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1   The role of time in cognition 
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Why time is important  

 
• Time is clearly important in cognition. It is inextricably bound up 

with many behaviors which express themselves as temporal 

sequences.  
 

• How to deal with such basic problems as goal-directed behavior, 

planning, or causation without some way of representing time? 

 

• The example of sentence processing 
 

(A)  Sentences are processed sequentially in time 

(B)  Sentences exhibit long-distance dependencies (Agreement 

phenomena; binding phenomena) 
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Why time is a problem  

 
• The parallel nature of neural processing seems to be ad odds with the 

serial nature of time 
 

• However, even within traditional (serial) frameworks, the 

representation of serial order presents challenges. For example, in 

models of motor activity an important issue is whether the action plan 

is a literal specification of the output sequence, or whether the plan 

represents serial order in a more abstract manner (e.g., Lashley, 1951) 
 

• Research in natural language parsing suggests that the problem with 

long-distance dependencies is not trivially solved if language is 

processed sequentially (e.g., Frazier & Fodor; 1978; Marcus, 1980).  
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Approaching time in PDP  

 
• Standard feedforward networks? At a given point in time such a 

network has only access to the LTM (weights) and to the patterns 

generated by its current input. No access to previous inputs. 
 

• RAAM? They are able to retain the constituent structure of a 

sentence. The successive coding in terms of hidden unit patterns 

establishes a kind of STM for already processed parts of a sentence. 

However, the copying of pattern is in space, not really in time. 

(Parallels time: giving time a spatial representation) 
 

• Representing time by the effect it has on processing and not as an 

additional dimension of the input (Recurrent networks) 
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Two architectures  
 

Jordan (1986) added 

recurrent connections for 

copying the pattern on the 

output units to the state units. 

Elman (1990) modified this 

account and copied the 

content of the hidden units 

back to the context units. 

(state = context). 

Sending the pattern of the hidden unit back to the network, makes the 

network's activity sensitive to its own construal of the immediately 

preceding input (Also in RAAM: the copy come from the hidden unit). 
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2  Finding structure in time:  

Elman's simple recurrent networks  
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 Importance of the paper 

 
COGNITIVE SCIENCE, 14, 179-211 (1990). 

Finding Structure in Time 
JEFFREY L. ELMAN 
University of California, San Diego 
 

The approach described here employs a 

simple architecture but is surprisingly power-

ful. The are several points worth highlighting: 
 

• Some problems change their nature when 

expressed as temporal events: a sequential version of the XOR 

• The time-varying error signal as a clue to temporal structure 

• There is no separate representation of time 

• Memory is neither passive nor a separate subsystem. 
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 The basic idea 

 
1. The input units receive the first input 

2. Both the input units and context units 

activate the hidden units 

3. - The hidden units feed forward to 

activate the output units  

- The hidden units also feed back to 

activate the context units (copying the content of the hidden units) 
 

In this time cycle, there is a learning phase: The output is compared with 

a teacher input and backpropagation of error is used to incrementally 

adjust connection strength. Recurrent connections are fixed at 1.0 and are 

not subject to adjustment. 
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Internal representation of time 

 
• The hidden units develop internal representations for the input 

patterns 
 

• The context units remember the previous internal state  
 

• The hidden units: Mapping external input and previous internal state 

to some desired output 
 

• The hidden units must accomplish this mapping. At the same time 

they develop representations which are useful encodings of the 

temporal properties of the sequential input 
 

• Thus, the internal representations that develop are sensitive to 

temporal context; the effect of time is implicit in these internal states.  



 12

fixed weights  

w = 1 

Exclusive OR 
 

 

Standard XOR: 

input vector:  (00, 11, 01, 10)  

output vector: (0, 0, 1, 1) 

 

Serial version: 

input:   1 0 1  0 0 0  0 1 1  1 1 0  1 0 1 . . . 

output: 0 1 0  0 0 0  1 1 1  1 0 1  0 1 ? . . . 

chance:♦♦♦ ♦ ♦♦ ♦♦♦  ♦♦♦  ♦♦ 
      1 2 3 4  5 6 7 8 9 101112 1314 
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Error plot 
 

 
Graph of root mean squared error over 12 consecutive inputs in 

sequential XOR task. Data points are averaged over 1200 trials 
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Understanding the solution 
 

 

• simultaneous version: the two hidden nodes are 0 if the two input 

elements are the same, otherwise the two hidden nodes are different  

• sequential version: one of the two hidden units is highly activated 

when the input sequence is a series of identical elements (all 1s or 

0s), whereas the other unit is highly activated when the input 

elements alternate. 

• Hence, the solution to the sequential version of the XOR problem 

involved detection of state changes (frequency-sensitive hidden units) 

• Casting the XOR problem in temporal terms led to a different 

solution than is typically obtained in feed-forward networks. 

Some problems change their nature when expressed as temporal events 
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Structure in letter sequences: Discovering the notion word 

 
• What is a word? 

− Defined as a unit on a certain level of representation 

− The commitment to such distinct levels is often problematic 

− Languages differ dramatically in what they treat as words 

− Even in English no consistently definable distinction between 

words (apple), compounds (apple pie), phrases (Library of 
Congress) 

• Computational mechanism to detect the boundaries between 

words? 

