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Abstract

Connectionist research is �rmly established within the scienti�c community, especially within the
multi-disciplinary �eld of cognitive science. This diversity, however, has created an environment
which makes it di�cult for connectionist researchers to remain aware of recent advances in the
�eld, let alone understand how the �eld has developed. This paper attempts to address this
problem by providing a brief guide to connectionist research. The paper begins by de�ning
the basic tenets of connectionism. Next, the development of connectionist research is traced,
commencing with connectionism's philosophical predecessors, moving to early psychological and
neuropsychological in
uences, followed by the mathematical and computing contributions to
connectionist research. Current research is then reviewed, focusing speci�cally on the di�erent
types of network architectures and learning rules in use. The paper concludes by suggesting
that neural network research|at least in cognitive science|should move towards models that
incorporate the relevant functional principles inherent in neurobiological systems.

1 The Connectionist Revolution

This solution takes the form of a new associationism, or better, since it di�ers deeply and widely
from that older British associationism, of a new connectionism. ([109], p. 4)

Connectionist research is �rmly established within the scienti�c community. Researchers can be found
in such �elds as arti�cial intelligence [33][1], cognitive neuroscience [76], economics [117][121], linguistics
[84], philosophy [48], and physics [47] to name but a few. It has even been suggested that connectionism
represents a Kuhnian-like paradigm shift for psychology [98]. But, perhaps the �eld that has most bene�ted
from connectionist research is the multidisciplinary �eld of cognitive science [8][19][96][69][108]. As Hanson
and Olson have stated: \The neural network revolution has happened. We are living in the aftermath" ([42],
p. 332).

Unfortunately, this revolution has created an environment in which researchers may �nd it di�cult to
keep up with recent advances in neural network research. Furthermore, the history of connectionist research
is often overlooked, or at least misconstrued [81]. As a result, a view popular with current researchers is that
connectionism really emerged in the 1980's|there is only brief mention of research before that time (e.g.,
[8], [48]).

Connectionism, however, has a very long past. In fact, one can trace the origin of connectionist ideas to
the early Greek philosopher, Aristotle, and his ideas on mental associations. These ideas were elaborated
by the British empiricists and then naturally extended by the founders of psychology. Neuropsychologists
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then contributed to the growth of connectionism by trying to relate the processes of learning and memory to
underlying properties of the brain. But, this is only half of the picture. The other half of the picture is �lled
in by those researchers engaged in mathematical research and early computing science who contributed to
the formal, computational understanding of both the power and limitations of connectionist networks.

Although it might be argued that these past researchers were not true \connectionists" in today's terms,
the ideas they put forth in the disciplines of philosophy, psychology, neuropsychology, mathematics, and
computing science are fully embodied within today's connectionism. And, it is only through a review of the
contributions made by each of these disciplines that we can place connectionism in its proper context today.

2 Connectionism and Cognitive Science

Before we begin with our de�nition of connectionism, a brief digression is required. As noted earlier, connec-
tionism is used in many di�erent �elds of science. For example, connectionist networks have been used for
aiding astronomical work [106], assisting medical diagnosis [20], regulating investment management [121],
and controlling robotic limb movement [113]. Many of these systems, however, are approached from an engi-
neering perspective; that is, the designers are only interested in making the networks as e�cient as possible
(in terms of network topology, correct responses, and generalization). Consequently, this attitude towards
connectionism could be characterized as the \engineering" approach. In fact, it may just be this approach
that Reeke and Edelman had in mind when they o�ered this blunt assessment of connectionist research:

These new approaches, the misleading label `neural network computing' notwithstanding, draw
their inspiration from statistical physics and engineering, not from biology. ([37], p. 144)

Although the engineering approach to connectionist research is of interest and demands much attention,
in this paper we will review connectionism from a di�erent perspective|that of cognitive science. This
second approach uses connectionism to answer questions pertaining to human cognition, from perceptual
processes to \higher level" processes like attention and reasoning. That is, connectionist cognitive scientists
are interested in drawing their inspiration from biology, not technology. Consequently, the goals of the
engineering approach (e.g., minimizing network structure, improving generalization, etc.) are not necessarily
those of the cognitive science approach to connectionism. To understand what these goals are, however, we
need to understand what cognitive science is.

2.1 Cognitive Science

The \birth" of cognitive science is often traced back to the Symposium on Information Theory held on
September 10-12, 1956 at M.I.T. [36]. There, researchers from various disciplines gathered to exchange ideas
on communication and the human sciences. Three talks in particular, Miller's The magical number seven,
Chomsky's Three models of language, and Newell and Simon's Logic theory machine, have been singled out
as instrumental in seeding the cognitive science movement. Following these talks, a perception began to
emerge that \human experimental psychology, theoretical linguistics, and computer simulations of cognitive
processes were all pieces of a larger whole" (Miller, 1979; p. 9; cited in [36], p. 29). That is, there arose
a belief that to understand the functioning of human cognition, one had to combine the e�orts of several
di�erent disciplines. In fact, similar sentiments had been expressed previously in the literature by such
researchers as Hebb [44] and Wiener [120].

: : : a proper explanation of these blank spaces on the map of science (can) only be made by a
team of scientists, each a specialist in his own �eld but each possessing a thoroughly sound and
trained acquaintance with the �elds of his neighbors : : : ([120]; p. 9)

Today, cognitive science can be de�ned as the interdisciplinary study of mind; It draws upon such diverse
�elds as Computing Science and Arti�cial Intelligence [15], Linguistics [80], Neuroscience [85], Philoso-
phy [59], and Psychology [36], to name but a few. Although each discipline has its own unique interpretation
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of cognitive science, they are bound into a cohesive whole by a central tenet. This tenet states that the mind
is an information processor; that is, it \receives, stores, retrieves, transforms, and transmits information"
([105], p. 1). This information and the corresponding information processes can be studied as patterns and
manipulations of patterns. Furthermore, these processes posit representational or semantic states that are
fully realized within the physical constraints of the brain.

Traditionally, this information processing approach has been characterized by the physical symbol system
hypothesis of Newell and Simon [77] which forms the basis of the \classical" approach to cognitive science.
Basically, the hypothesis states that cognition is based upon patterns of information, that these patterns of
information can be represented as symbols, and that these symbols can be manipulated. Consequently, it is
sometimes assumed that the architecture of the mind is the architecture of von Neumann style computers
(e.g., [86]). In contrast, connectionism is often viewed as a radically di�erent approach to studying the
architecture of the mind, accounting for aspects of human cognition handled poorly by the traditional
approaches (e.g., graceful degradation, content-addressable memory; [78]). What, then, are the properties
of connectionism that distinguishes it from the traditional approach to cognitive science?

2.2 Connectionism De�ned

Connectionism|within cognitive science|is a theory of information processing. Unlike classical systems
which use explicit, often logical, rules arranged in an hierarchy to manipulate symbols in a serial manner,
however, connectionist systems rely on parallel processing of sub-symbols, using statistical properties instead
of logical rules to transform information. Connectionists base their models upon the known neurophysiology
of the brain and attempt to incorporate those functional properties thought to be required for cognition.

What, then, are the functional properties of the brain that are required for information processing?
Connectionists adopt the view that the basic building block of the brain is the neuron. The neuron has six
basic functional properties [27]. It is an input device receiving signals from the environment or other neurons.
It is an integrative device integrating and manipulating the input. It is a conductive device conducting the
integrated information over distances. It is an output device sending information to other neurons or cells.
It is a computational device mapping one type of information into another. And, it is a representational
device subserving the formation of internal representations. Consequently, we would expect to �nd these
functional properties within our arti�cial neural networks.

As an example, Rumelhart, Hinton, and McClelland [91] (p. 46) list eight properties that are essential
to Parallel Distributed Processing (PDP) models.

� A set of processing units

� A state of activation

� An output function for each unit

� A pattern of connectivity among units

� A propagation rule for propagating patterns of activities through the network of connectivities

� An activation rule for combining the inputs impinging on a unit with the current state of that unit to
produce a new level of activation for the unit.

� A learning rule whereby patterns of connectivity are modi�ed by experience

� An environment within which the system must operate

These eight properties of PDP models map easily onto the six functional properties of the neuron. The
processing unit is the neuron itself. The state of activation and the activation rule are part of the input and
intergrative device of the neuron and the output function is simply the output of the neuron. The pattern of
connectivity and propagation rule map onto the conductive function of the neuron. And, the learning rule
and environment are part of the computational and representational functions of the neuron.
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To be fair, though, PDP models are simply a subclass of connectionist models. Therefore, Bechtel
and Abrahamsen [8] have reduced the above list to four properties that distinguish the di�erent types of
connectionist architectures. These four properties are:

1. The connectivity of units,

2. The activation function of units,

3. The nature of the learning procedure that modi�es the connections between units, and

4. How the network is interpreted semantically.

The above properties of connectionist models can be summarized in three basic tenets. First, signals are
processed by elementary units. Second, processing units are connected in parallel to other processing units.
Third, connections between processing units are weighted. These three tenets are necessarily broad in their
descriptions so as to accommodate all aspects of connectionism; however, further elaboration is given below.

For example, the processing of signals encompasses the receiving, transformation, and transmission of
information. The signals themselves may be carried by electrical, chemical, or mechanical means. Further-
more, signals could be supplied from an external stimulus (such as light impinging on the retina) or from
other processing units. The processing units (see Figure 1) may refer to neurons, mathematical functions,
or even demons �a la Selfridge [100]. Lastly, information may be encoded in the units either locally or in a
distributed manner.

