-governed behaviour in a neural net
- past-tense forms can be described using a few general rules, but can be accounted for by a connectionist net which has no explicit rules.
- Both regular and irregular words can be handled by the same mechanism.
4 Plunkett and Marchman's simulation

I can’t imagine how language could be learned

It must be innate
The goal

- The real mechanism of learning is important: backpropagation + making use of hidden units (in order to find powerful generalizations)
- Use less controversial representations (no Wickelfeatures)
- Respond to criticism of inaccurate data set
- Show that U-shaped curves can be achieved without abrupt changes in input. Trained on all examples together (using a backpropagation net).
1. Regular verbs that add one of three allomorphs of the /-ed/ morpheme to the stem to form the past tense:
 (i) arm \rightarrow arm-[d] (ii) wish \rightarrow wish-[t] (iii) pit \rightarrow pit-[id]

2. No change verbs: hit \rightarrow hit

3. Vowel change verbs where the vowel in the stem is changed while the past tense retains the same consonants as the stem form:
 sing \rightarrow sang, ring \rightarrow rang

4. Arbitrary verbs where is no apparent relation between stem and past tense form: go \rightarrow went

The verb stems were artificial with three phonemes in length. However, all were phonologically possible in English, some corresponding to real English stems.
Phonemes and ASCII coding (*important for practicum!*):

- /b/ b, /p/ p, /d/ d, /t/ t, /k/ k, /v/ v, /f/ f, /m/ m, /n/ n,
- /h/ G, /d/ T, /q/ H, /z/ z, /s/ s, /w/ w, /l/ l, /r/ r, /y/ y, /h/ h,
- /i/ E (eat), /I/ I (bit), /o/ O (boat), /U/ u (book), /e/ A (bait),
- /e/ e /bet/ /ai/ I (bite), /æ/ @ (bat), /au/ # (cow), /O/ * (or),

The six binary phonological feature units:
(1) Consonant/vowel, (2) Voicing, (3-4) Manner of articulation,
(5-6) Place of articulation

Two units for representing the suffix:

No suffix W \rightarrow 0 0, -[d] X \rightarrow 0 1, -[t] Y \rightarrow 1 0, -[id] Z \rightarrow 1 1
The network
• Training set of 500 verb tokens

• No discontinuities in the presentation procedure

• Distinction between type and token frequencies. The type frequencies refer to the four classes, token frequencies to the real occurrence of individual forms

• In order to study the conditions for U-shaped learning, different training samples were used – investigating different combinations of type and token frequencies
Results

- Networks are very sensitive to their training regime: In simulations for which 74% or more of the tokens were irregular, regular verbs were not learned. In simulations in which 74% or more of the tokens were regular, regulars were learned well but irregulars were not.

- Type and token frequencies that lead to the best overall performance are those of English: low type frequency but high token frequency for irregulars (there are much more regular verbs than irregular ones, but many irregular verbs have a very high frequency of occurrence).

- Micro U-shaped curves were obtained without the use of any discontinuity in the training set, simply as a consequence of the conflict between regular and irregular verbs.
Micro U-shaped curves
A role for analogy?

Irregulars are analogized to other irregulars that sound like them (*sink*-sank, *drink*-drank, *shrink*-shrank):

1. Children overregularize less often irregulars that are similar to other irregulars

2. Children sometimes over-irregularize: *wipe*-wope.

3. Adults create new irregulars on the basis of analogy: *sneak*-snuck.

Pinker: Both rules and analogy-based networks might be necessary to characterize linguistic knowledge.
• Purely emergent systems operating without constraints do not accurately model acquisition of the past tense in English. But:

• Connectionist models have been proposed that incorporate innate knowledge/constraints (e.g. assumptions concerning hidden units). Further, the stochastic properties of the input provide decisive constraints

• Assumption of innate knowledge does not entail symbolic computation/rules

• “Innate / learned” is not really important => specifying the process is much more important.
5 General conclusions

• Although dated in some respects, the Rumelhart & McClelland paper made it impossible to ignore their radical proposal: networks without explicit rules can account for both the regular behaviour (which inspired the positing of explicit rules) and the exceptions (that seemed to require rote memorization)

• The power of human learning mechanisms cannot be estimated from an armchair. Real simulations are required.

• Issues of the initial constraints to be built into a language learning system must be resolved through modelling

• Is it possible for symbolic rules and connectionist-style representations to co-exist?