− Phonetic and prosodic structure is not enough 

− Manyyearsagoaboyandgirl … 
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Cues for word boundaries 
   
Manyyearsagoaboyandgirl… 

Many years  ago a boy and girl  … 
 

• One can ask whether the notion “word” (or something which maps on 

to this concept) could emerge as a consequence of learning the 

sequential structure of letter sequences which form words and 

sentences (but in which word boundaries are not marked). 
 

• Is there information in the signal which could serve as a cue as to the 

boundaries of linguistic units which must be learned? 
 

• Simulation that shows that a simple recurrent network can extract 

relevant probabilistic information (statistics of co-occurrence) that 

correlates with words. No semantics is required at this point. 
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Simulation study 

 
1. Using a lexicon of 15 words, 200 

sentences were generated of varying 

length  (4-9 words) 

2. A big string with 4963 letters were 

generated from that. Each letter was 

converted into a 5 bit random vector 

3. A SRN with 5 input units, 20 hidden 

units, 5 output units, and 20 context 

units was trained on 10 complete 

presentations of the sequence. 

4. Errors for letter prediction were 

calculated. 
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Error diagram 

 

 
Graph of root mean squared error in letter-in-word prediction task. The 
sequences bounded by high error correlate with words. 
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Conclusions 

 
• The time-varying error signal can be used as a clue to temporal 

structure. Temporal sequences are not always uniformly structured, 

nor uniformly predictable 
 

• The error signal is a good metric of where structure exists; it thus 

provides a potentially very useful form of feedback to the system 
 

• The co-occurrence of sounds is only part of what identifies a word 
 

• A similar procedure can used for learning grammatical categories. 

This time, sequences of words are teached instead of sequences of 

sounds/letters. Instead of analysing prediction errors, this time a 

cluster analysis of the patterns formed on hidden units is useful.   
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3  Learning to count without a counter  
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The computational power of (recurrent) neural networks 
   

• Hava Siegelmann & Eduardo Sontag: On the computational power of 

neural nets 
 

• Jiri Sima & Pekka Orponen: A computational taxonomy and survey 

of neural network models 
 

• Peter Tino, Bill Horne, Lee Giles, and Pete Collingwood: Finite state 

machines and recurrent neural networks - automata and dynamical 

systems approaches  
 

• Janet Wiles & Jeff Elman: Learning to count without a counter: A 

case study of dynamics and activation landscapes in recurrent 

networks. 
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The counting task 

 
• Can a recurrent network be trained to predict the deterministic 

elements in sequences of the form an bn  where n =1 to ...? 
 

• an bn  is one of the simplest CF languages  
 

• The study shows that recurrent network are able to emulate certain 

aspects of a pushdown automaton 
 

• It is suggested to use the proposed solution as a platform for 

developing a more general understanding of recurrent networks as 

computational mechanisms   
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Network and training 

 
• A training set consisting of 356 strings, 

containing a total of 2298 tokens of a and 

b (coded as 10 and  01, respectively).  

• These strings conformed to the form an bn , 

with n ranging from 1 to 11  

• Networks was trained using back 

propagation through time (for 8 time steps). Training was carried out 

for a total of 3 million inputs.   

• A separate set of test stimuli were generated which consisted of all 

possible strings with n ranging from 1 to 30 so it was possible to test 

generalization to depths greater than that encountered during training.  
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 Results of simulation 

 
• After 1 million training cycles 9 of the 20 identical networks learned 

the language for n ≤ 7. One network generalized to n≤11. The other 

networks learned the language a* b*  . This is the language consisting 

of any number of as followed by any number of bs 
 

• After 2 million training cycles 4 of the 20 identical networks 

generalized the correct language for to n ≤ 12. One network 

generalized to n≤18. The remaining networks had learned a* b* . 
 

• Subsequent replications showed a similar statistics, with at least one 

network that generalized to approximately a depth of 18. We focus on 

that network for analysis. 
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Simplified network 

 
h(t) = σ(bias+ia⋅wa+ ib⋅wb+ h(t-1)⋅w) 

h(t) = σ(b + h(t-1)⋅w) 

 

  
 

 

Dynamic properties of the network, 

with w=10 and b=−5. 

If we begin with h(0) greater than 

0.5, we see the movement in 

activation space shown in the figure. 



 26

Converging and diverging regimes 

 
With negative weights w, two different regimes are found:  

converge inward (left) and  diverge out (right). 
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Network with two hidden units 

 
Hidden unit oscillations in 

trained network, 7 a’s (spiral 

on lower left, representing 

hidden unit 1), followed by 7 

bs (spiral on upper right, 

representing hidden unit 2). 
 

First regime: winding up a 

spring. The presentation of 

the first b moves the network 

in the second regime: 

unwinding the spring. 
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 Conclusion: how to count with a sand glass 
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4  General Conclusions 
 

• The sort of memory that simple recurrent networks provide differs 

dramatically from the traditional cognitive models 
 

• They process strings of items item by item but use their context units 

to incorporate information about previous items 
 

• In such networks, the recursive activity can extend through many 

cycles, although the further back the cycle, the more degraded is the 

information in the context pattern and the less it contributes to current 

activity 
 

• Prior notions of how recurrent networks might be expected  to solve 

familiar computational problems are to be regarded as open 

hypotheses only. We should be prepared for surprises. 