Σ

Inputs

Processing
Unit

Outputs
1

1 + e
inputi  +Σ-( i )θ
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Figure 1: Di�erent forms of processing units: (a) stylized sympathetic ganglion, (b) mathematical function.

Connections between units may or may not be massively parallel in the sense that every unit is connected
to every other unit. Moreover, connections may be \feed-forward" (i.e., signals being passed in one direction
only [92], [93]), or \interactive" (i.e., bidirectional passing of signals [66]).

Finally, the weights associated with the connections may be \hardwired", learned, or both. The weights
represent the strength of connection (either excitatory or inhibitory) between two units. These three tenets
allow a large spectrum of models (e.g., Selfridge's Pandemonium [100]; Rumelhart & McClelland's Past-
Tense Acquisition Model [95]; Dawson's Motion Correspondence Model [18]) to fall within the classi�cation
of connectionist research.

To understand how these di�erent models �t into connectionist research today, one needs to be aware of
how connectionist research has developed. The best way of accomplishing this is to start at the beginning.
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3 Old Connectionism

We have chosen to analyze connectionism within the interdisciplinary realm of cognitive science. Conse-
quently, we should not be surprised to �nd that connectionist research has an interdisciplinary origin. In
fact, the essence of connectionism can be traced back to philosophy, psychology, mathematics, neuroscience,
and computing science. It is only through a review of the contributions made by each of these disciplines
that we can place connectionism in its proper context today.

3.1 Philosophical Roots

Although the popularity of connectionist research has grown considerably over the past decade, it is certainly
not a new phenomenon. Aristotle (ca. 400 B.C.) has been cited [2] as the �rst scientist to propose some of
the basic concepts of connectionism; that is, memory is composed of simple elements linked or connected to
each other via a number of di�erent mechanisms (such as temporal succession, object similarity, and spatial
proximity). Furthermore, these associative structures could be combined into more complex structures to
perform reasoning and memory access. Thus, a \well-speci�ed outline of a perfectly viable computational
theory of memory" ([2], p. 3) based on the interconnection of simple elements existed at least 2,400 years
ago.

Moreover, many of the underlying assumptions of connectionism can be traced back to the ideas eminent
in the philosophical school of materialism (e.g., la Mattrie, Hobbes), and the resulting school of British
empiricism (e.g., Berkeley, Locke, Hume). Materialists held the view that nothing existed except for mat-
ter and energy, and that all human behaviour|including conscious thought|could be explained solely by
appealing to the physical processes of the body, especially the brain (cf., Descartes' dualism). This lead
to the empiricist view that human knowledge is derived ultimately from sensory experiences, and it is the
association of these experiences that lead to thought [5][59]. Therefore, human cognition is governed by
physical laws and can by studied empirically.

Within the empiricist tradition, accounting for psychological processes is known as associationism. The
basic concepts of associationism are [8]:

1. mental elements or ideas become associated with one another through experience,

2. experience consists of such things as spatial contiguity, temporal contiguity, similarity, and dissimilarity
of ideas,

3. complex ideas can be reduced to a set of simple ideas,

4. simple ideas are sensations, and

5. simple additive rules are su�cient to predict complex ideas composed from simple ideas

Although many associationist concepts are evident in the behaviourist movement in psychology, the cog-
nitivist movement within psychology has dismissed associationism as inadequate to account for cognitive
phenomenon such as recursive grammars (e.g., [10]).

Not surprisingly, with assumptions founded in associationist theories, connectionism has often been mis-
taken for associationism (e.g., [32], footnote 29), and subsequently dismissed as a viable theory of cognition.
As pointed out by Thorndike [109], however, connectionism should not be confused for associationism.
Rather, connectionism has borrowed concepts from associationism and has expanded them. For example,
connectionism employs such concepts as distributed representations, hidden units, and supervised learning|
concepts foreign to associationism [8].

In fact, Bechtel [7] points out that connectionism embodies a very distinctive characteristic that dis-
tinguishes cognitivism from behaviourism and associationism; speci�cally, connectionist modelers postulate
that the connections between units provide structure in which mental activity occurs, and this structure is
important for mediating future behaviour. Hence, connectionists are not repudiating cognitivism, they are
simply providing an alternative to the standard rules and representation view of cognition. On the other
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hand, connectionism does embrace one very important aspect of associationism often missing from classi-
cal cognitive models; connectionism focuses on learning as a natural activity of the system being modeled.
Consequently, Bechtel [7] concludes that connectionism may provide \a basis to draw together aspects of the
two traditions that have generally been viewed as incommensurable" (p. 60).

3.2 Psychological Manifestations

With the emergence of psychology as a distinct �eld from philosophy, the ideas underlying connectionism
became more re�ned and based on the known neurophysiology of the day. In fact, founding psychologists
such as Spencer [103] and James [55] are often cited for early examples of connectionist networks|networks
that combined associationist principles with neurology.

The appearance of the hardline behaviourist movement (e.g., [115], [102]), by all accounts, should have
signaled the demise of connectionist ideas in psychology1. Surprisingly, however, it was behavioural psycholo-
gists (e.g., [109],[110],[51]), that �nally made the distinction between associationism and connectionism [112].
Following the demise of behaviourism and the rise of cognitivism and symbolic processing, connectionist re-
search all but disappeared from psychological literature. It has only recently become vogue once again.

But, for now, let us concentrate on psychology's contribution to connectionism.

3.2.1 Spencer's Connexions

In his two volume series entitled The Principles of Psychology, Herbert Spencer [103][104] laid out the
foundations of what was then the emerging �eld of psychology. One of his central tenets was that a description
of the nervous system was essential for the understanding of psychology. Thus, he devoted several sections of
his text to describing neural structures and their functions. Part of this description included describing how
connections may be formed|not only the connections between one neuron and another (see Figure 2), but
also the connections between ideas and concepts. He even went so far as to state that \there is a fundamental
connection between nervous changes and psychical states" ([103], p. 129).

A E

a e

Figure 2: The needful connexions between a�erent (A) and e�erent (E) �bres to allow e�cient transmission
of a signal to move a muscle. Points a and e are where the a�erent and e�erent �bres diverge respectively
(adapted from [103];vol. 1, Figure 7).

Using the growth of intelligence as an example, Spencer �rst identi�ed those psychical aspects that de�ne
intelligence|the correspondence of internal relations with external relations. Intelligence grew as a function

1Watson proposed that psychology should only be interested in objective, observable behaviour: \the consideration of the
mind-body problem a�ects neither the type of problem selected nor the formulation of the solution of that problem" [115]p.
166. This is exempli�ed by Skinner's view [102] that behaviour could be studied without any appeal to the brain.
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of the di�erentiation of external events into ordered states of consciousness. Thus, changes in the psychical
states could be linked directly to changes in the external order. As an in�nite number of correspondences
between internal and external events could exist over time, Spencer concluded that no general law could be
stated for such a series of changes. Instead, a law of changes had to be sought in the small, immediately
connected changes:

When any state a occurs, the tendency of some other state d to follow it , must be strong or
weak according to the degree of persistence with which A and D (the objects or attributes that
produce a and d) occur together in the environment. ([103], pp. 408)

This law of connection also holds for events that co-exist in the world. If events A and B habitually coexist
in the environment, then conscious states a and b must coexist as well. As neither A or B is antecedent or
consequent, then state a is just as likely to induce state b as state b is to induce state a. Thus, the networks
of connections could either be \feed-forward" (as in the case of a and d) or \interactive" (as in the case of a
and b). As one last note, Spencer states that it is \the strengths of the connexion" ([103], p. 409) between
the internal states and external events that is important. In other words, correct knowledge of the world is
encoded within the connections of the brain.

3.2.2 James' Associative Memory

Further examples of early connectionist theory are also evident in William James' [55][56] treatment of
psychology (interestingly enough, also a two volume set entitled The Principles of Psychology). James, like
Spencer, was committed to the fact that psychological phenomenon could be explained in terms of brain
activity|\no mental modi�cation ever occurs which is not accompanied or followed by a bodily change" ([55],
p. 5). In fact, James equated the analysis of neural functioning with the analysis of mental ideas.

There is a complete parallelism between the two analyses, the same diagram of little dots, circles,
or triangles joined by lines symbolizes equally well the cerebral and mental processes: the dots
stand for cells or ideas, the lines for �bres or associations. ([55], p. 30)

A B
a
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Figure 3: James' distributed memory model. Ac-
tivation of event A causes activation of event B
through weighted parallel connections.

The most obvious example of connectionist principles
is James' associative memory model; the model consists
of individual ideas that are connected in parallel such
that recall of one idea is likely to cause the recall of
related ideas. Thus, within this model, activation of
event A with its component parts a, b, c, d, and e (e.g.,
attending a dinner party) caused activation of event B
with its component parts l, m, n, o, and p (e.g., walking
home through the frosty night) since all aspects of A
were connected, or redintegrated, with all aspects of B
(see Figure 3).

James recognized that, all things being equal, any
activation in such a network would unfortunately result
in \the reinstatement in thought of the entire content
of large trains of past experience"2 ([55], p. 570). To
counter this type of total recall, James proposed the
law of interest: \some one brain-process is always pre-
potent above its concomitants in arousing action else-
where" ([55], p. 572). Hence, not all connections in the
brain are created equal. But, how are these connections
modi�ed, and hence the associations between memories
learned? James proposed the law of neural habit:

2James quickly points out that only the minor personages within Dickens' and Eliot's novels possess this type of memory
system.
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When two elementary brain-processes have been active together or in immediate succession, one
of them, on reoccurring, tends to propagate its excitement into the other. ([55], p. 566; his italics)

In other words, when two events occur repeatedly, the connection between the relevant brain-processes
is strengthened (we shall see this notion reappear a little later in a more formal manifestation). Note that
James is talking about modifying brain-processes physically and not simply strengthening the associations
between ideas. Even now, we begin to see the borrowing and modi�cation of associationist ideas to account
for cognitive processes and learning in biological systems.

More importantly, these very simple concepts|weighted, modi�able, parallel connections|laid down
over a century ago form the cornerstone of connectionism today.

3.2.3 Thorndike's Connectionism

Edward Lee Thorndike was a student of James; therefore, it is not surprising that he carried over some of
the principles inherent in James' work. Although often considered one of the founding behaviourists (e.g.,
[82]), Thorndike was concerned with states of mind (cf., [115]), and how they changed with experience. More
importantly, however, Thorndike can be considered one of the �rst true connectionists.

In his book, The Fundamentals of Learning [109], he di�erentiated between the principles of British
associationism and what he had coined \new connectionism." He believed so much in this new connectionism
that in 1949 he summarized what he considered his most important contributions to psychology under
the title Selected Writings from a Connectionist's Psychology so that students may \know something of
connectionist psychology" ([110], p. v).

Thorndike's connectionism can be viewed as a turning point where theories of neural association became
sub-symbolic and graduated from merely implementational accounts to accounts of the functional archi-
tecture [112]. In other words, the neural connections became a substitute for, instead of a mechanism of,
ideational processes. Thus, his computational descriptions of the fundamentals of learning were couched in
the language of connectionist principles.

For example, to Thorndike, the most prevalent questions within learning theory were:

1. What happens when the same situation or stimulus acts repeatedly upon an organism|does the mere
frequency of an experience cause useful modi�cations?

2. What happens when the same connection occurs repeatedly in a mind?

3. What e�ect do rewards and punishments have on connections, and how do they exert this e�ect?

In order to answer these questions, Thorndike proposed two di�erent laws. The �rst law, the \Law of
Exercise or Use or Frequency", states that all things being equal, the more often a situation connects with
or evokes or leads to or is followed by a certain response, the stronger becomes the tendency for it to do so
in the future. The second law, the \Law of E�ect", states that what happens as an e�ect or consequence
or accompaniment or close sequel to a situation-response, works back upon the connection to strengthen or
weaken it. Thus, if an event was followed by a reinforcing stimulus, then the connection was strengthened. If,
however, an event was followed by a punishing stimulus, then the connection was weakened. The principles
underlying this law are very similar to the supervised learning techniques (such as error backpropagation)
used in today's neural networks.

Finally, Thorndike anticipated the backlash against the principles of connectionism:

Many psychologists would indeed deny that any system of connections was adequate to explain
his behaviour, and would invoke powers of analysis, insight, purpose, and the like to supplement
or replace the simple process of connection-forming by repetition and reward. ([109], p. 355)

Through a series of experiments, however, Thorndike [109] shows that there is \no su�cient reasons for
ascribing any power over and above that of repetition and reward to any `higher powers' or `forms of thought'
or `transcendent systems' " (p. 382) and thus \justif[ies] the connectionist's faith" (p. 4).
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3.2.4 Hull's Learning Rule

In 1943, Clark L. Hull[51] set for himself the task of elaborating the laws of behaviour from a molar level
description of neural activity (since the results of molecular neurophysiology at the time were inadequate).
As part of this elaboration, he described several functional properties of neural activity that he deemed
important for organism survival. These include:

1. the a�erent neural impulse (s1) which is a non-linear function of the input it receives,

2. interactions between two or more a�erent neural impulses (s2 & s3) which implies that behaviour to
the same stimulus is not constant under all conditions, and

3. the spontaneous generation of nerve impulses which may account for the variability of behaviour to
identical environments.

With these functional properties identi�ed, Hull stated that the \supremely important biological process"
of learning could be expressed in terms of modifying receptor-e�ector connections:

The essential nature of the learning process may, however, be stated quite simply : : : the process
of learning consists in the strengthening of certain of these connections as contrasted with others,
or in the setting up of quite new connections. (pp. 68-69)

The process of learning is wholly automatic|it occurs as the result of the interaction of the organism with its
environment, both external and internal. Furthermore, the rules of learning must be capable of being stated
in a clear and explicit manner without recourse to a guiding agent. Thus, Hull developed several empirically
testable equations to describe the learning process. The one that concerns us the most for historical reasons
is his formula for the growth of stimulus-response habits. This is simply the increase in the strength of
connection (to a physiological maximum) between a stimulus and a response as a function of the number of
reinforcing trials.

The growth of habit strength is dependent on three factors (p. 114):

1. The physiological limit or maximum (M),

2. The ordinal number (N) of the reinforcement producing a given increment to the habit strength
(��

SHR),

3. The constant factor (F ) according to which a portion (�SHR) of the unrealized potentiality is trans-
ferred to the actual habit strength at a given reinforcement.

Thus, habit strength as a function of the number of reinforcement repetitions can be computed as follows

N
S HR =M �Me�N log 1

1�f (1)

which generalizes over trials to
�H = f(M �H) (2)

Hull is quick to point out that habit strength cannot be determined by direct observation; the strength
of the receptor-e�ector connection can only be measured and observed indirectly. This is because the
organization of the processes underlying habit formation are \hidden within the complex structure of the
nervous system" (p. 102). Consequently, the only way of inferring habit strength is to note the associations
between the antecedent conditions which lead to habit formation and the behaviour which is the consequence
of these same conditions.

It has been pointed out [112] that this equation is a forerunner to the Rescorla-Wagner rule [87], which
has been shown [107] to be essentially identical to the Widrow-Ho� [118] rule for training Adaline units (see
Equation 6). Furthermore, this equation can be seen as a primitive form of the generalized delta rule for
backpropagation in neural networks (see section 4.6, Equation 16)
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3.3 The Neuropsychological In
uence

Connectionist models derive their inspiration from neurophysiology. Consequently, it is appropriate to touch
brie
y on the neuropsychological in
uence exerted on connectionism. Following the pioneering work of such
researchers as Sherrington and Cajal3, researchers began to seek the neural correlates of learning and memory.
From this research paradigm emerged two prominent �gures in regards to the history of connectionism: Karl
Lashley and Donald Hebb.

3.3.1 Lashley's Search for the Engram

One of the most intensive searches to localize memory traces|or engrams|within the brain was initiated by
Karl Lashley in the 1920's. Lashley's studies involved training an animal to perform some speci�c task (such
as brightness discrimination or maze orientation) and lesioning a speci�c area of the cortex either before or
after training. Lashley then recorded the behavioural e�ects of cortical lesions on retention and acquisition
of knowledge. In 1950 [58], he summarized 30 years of research into two principles:

� The Equipotentiality Principle: all cortical areas can substitute for each other as far as learning is
concerned.

� TheMass Action Principle: the reduction in learning is proportional to the amount of tissue destroyed,
and the more complex the learning task, the more disruptive lesions are.

In other words, Lashley believed that learning was a distributed process that could not be isolated within
any particular area of the brain. Furthermore, it was not the location of the lesion that was important
(within reason4), but the amount of tissue destroyed that determined the degree of behavioural dissociation.
Although these two principles have been controversial since their publication, they do contribute to the �eld
of connectionist research; speci�cally, to the ideas of distributed representations, multiple internal represen-
tations, and emergent network properties. In fact, recent lesioning experiments performed by connectionists
(e.g., [29],[83]) would tend to agree with Lashley in terms of network processing being distributed and non-
localized. Just as neuropsychologists have questioned Lashley's conclusions [53], however, the conclusions
derived from experiments on lesioned connectionist networks are also being challenged [73]).

3.3.2 Hebbian Learning

Perhaps the most in
uential work in connectionism's history is the contribution of Canadian neuropsychol-
ogist, Donald O. Hebb (a student of Lashley). In his book, The Organization of Behaviour [44], Hebb
presented a theory of behaviour based as much as possible on the physiology of the nervous system. Hebb
reduced the types of physiological evidence into two main categories: (i) the existence and properties of
continuous cerebral activity, and (ii) the nature of synaptic transmission in the central nervous system.
Hebb combined these two principles to develop a theory of how learning occurs within an organism. He
proposed that repeated stimulation of speci�c receptors leads slowly to the formation of \cell-assemblies"
which can act as a closed system after stimulation has ceased. This continuous cerebral activity serves not
only as a prolonged time for structural changes to occur during learning, but also as the simplest instance
of a representative process (i.e., images or ideas).

The most important concept to emerge from Hebb's work was his formal statement (known as Hebb's
postulate) of how learning could occur. Learning was based on the modi�cation of synaptic connections
between neurons. Speci�cally,

When an axon of cell A is near enough to excite a cell B and repeatedly or persistently takes part
in �ring it, some growth process or metabolic change takes place in one or both cells such that
A's e�ciency, as one of the cells �ring B, is increased. ([44], p.62; his italics)

3Sherrington was responsible for coining the term synapse to denote the structural and functional loci of interaction between
neurons while Cajal was responsible for introducing the neuron theory|the nervous system is composed of neurons which are
individual functional units.

4Lashley recognized that removing large portions of the visual cortex would prevent such things as brightness discrimination,
but that this was due to the animal not being able to see, not to any de�cit in learning or memory per se.
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The principles underlying this statement have become known as Hebbian Learning. From a neurophysiologi-
cal perspective, Hebbian learning can be described as a time-dependent, local, highly interactive mechanism
that increases synaptic e�cacy as a function of pre- and post-synaptic activity. Although the neurophysi-
ology in Hebb's day was inadequate to support or deny Hebb's postulate, recent research has shown that
Long-Term Potentiation (LTP) has those putative mechanisms required of Hebbian learning (e.g., [27]).

Within connectionism, Hebbian learning is an unsupervised training algorithm in which the synaptic
strength (weight) is increased if both the source neuron and target neuron are active at the same time. A
natural extension of this (alluded to by Hebb as the decay of unused connections) is to decrease the synaptic
strength when the source and target neurons are not active at the same time. Hence, Hebbian learning can
be formulated as:

wij(t+ 1) = wij(t) + neti netj (3)

where

wij(t) = the synaptic strength from neuron i to neuron j at time t

neti = the excitation of the source neuron.

netj = the excitation of the destination neuron.

There are serious limitations with Hebbian learning as stated (e.g., the inability to learn certain patterns),
but variations of this simple algorithm exist today (e.g., Signal Hebbian Learning; Di�erential Hebbian
Learning; [114]).

3.4 The Mathematical In
uence

The next major formulation of connectionist theories can be attributed to McCulloch and Pitts [70]. In
their seminal paper A logical calculus of the ideas immanent in nervous activity, they explicitly laid out
the foundations of neural modelling in terms of propositional logic. To accomplish this, they simpli�ed the
activity of neurons into �ve functional states (p. 118):

1. The activity of the neuron is an \all-or-none" process.

2. A certain �xed number of synapses must be excited within the period of latent addition in order to
excite a neuron at any time, and this number is independent of previous activity and position on the
neuron.

3. The only signi�cant delay within the nervous system is synaptic delay.

4. The activity of an inhibitory synapse absolutely prevents excitation of the neuron at that time.

5. The structure of the net does not change with time.

Using these principles, McCulloch and Pitts were able to show that any statement within propositional
logic could be represented by a network of simple processing units. Furthermore, such nets have the in
principle computational power of a Universal Turing Machine. \If any number can be computed by an
organism, it is computable by these de�nitions, and conversely" (p. 128). Since all information processing
can be characterized by a Turing Machine (e.g., [111]), it was assumed that human cognition could also be
characterized by a Turing Machine. Consequently, McCulloch and Pitts concluded that:

To psychology, however de�ned, speci�cation of the net would contribute all that could be
achieved in that �eld| even if the analysis were pushed to the ultimate psychic units or \psy-
chons," for a psychon can be no less than the activity of a single neuron. (p. 131)

McCulloch and Pitts also proved that there is always an inde�nite number of topologically di�erent nets
realizing any temporal propositional expression (TPE), although time discrepancies might exist between the
di�erent realizations. What this states is that there exists many di�erent algorithms to compute the same
function, or similarly, many di�erent possible network con�gurations (say in terms of processing units and
connections).



Neural Computing Surveys 1, 61-101, 1998, http://www.icsi.berkeley.edu/~jagota/NCS 72

3.5 Early Computer Models of Connectionism

Logically, if it were possible to construct non-living devices | perhaps even of inorganic materials
| which would perform the essential functions of the conditioned re
ex, we should be able to
organize these units into systems which would show true trial-and-error learning with intelligent
selection and the elimination of errors, as well as other behavior ordinarily classed as psychic.
Thus emerges in a perfectly natural manner a direct implication of the mechanistic tendency
of modern psychology. Learning and thought are here conceived as by no means necessarily a
function of living protoplasm any more than is aerial locomotion. [52] pp. 14-15.

Perhaps the most in
uential event in the development of connectionism was the invention of the modern
computer. Theories that could only be tested previously by observing the behaviour of animals or humans
(e.g., [109][110][51]) could now be stated more formally and investigated on arti�cial computation devices.
Hence, theory generation and re�nement could now be accomplished faster and with more precision by using
the empirical results generated by the computer simulations.

The computer and its in
uence on learning theory can be credited with producing both positive and
negative press for connectionism. Selfridge's Pandemonium [100] and Rosenblatt's Perceptrons [89][90] did
much to further the concepts of connectionism. The proofs on the limitations of simple perceptrons by
Minsky and Papert [74], however, nearly caused the complete abandonment of connectionism.

3.5.1 Pandemonium

Recognizing that previous attempts to get machines to imitate human data had all but failed, Selfridge [100]
proposed a new paradigm for machine learning. Pandemonium was introduced as a learning model that
adaptively improved itself to handle pattern classi�cation problems that could not be adequately speci�ed
in advance. Furthermore, whereas previous computer models relied on serial processing, Selfridge proposed
a novel architecture to deal with the problem, parallel processing. The move to parallel processing was not
an arbitrary one, but one motivated by two factors: (1) it is easier, and more \natural" to handle data in a
parallel manner5, and (2) it is easier to modify an assembly of quasi-independent modules than a machine
whose parts interact immediately and in a complex way.

Pandemonium consists of four separate layers: each layer is composed of \demons" specialized for speci�c
tasks. The bottom layer consists of data or image demons that store and pass on the data. The third layer
is composed of computational demons that perform complicated computations on the data and then pass
the results up to the next level. The second layer is composed of cognitive demons who weight the evidence
from the computational demons and \shriek" the amount of evidence up to the top layer of the network.
The more evidence that is accumulated, the louder the shriek. At the top layer of the network is the decision
demon, who simply listens for the loudest \shriek" from the cognitive demons, and then decides what was
presented to the network.

The initial network structure is determined a priori by the task, except for the computational level which
is modi�ed by two di�erent learning mechanisms. The �rst mechanism changes the connection weights
between the cognitive demons and the computational demons via supervised learning (all other connections
within the network being �xed a priori). The weights are trained using a hill-climbing procedure in order
to optimize the performance of the network. After supervised learning has run long enough to produce
approximately optimal behaviour, the second learning mechanism is employed.

The second learning mechanism selects those computational demons that have a high worth (based on
how likely they are to in
uence a decision), eliminates those demons that have a low worth, and generates new
demons from the remaining good demons. Generation can be accomplished by either mutating a demon, or
conjoining two successful demons into a continuous analogue of one of the ten nontrivial binary two-variable
functions. It should be noted that this second mechanism may be one of the �rst genetic machine learning
algorithms.

5\parallel processing seems to be the human way of handling pattern recognition" [99] p. 66.
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Selfridge has demonstrated the e�ectiveness of Pandemonium on two di�erent tasks: distinguishing dots
and dashes in manually keyed Morse code [100], as well as recognizing 10 di�erent hand-printed charac-
ters [99]. Thus a practical application of connectionist principles have been applied to pattern recognition.
In fact, Pandemonium has been so successful as a model of human pattern recognition that it has been
adopted and converted into a more traditional symbolic model (with connectionist principles appropriately
ignored) by cognitive psychologists (e.g., [62])

3.5.2 The Perceptron

The perceptron, more precisely, the theory of statistical separability, seems to come closer to
meeting the requirements of a functional explanation of the nervous system than any system
previously proposed. [89] p. 449.
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Figure 4: Di�erent diagrams representing the same per-
ceptron system. (A) Network diagram. (B) Set Diagram.
(C) Symbolic Diagram. (Adapted from [90]; Figure 2, p.
86).

Although originally intended as a genotypic
model of brain functioning [89][90], the percep-
tron has come to represent the genesis of ma-
chine pattern recognition. Basically, the per-
ceptron is a theoretically parallel computation
device composed of (i) a layer of sensory units
(S-unit) which transduce physical energy (e.g.
light, sound, etc.) into a signal based on some
transformation of the input energy, (ii) any
number of layers of association units (A-unit)
which have both input and output connections,
and (iii) a �nal layer of response units (R-
unit) which emit a signal that is transmitted
to the outside world. Figure 4 shows di�erent
graphical representations of a perceptron sys-
tem. Note that the same perceptron system can
be expressed in terms of a network diagram, a
set diagram, or even a symbolic diagram.

An elementary �-perceptron is de�ned, then,
as a network in which S-units are connected to
A-units (although not necessarily massively par-
allel), and all A-units are connected to a single
R-unit, with no other connections being permit-
ted. Furthermore, all connections are consid-
ered to have equal transmission rates, � . The
transfer function between units i and j at time t is expressed as

c�ij(t� �) = u�i (t� �) vij(t� �) (4)

where u�i (t� �) is the output of unit i at time t, and vij(t� �) is the connection strength between units i and
j at time t. Connection strengths from S- to A-units are �xed, while connection strengths from A- to R-units
vary with the reinforcement history applied to the perceptron. Both A- and R-units have a threshold, �, and
emit a signal whenever the input signal, �, is equal to or greater than �. We can assume that � = 0 without
loss of generality, and thus, the reinforcement rule is

�vij = u�i (t) � � =

�
� if �i(t) � �;

0 otherwise:
(5)

where � is of constant magnitude.
The theoretical importance of the elementary �-perceptron lies in the fact that, for binary inputs, a

solution exists for every classi�cation, C(W ), of all possible environmentsW . In other words, an elementary
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�-perceptron is capable of solving any pattern classi�cation problem expressed in binary notation. The proof
is rather trivial:

1. For every possible pattern, Si, in W , let there be a corresponding A-unit, ai.

2. Make the connection, vij , between ai and the corresponding sensory unit, sj , excitatory (i.e., value
equal to +1) if the pattern on that sj is \on"; otherwise make the connection inhibitory (i.e., value
equal to -1).

3. Set the threshold of ai, �, equal to the number of excitatory connections. Thus, ai responds to one
and only one pattern in W .

4. If Si is a positive instance of C(W ) then make the connection from ai to the R- unit positive (i.e. value
equal to +1); otherwise make the connection negative (e.g., value equal to -1). With the threshold of
the R-unit equal to zero, the network correctly classi�es all Si in W .
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Figure 5: The solution for an elementary �-
perceptron solving the XOR problem. Weights are
either +1 (solid line) or -1 (broken line), whereas
biases are indicated by the number within the pro-
cessing unit.

The above proof shows theoretically that any pat-
tern classi�cation problem expressed in binary notation
can be solved by a perceptron network. As a concrete
example, Figure 5 shows the network con�guration for
solving the XOR problem. The problem with this proof,
however, is that it produces the �nal network structure,
but does not indicate if the network could be trained
to such a con�guration. Consequently, Rosenblatt de-
veloped the Perceptron Convergence Theorem to show
that an elementary �-perceptron using an error correc-
tion procedure is guaranteed to converge on a solution in
�nite time, providing that (i) a solution exists, (ii) each
pattern is presented to the network at least twice, and
(iii) the connections between the S-units and A-units are
�xed.

Although theoretically very powerful, the practical
problem with perceptrons was that there was no reliable
method of adjusting the connections between the sen-
sory (input) units and the association (internal) units.
Hence, as a true learning network, perceptrons were lim-
ited to just a layer of sensory units connected directly
to a layer of response units, with no intervening layers.
With the output of the R-unit being monotonic (i.e.,
u�i (t) = f(�i(t)), where �i(t) is the algebraic sum of all the inputs into unit ui), the resulting networks were
very limited in their computational power. Rosenblatt was quick to point this limitation out, although he
left the proof up to the reader.

It is left to the reader to satisfy himself that a system with less \depth" than an elementary
perceptron (i.e., one in which S-units are connected directly to the R- unit, with no intervening
A-units) is incapable if representing C(W ), no matter how the values of the connections are
distributed. [90] p. 101.

3.5.3 Adaline

The next major formulation in learning rules for networks came fromWidrow and Ho� [118]. They developed
\Adaline" (�rst for adaptive linear, then adaptive linear neuron, and later adaptive linear element as neural
models became less popular) as an adaptive pattern classi�cation machine to illustrate principles of adaptive
behaviour and learning. The learning procedure was based on an iterative search process, where performance



Neural Computing Surveys 1, 61-101, 1998, http://www.icsi.berkeley.edu/~jagota/NCS 75

feedback was used to guide the search process. In other words, a designer \trains" the system by \showing"
it examples of inputs and the respective desired outputs. In this way, system competence was directly and
quantitatively related to the amount of experience the system was given.

The typical Adaline unit, also called a \neuron element," is illustrated in Figure 6. It is a combinatorial
logic circuit that sums the signals from weighted connections (gains), ai, and then sends an output signal
based on whether or not the internal signal exceeded some threshold. The threshold was determined by
a modi�able gain, a0, which was connected to a constant +1 source. As opposed to the usual convention
of using signals of 0 and 1, the Adaline used input signals of -1 and +1 which meant a signal was always
passed along a connection (unless the gain on the line was zero). Similarly, the gains on the connections were
adjusted so that the output signals were exactly -1 or +1; therefore, classi�cation was not simply correct,
but exactly correct. This restriction on the outputs meant that learning continued even if the classi�cation
was simply correct as the summed inputs may not be exactly -1 or +1. This continued learning was an
improvement over the simple perceptron which did not change its weights if the gross classi�cation was
correct.
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Figure 6: A typical Adaline unit. The inputs are sent along weighted connections (gains) to a summer which
performs a linear combination of the signals. The output of the summer is compared to the value of the
reference switch and the gains are adjusted by the same absolute value to produce an output of exactly -1
or +1.

The learning procedure is based on the error signal generated by comparing the network's response with
the optimal (correct) response. For example, consider an Adaline unit with 16 input lines and a bias threshold.
A pattern is presented over the 16 input lines, and the desired output is set into the reference switch (see
Figure 6). If the error (computed as the di�erence between the summer and the reference switch) is greater
than zero, then all gains including the bias are modi�ed in the direction that will reduce the error magnitude
by 1/17. Upon immediate representation of the pattern an error signal of zero would be produced. Another
pattern can now be presented to the network and the connections modi�ed6. Convergence is achieved when
the error (before adaptation) on any given pattern is small and there are small 
uctuations about a stable
root mean-square value.

The Widrow-Ho� rule [107] is formulated as:

ri = z[(t)� y(t)]xi(t) (6)

where t is the target pattern, y(t) is the network's output, and xi(t) is the input to the network. Because
this rule is dependent on an external teacher it is termed supervised learning. The Widrow-Ho� rule is also
known as the delta rule because the amount of learning is proportional to the di�erence between the output
and the target [91].

6Note that at this point, presenting the �rst pattern to the network would produce an error that was small but not necessarily
zero.
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3.5.4 Perceptrons Revisited (Minsky & Papert)

Although it was known for a decade that simple perceptrons were limited in their ability to classify some
patterns, it was not until Minsky and Papert published Perceptrons in 1969 that the extent of these limitations
were fully realized. In fact, it was with this publication that the connectionist tide was stemmed7 (at least
for a while). Instead of asking if neural networks are good, Minsky and Papert asked the question \what
are neural networks good for?" This is clearly a computational level question aimed at identifying the
limitations of the representational abilities of perceptron-like networks. As Minsky and Papert point out in
their prologue to the 1988 edition of Perceptrons, \No machine can learn to recognize X unless it possesses,
at least potentially, some scheme for representing X." (p. xiii; their italics).

Hence, their approach to the study of neural networks was based on studying the types of problems that
were being proposed at the time|mainly visual pattern recognition [81]. In doing so, they discovered that
some pattern recognition problems (e.g., distinguishing triangles from squares) were relatively easy and could
be computed by simple networks. Conversely, some problems (e.g., determining if a �gure was connected or
not) were extremely di�cult and required large networks to solve them. The main distinction between these
two types of problems was not the size of the pattern space, but the concept of order [74], p. 30.

In general, the order of some function 	(X) is the smallest number k for which we can �nd a set � of
predicates satisfying �

jS('p)j � k 8 ' in �;

	 2 L(�):
(7)

where ' is a simple predicate, and L(�) is the set of all predicates that are linear threshold functions. It
should be noted that the order of 	 is a property of 	 alone, and not relative to any particular �. Functions
that have an order of 1 are called \linearly separable" and can be solved by a single layer perceptron.

The types of pattern recognition problems that gave simple perceptrons trouble were those whose order
was greater than 1. These types of problems are termed \linearly inseparable" and require a layer of
processing units between the input and output units. At the time, however, there was no reliable method of
training this intermediate level, and therefore perceptrons were limited to being trained on linearly separable
problems only.

Minsky and Papert [74] used a very simple and elegant example to show the practical limitations of
perceptrons. The exclusive-or (XOR) problem (see Figure 5) contains four patterns of two inputs each; a
pattern is a positive member of a set if either one of the input bits is on, but not both. Thus, changing
the input pattern by one bit changes the classi�cation of the pattern. This is the most simple example of a
linearly inseparable problem (see Figure 7). A perceptron using linear threshold functions requires a layer of
internal units to solve this problem, and since the connections between the input and internal units could not
be trained, a perceptron could not learn this classi�cation. And, if perceptrons failed on this small pattern
set, what hope was there for larger pattern sets that were also linearly inseparable?

Furthermore, Minsky and Papert lay out other limitations of networks. For example, if a network is
to solve a problem with order R, then at least one partial predicate ' must have as its support the whole
space R. In other words, at least one internal unit must be connected to each and every input unit. This
network con�guration violates what is known as the \limited order" constraint. Another limitation that
Minsky and Papert discuss is the growth of coe�cients. For linearly inseparable problems, the coe�cients
(i.e., weights) can increase much faster than exponentially with jRj. This leads to both conceptual and
practical limitations. Conceptually, although the behaviour of a network may be \good" on small problems,
this behaviour may become profoundly \bad" when the problem is scaled up. Practically, for very large
jRj, the amount of storage space required for the weights would overshadow the space required to simply
represent the problem.

Although advances in neural network research have produced methods for training multiple layers of
units (e.g., [92] [93]), many of Minsky and Papert's concerns remain unanswered. Networks using linear
threshold units still violate the limited order constraint when faced with linearly inseparable problems (but

7Neural network research did not wane due to lack of interest, but because of lack of funding [81]
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Figure 7: (A) Linearly separable problem|the pattern space requires a single hyperplane to make the proper
classi�cation; therefore, a network requires no hidden units. (B) Linearly inseparable problem|the pattern
space requires two (or more) hyperplanes to make the correct classi�cation; therefore, a network requires a
layer of internal units.

see section 4.8). Furthermore, the scaling of weights as the size of the problem space increases remains an
issue [31].

3.6 The Importance of Old Connectionism

The publication of Perceptrons by Minsky and Papert in 1969 has taken on almost a mythical aura|it has
been likened to the huntsman being sent out to bring back the heart of Snow White [81]. Regardless of
whether or not the work precipitated or merely coincided with the decline of connectionist research, it serves
as a useful delineation between the \Old" and \New" connectionism.

The examples of connectionist networks provided in this section are often classi�ed under the term \Old
Connectionism". Old Connectionism is characterized by two di�erent types of networks. The �rst are
small, trainable networks, such as single layer perceptrons, that are computationally limited (i.e., cannot
be trained to solve linearly inseparable problems). The second type of networks are large, computationally
powerful networks that are mainly hardwired (although they could have a trainable layer of weights such as
Pandemonium), and thus are limited in their learning ability. The problem with Old Connectionism was that
it had no reliable way of combining these two di�erent types of network architectures. To be an e�ective tool
within cognitive science, researchers had to �nd a way of combining these two di�erent types of networks.

Consequently, we are left with the question \Why should we be interested in Old Connectionism?" The
�rst reason is purely academic. To understand the role of connectionism today we have to understand
how the �eld has developed. By knowing the history of connectionism, not only are we in a position to
counter the arguments against connectionism from the classical camp (e.g., knowing why connectionism is
not associationism), but also we are in a position to evaluate claims from the connectionist camp that it may
represent a paradigm shift [98]. To be e�ective researchers, we need to know both sides of the argument.

The second and more important reason is that by studying the development of connectionism we can
appraise the strengths and weaknesses of the connectionist approach to information processing and adjust
our course of inquiry accordingly. For example, we know that connectionist networks have the in principle
power of a UTM [70], but we also know that perceptron-like single layer networks are limited in their
computational power [74]. Thus, we should focus current research on multilayer networks. We know that
there are guaranteed algorithms based very much on early behaviourist theorizing for training single layer
networks [90], yet no such algorithm exists for multiple layer networks. Can the same be said of biological
learning? Finally, we should stop working in the \biological vacuum" and heed the echoing call for models
of learning to be based more on the known neurophysiology of the brain.
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With the introduction to connectionism's interdisciplinary background from its philosophical roots to its
computational apex completed, the current state of connectionism can now be evaluated.

4 New Connectionism

This section is concerned with describing connectionist systems in the post-Perceptrons era; that is, networks
falling under the classi�cation of \New Connectionism". New Connectionism is characterized by computa-
tionally powerful networks that can be fully trained. Such networks have often been hailed as providing
a simple universal learning mechanism for cognition (but see [34]). Moreover, the learning algorithms em-
bodied within new connectionist models have created very powerful information processors|they are both
universal function approximators [16] and arbitrary pattern classi�ers [63].

As stated earlier, we are living in the aftermath of the neural network revolution. As a consequence, the
number of di�erent connectionist architectures available to researchers today is immense; to discuss them all
is beyond the scope of this paper. Instead, this section will focus on three speci�c architectures and provide
a cursory examination of four other connectionist architectures.

It should be noted, however, that the demarcation between\Old" and \New" is somewhat tenuous.
Following the publication of Perceptrons, there was a decrease in the number of researchers actively engaged
in connectionist research; but, research did not cease. In certain respects, however, there was a change in
the focus of connectionist research. Whereas previous researchers were interested in a connectionist theory
of mind, the focus of research during the 1970's and early 1980's was more directed towards a connectionist
theory of memory. This is exempli�ed by the work on associative memory models reported in Hinton and
Anderson [45]. The models described in Parallel Models of Associative Memory were seen as a departure
from standard memory models of the time for three distinct reasons (e.g., [97]):

1. The systems were assumed to have a neurophysiological foundation,

2. The systems o�ered an alternative to the \spatial" metaphor of memory and retrieval, and

3. The systems assumed a parallel, distributed-processing system that did not require a central executive
to coordinate processing.

These researchers were aware of the limitations of connectionist models for learning linearly inseparable
pattern classi�cation tasks; consequently, the focus of their research was directed more towards how memory
was stored and retrieved. In many ways, the work presented in Hinton and Anderson (1981) serves an
important role by bridging the gap between Perceptrons and Parallel Distributed Processing.

4.1 Modern Connectionist Architectures

In this section, three di�erent network architectures will be described in detail. After each of the main
architectures is described, related network architectures will also be reviewed. These reviews will provide
somewhat less detail as they are meant to provide only a cursory examination of comparable architectures.

The �rst architecture to be described in detail is James McClelland's [66] Interactive Activation and
Competition (IAC) model of information retrieval from stored knowledge. Although early versions of the
IAC architecture did not learn|hence, it could rightly be considered within the class of Old Connectionism
as de�ned earlier|the model displays many characteristics of human cognition that are missing from classical
symbolic models. Furthermore, a new learning rule for IAC networks is proposed within this section. Thus,
it is included here in our description of modern connectionism.

Following the description of the IAC network, the work of two pioneering researchers in the �eld of
neural network learning immediately following the Perceptrons era will be brie
y reviewed. First, Stephen
Grossberg's [39][40] instar and outstar con�gurations and his Adaptive Resonance Theory (ART) networks
will be introduced. Second, we will cover Teuvo Kohonen's [57] self-organizing maps (which are now com-
monly referred to as Kohonen networks). Coupled with the new learning rule for the IAC networks, these
architectures provide a link from the\Old" to the \New" Connectionism.
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The second architecture to be covered in detail is the generic PDP architecture8; that is, a multi-layered
network trained with Rumelhart, Hinton andWilliams' [92][93] backpropagation algorithm. The generic PDP
network is probably the most well known and most widely used architecture today it is estimated that about
70% of real-world network applications use the backpropagation learning algorithm [116]. Furthermore, the
algorithm is suitable for both function approximation tasks and pattern classi�cation problems.

One criticism leveled against the generic PDP architecture, however, is that is only capable of a static
mapping of the input vectors. The brain, on the other hand, is not stateless but rather a high-dimensional
nonlinear dynamical system [26]. Consequently, the recurrent network architecture pioneered by John Hop-
�eld [47] will be brie
y discussed. The basic characteristic of recurrent networks is that some processing
activation (usually the output) at time t is re-used (usually as an input) at time t+1. Thus, a fully connected
recurrent network is potentially a very powerful architecture for temporal processing; however, more e�cient
heuristics and algorithms for reliable learning are required.

The third architecture to be discussed speci�cally is a variation on the generic PDP architecture developed
by Dawson and Schop
ocher [24]. These value unit networks use the same basic learning algorithm as the
generic PDP architecture, but use a non-monotonic activation function|the Gaussian|in their processing
units. This new activation function has been shown to have certain theoretical and practical advantages over
standard backpropagation networks. For example, value units are able to solve linearly inseparable problems
much easier and with fewer hidden units than standard networks. Also, the hidden unit activations adopted
by value unit network often fall into distinct \bands", allowing for easier interpretation of the algorithms
being carried out by the network.

Finally, the last architecture to be brie
y covered is the Radial Basis Function (RBF) network (e.g., [75]).
The reason for covering the RBF architecture is that it and the value unit architecture are often confused.
This is because both networks use a Gaussian activation function in their processing units. As the section
will show, however, the networks are not equivalent.

4.2 Interactive Activation and Competition Models

McClelland's [66] Interactive Activation and Competition (IAC) model illustrates the power of a large network
for retrieving general and speci�c information from stored knowledge of speci�cs. Although the network
rightly falls into the category of Old connectionism as de�ned earlier (i.e., the network is hardwired and
cannot \learn" new information), it is included in this section because it nicely illustrates those properties of
an information processing system that are often overlooked in classical theories of cognitive science. These
include graceful degradation, content-addressable memory, output availability, and iterative retrieval [78].
Furthermore, the network suggests that we may not need to store general information explicitly.

The basic IAC network consists of processing units that are organized into competitive pools. Connec-
tions within pools are inhibitory; this produces competition within the pools as strong activations tend to
drive down weaker activations within the same pool. Connections between pools, however, are normally
excitatory and bi-directional; thus, we have interactive processing. Units within the network take on con-
tinuous activation values between a minimum and a maximum, with their output normally equal to the
activation value minus some threshold (although this can be set to zero without loss of generality). The
basic mathematics of network functioning are fairly straight-forward (e.g., [41][68]).

Units within the IAC network compute their activation, ai, based upon the unit's current activation and
the net input. The net input arriving into a unit (see Equation 8) is calculated by summing the weighted
activations sent from all other internal units connected to it, plus any external activation supplied by the
environment. Thus, the net input to unit i that is connected to j other units is

neti =
X
j

wij outputj + extinputi (8)

8The term `generic' was �rst coined by [3] to describe this type of network architecture and is maintained here for consistency.
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where wij is the weight (positive or negative) of the connection between unit i and unit j, and

outputj = [aj ]
+ =

�
aj if aj > 0;

0 otherwise:
(9)

Once the net input to a unit has been calculated, the change in that unit's activation can be computed
as follows:

If (neti > 0);

�ai = (max� ai)neti � decay(ai � rest):

Otherwise;

�ai = (ai �min)neti � decay(ai � rest):

where max, min, decay, and rest are parameters supplied by the modeler. Normally, the parameters are
set to max = 1, min � rest � 0, and 0 � decay � 1. It is also assumed that ai is initialized and remains
within the range [min, max].

With these equations in place, we can evaluate how �ai changes over time. For example, imagine
that the input, neti, to a unit is �xed at some positive value. As the activation, ai, of a unit becomes
greater and greater, �ai becomes less and less|when ai reaches max then �ai = �decay(ai � rest) =
�decay(max� rest). When ai is equal to the resting level, then �ai = (max� rest)neti. If we assume that
max = 1 and rest = 0, then these equations reduce to �ai = �decay when ai is maximal and �ai = neti
when ai is minimal. Between these two extremes is the equilibrium point, where �ai = 0; that is, we can
calculate the value of ai such that given a constant net input, the unit's activation does not change with
time. To determine the equilibrium point (assuming max = 1 and rest = 0), we simply set �ai to zero and
solve for ai which gives:

0 = (max� ai)neti � decay(ai � rest)

0 = neti � (ai)(neti)� (ai)(decay)

0 = neti � ai(neti + decay)

ai =
neti

neti + decay
(10)

This means equilibrium is reached when the activation equals the ratio of the net input divided by the net
input plus the decay. Analogous results to Equation 10 are obtained when the net input is negative and
constant. It should be noted that equilibrium is only reached when the net input to the unit is constant|if
the net input changes with time, then equilibrium is not guaranteed (in practice, however, equilibrium is
often achieved).

Having analyzed the mathematical basis of the network, we can now turn our attention to a more speci�c
example of the IAC architecture. McClelland's [66] network is based on the bi-directional interconnection
of nodes. A node is a simple processing device that accumulates excitatory and inhibitory signals from
other nodes via weighted connections and then adjusts its output to other nodes accordingly. There are
two di�erent types of nodes in the network: instance and property nodes9. There is one instance node for
each individual encoded in the network. The instance node has inhibitory connections to other instance
nodes and excitatory connections to the relevant property nodes. The property nodes encode the speci�c
characteristics of an individual. Property nodes are collected into cohorts of mutually exclusive values; nodes
within a cohort have mutually inhibitory connections. Knowledge is extracted from the network by activating
one or more of the nodes and then allowing the excitation and inhibition processes to reach equilibrium.

All information processing models take time, and the IAC model is no exception. Time is measured in
\cycles", where a cycle consists of a node computing its activation level (dependent on previous activation,

9In reality, both of the nodes have the same physical characteristics and therefore only represent di�erent types of information.
It is often assumed, however, that instance nodes are `hidden' from direct access whereas property nodes are not.



Neural Computing Surveys 1, 61-101, 1998, http://www.icsi.berkeley.edu/~jagota/NCS 81

current excitatory and inhibitory signals being received, and a decay function) and then sending a signal to
all connected nodes. During a cycle, all nodes are computing their activation levels in parallel. Furthermore,
at the completion of any cycle, we can evaluate the current state of the network. This means that we can
wait for the network to reach equilibrium and a de�nite answer, or we can ask what the network's best
\guess" to a question is before equilibrium is reached.

The speci�c network reported [66] encodes information about the members of two gangs called the
\Jets" and the \Sharks". Property cohorts include Name, Gang, Affiliation, Age, Education Status,
Marital Status, and Occupation. Figure 8 illustrates the network's architecture and the individual
properties within each cohort. Note that McClelland's original network had 27 individuals encoded, while
Figure 8 only encodes the properties of three individuals.

Lance
Doug

Earl Bookie

Burglar

Pusher

40’s

30’s

20’s

Divorced
Married Single

Jets

Sharks

H.S.

J.H.

Col.

Figure 8: A much reduced version of McClelland's (1981) \Jets"
and \Sharks" network for illustrative purposes. The solid nodes are
\instance units" (one for each gang member) while the hollow nodes
are \property units" that encode speci�c characteristics. Inhibitory
connections are not shown.

To illustrate how the network re-
trieves speci�c information, we will use
Lance as an example. First, the name
node \Lance" is activated by an exter-
nal signal. The node then sends an in-
hibitory signal to all other name nodes,
and an excitatory signal to the instance
node for Lance. When the instance
node receives enough stimulation, it
sends an inhibitory signal to all other
instance nodes, and an excitatory signal
to the properties of Lance, speci�cally
the nodes for \Jets", \20's", \J.H.",
\Married", \Burglar", and the name
node \Lance". These property nodes
send out inhibitory signals to the other
nodes within their cohorts and an exci-
tatory signal back to the instance nodes
to which they are connected (which
means instance nodes other than Lance
may be activated). Eventually, the net-
work will settle into a state of equi-
librium where the properties of Lance
will be activated at a high level and
all other properties will be relatively in-
hibited. This is an example of content-
addressable memory.

To retrieve general information from the network, we can activate one of the other property nodes. For
example, if we wished to �nd out the average characteristics of members in the Jets Gang, we would simply
activate the \Jets" unit and look for the property nodes with the highest amount of activation in each cohort.
It turns out that the average member of the Jets is in his 20's, has a Junior High education, is single, and is
equally likely to be a pusher, a bookie, or a burglar. Furthermore, the network will also tell us who the gang
members of the Jets are. This general information is not encoded speci�cally anywhere within the network;
therefore, the model \has no explicit representation that the Jets tend to have these properties" ([66], p.
171) and yet this information is available.

Finally, the IAC model is able to handle incomplete or missing data and even perform when the network
has been damaged. If the network is given incorrect information (e.g., inquire about who was a Shark, in
their 20's, single, a burglar, and had a Junior High education) it will return with the best match. In this
case, the network returns the individual Ken who �ts all the characteristics except for education level [68].
Furthermore, if we sever the connection between the instance node Lance and the property \Burglar", the
network is still able to return a value of \Burglar" when the property node \Lance" is activated even though
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there is no direct connection. In e�ect, Lance will activate other individuals who are similar to him, and
thus the network \guesses" at Lance's profession by default assignment.

The IAC network illustrates quite e�ectively content-addressable memory (e.g., retrieval of the properties
of Lance by supplying his name only), output availability (e.g., assessing the state of the network at the end
of a cycle), iterative retrieval (e.g., �nding the average property of a Jets member from all other possible
properties), and graceful degradation (e.g., retrieval of information when connections are severed or incorrect
information is given)|properties required in a model of human information processing [78]. This model also
questions the classical view that we explicitly store generalizations.

4.2.1 A Possible Learning Mechanism for IAC Networks

Although IAC models are an important contribution to the connectionist's tool bag, the initial models still
su�ered from the inability to learn and, hence, rightly fall into the classi�cation of Old Connectionism. The
ability of the IAC networks to incorporate so many of the characteristics of human information processing,
however, make it di�cult to dismiss the architecture for lack of a learning mechanism. Consequently, a
possible learning mechanism for the IAC networks is proposed here.

In devising a new learning mechanism, we would want to incorporate as many of the known neurophysio-
logical properties (both theoretical and empirical) of learning as possible. The �rst modi�cation would be to
add a Hebbian-like learning mechanism to increase or decrease the weighted connections between nodes, so
that those nodes that are active together become more strongly connected (either inhibitory or excitatory),
and those nodes that are seldom active together weaken their connection [44]. The second modi�cation
would be to limit the maximum possible weight of any connection. The idea behind this restriction comes
from Hull's [51] growth of habit strength and Minsky and Papert's[74] observation that network weights
often grow without bound and there is no evidence that biological neural networks behave in this manner.
A third property to be incorporated into a possible learning mechanism would be to prevent weights from
shifting sign; that is, weights that are positive remain positive, and weights that are negative remain nega-
tive. Finally, a decay process should be added to the learning mechanism to account for the \use it or lose
it" property evident in real neural circuits (e.g., [27]). Consequently, learning in an IAC network could be
accomplished by adding the following equation to the mathematics of the architecture:

If(wij > 0)

�wij = �(wmax � wij)aiaj � wdecay(wij): (11)

Otherwise

�wij = �(wmin+ wij)aiaj � wdecay(wij):

where wmax � max, wmin � min, and wdecay � 0 are parameters speci�c to the network weights, � is
a learning parameter, and the unit activations ai and aj are assumed to fall into the range [min, max] as
before. What Equation 12 states is that the change in weight is equal to some proportion of the unrealized
weight potential (cf., Hull's growth of habit strength) minus some decay process. Note that this equation
guarantees that as the inactivity between nodes persists, weights will approach but never cross zero; in other
words, weights that are inhibitory remain inhibitory, and weights that are excitatory remain excitatory.
Thus, the network is an unsupervised learning algorithm based on self-organizing principles. A similar
learning rule|although less encompassing|for IAC networks has been proposed and tested [11] to train a
face recognition network.

Therefore, with these modi�cations, the IAC architecture could be said to bridge the gap between Old
and New Connectionism. But, the IAC network is still somewhat limited in the knowledge it can represent;
for example, while the architecture represents semantic knowledge quite well, the architecture probably is not
suitable for controlling limb movement. Consequently, we need to explore other architectures and learning
methods, and the best place to start is with the forerunners to the most common network and learning
algorithm today.
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4.3 Grossberg's Instars and Outstars

Many of the ideas commonly used in arti�cial neural networks today can be attributed to Stephen Grossberg
[39]. One such contribution is the instar and outstar con�gurations, which were originally proposed as models
of certain biological functions. Basically, instars are neurons fed by a set of inputs through synaptic weights,
while outstars are neurons driving a set of weights. Instar neurons and outstar neurons are capable of being
interconnected to form arbitrarily complex networks.

The purpose of instar neurons is to perform pattern recognition. Each instar is trained to respond to
a speci�c input vector X and to no other. This is accomplished by adjusting the weight vector W to be
like the input vector. The output of the instar is the sum of its weighted connections (see Equation 14).
This calculation can be seen as the dot product of the input vector and the weight vector, which produces a
measure of similarity for normalized vectors. Therefore, the neuron will respond most strongly to the pattern
for which it was trained.

An instar is trained using the formula ,

wi(t+ 1) = wi(t) + �[xi � wi(t)] (12)

where,

wi(t) = the weight from input xi

xi = ith input

� = training rate coe�cient which should be set to 0.1 and then gradually reduced during the training
process.

Once trained, the instar will respond optimally to the input vector X, and respond to other vectors that are
similar to X. In fact, if you train it over a set of vectors representing normal variations of the desired vector,
the instar develops the ability to respond to any member of that class.

The outstar works on a complementary basis to the instar. It produces a desired excitation pattern for
other neurons whenever it �res. To train the outstar, its weights are adjusted to be like a desired target
vector

wi(t+ 1) = wi(t) + �[yi � wi(t)] (13)

where � is the training rate coe�cient which should start at 1 be slowly reduced to 0 during training. Ideally,
the outstar neuron should be trained on vectors that represent the normal variation of the desired vector.
Thus, the output excitation pattern from the neuron represents a statistical measure of the training set and
can converge to the ideal vector even if it has only seen distorted versions of the vector.

4.4 Grossberg's Adaptive Resonance Theory

It would be hard to mention Grossberg without making a least a brief mention about Adaptive Resonance
Theory (ART). ART was initially introduced by Grossberg [40] as a theory of human information processing:
it has since evolved into a series of real-time neural network models that perform supervised and unsupervised
category learning, pattern classi�cation, and prediction [12].

The simplest ART network is a vector classi�er|it accepts as input a vector and classi�es it into a
category depending on the stored pattern it most closely resembles. Once a pattern is found, it is modi�ed
(trained) to resemble the input vector. If the input vector does not match any stored pattern within a certain
tolerance, then a new category is created by storing a new pattern similar to the input vector. Consequently,
no stored pattern is ever modi�ed unless it matches the input vector within a certain tolerance. This means
that an ART network has both plasticity and stability; new categories can be formed when the environment
does not match any of the stored patterns, but the environment cannot change stored patterns unless they
are su�ciently similar.
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There are many di�erent variations of ART available today. For example, ART1 performs unsupervised
learning for binary input patterns, ART2 is modi�ed to handle both analog and binary input patterns, and
ART3 performs parallel searches of distributed recognition codes in a multilevel network hierarchy. ARTMAP
combines two ART modules to perform supervised learning while fuzzy ARTMAP represents a synthesis of
elements from neural networks, expert systems, and fuzzy logic [12]. Other systems have been developed
to suit individual researcher's needs; for example, Hussain and Browse [54] developed ARTSTAR which
uses a layer of INSTAR nodes to supervise and integrate multiple ART2 modules. The new architecture
provides more robust classi�cation performance by combining the output of several ART2 modules trained
by supervision under di�erent conditions.

4.5 Kohonen Networks

A Kohonen network [57] can be characterized as a self-organizing map used for pattern recognition. It di�ers
from the generic PDP architecture in several ways (see Section 4.6). First, application of an input vector
to the network will cause activation in all output neurons: the neuron with the highest value represents the
classi�cation. Second, the network is trained via a non-supervised learning technique. This poses a rather
interesting problem. As the training is done with no target vector, it is impossible to tell a priori which
output neuron will be associated with a given class of input vectors. Once training is completed, however,
this mapping can easily be done by testing the network with the input vectors. A typical Kohonen network
is illustrated in Figure 9.

output

input

i

j

(A)

(B)

(C)

Figure 9: (A) A Kohonen network with two inputs mapping onto a 4 x 5 output �eld. (B) Randomized
weight structure before training. (C) Typical weight structure following training.

The n connection weights into a neuron are treated as a vector in n-dimensional space. Before training,
the vector is initialized with random values, and then the values are normalized to make the vector of unit
length in weight space. The input vectors in the training set are likewise normalized.

The algorithm for training a Kohonen network can be summarized as follows:

1. Apply an input vector X to the network.

2. Calculate the distance Dj (in n dimensional space) between X and the weight vectors Wj of each
neuron.

3. The neuron that has the weight vector closest to X is declared the winner. Use this weight vector Wc

as the center of a group of weight vectors that lie within a distance of d from Wc

4. Train this group of vectors according to

Wj(t+ 1) =Wj(t) + �[X �Wj(t)]
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for all weight vectors within a distance d of Wc. Note the similarity between this equation and
Equation 12.

5. Perform steps 1 through 4 for each input vector.

As training proceeds, the values of d and � are gradually reduced. It is recommended by Kohonen that
� start near 1 and reduce to 0.1, whereas d can start as large the greatest distance between neurons and
reduce to a single neuron. Furthermore, the number of training cycles should be approximately 500 times
the number of output neurons to ensure statistical accuracy.

Because the input and weight vectors are normalized they can be viewed as points on the surface of a unit
hypersphere. The training algorithm therefore adjusts the weight vectors surrounding the winning neuron
to be more like the input vector. In other words, the algorithm tends to cluster weight vectors around the
input vector.

Such adaptive units can be organized into a layer to produce a feature map. A feature map is a nonlinear
method of representing the original signal space and resembles the topographic maps found in many areas
of the brain [88]. The feature map is produced by the unsupervised training of the adaptive units which
gradually develop into a spatially organized array of feature detectors whence the position of the excited
units signal statistically important features of the input signal. Consequently, more frequently occurring
stimuli will be represented by larger areas in the map than infrequently occurring stimuli.

Kohonen maps and unsupervised learning are but one way of training connectionist networks. But, if
both the input and corresponding output patterns are known a priori, then supervised learning can be used.
The most common supervised learning algorithm is the backpropagation algorithm used to train generic
PDP networks.

4.6 The Generic PDP Network

As we saw in Section 3.5.2, an elementary �-perceptron has the in principle power to solve any pattern
classi�cation problem expressed in binary notation, whereas a network with less depth is limited in its
computational power. This increase in computational ability derives from the fact that a multilayer network
can theoretically carve a pattern space into an arbitrary number of decision regions [63]. Furthermore, it can
be shown that such networks are also universal function approximators|that is, they are able to solve any
function approximation problem to an arbitrary degree of precision [16][43][49]. These results are speci�c to
the network architecture alone, and not to the learning rule used to train the networks.

Thus, we need to make a distinction between the network architecture and the learning rule. This
move serves a dual purpose. First, it allows us to make claims about the computational power of networks
regardless of the training procedure used. Second, we can evaluate the learning rule independent of the
network architecture. The consequence of making this distinction between architecture and learning rule is
that it allows us to (i) address concerns about the \biological plausibility" of certain learning algorithms (e.g.,
backpropagation) without compromising the interpretation and �nal results of the trained network, and (ii)
determine if di�erences in network performance are due to architectural discrepancies or modi�cations of
the learning algorithm. Therefore, we will �rst de�ne the generic connectionist architecture, and then de�ne
the learning rule.

4.6.1 The Generic Connectionist Architecture

The building block for the generic connectionist architecture is the arti�cial neuron (see Figure 1). The
functional properties of the arti�cial neuron mimic those of actual neurons; that is, the neuron receives
and integrates information, processes this information, and transmits this new information (e.g., [27][60]).
Mathematically, the input function to the neuron is expressed in Equation 14; netpj is a linear function of
the output signals, opi, from units feeding into j with weighted connections, wij , for pattern p.

netpj =
X
i

wijopi (14)
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The output function of the neuron is a non-linear function of its input and is expressed in Equation 15.
Note that the training rules typically used require that the activation function of the arti�cial neuron be
di�erentiable and monotonic. Consequently, the most common function used is the logistic or sigmoid
function which compresses the range of the net input so that the output signal lies between 0 and 1. This
function allows the network to process large signals without saturation and small signals without excessive
attenuation. Thus, in Equation 15, opj is the output of the neuron, netj is the input, and �j is the \bias" of
the unit which is similar in function to a threshold.

opj = f(netpj) = (1 + e�netpj+�j )�1 (15)

Units that use a function such as the logistic have an order of 1 [74] and are able to carve a pattern
space into two distinct regions (see Figure 10). Thus, networks using this form of activation function can
solve linearly inseparable problems without any hidden units. These networks have been termed Integration
Devices by Ballard [6], and generic PDP nets by Anderson and Rosenfeld [3].

Figure 10: A monotonic activation function|such as the
logistic|divides a pattern space into two distinct regions

The power of these simple units emerges
when they are connected together to form a
network, or multi-layer perceptron (MLP). The
most common MLP is a feed-forward architec-
ture consisting of an input layer, an internal
or hidden layer, and an output layer (see Fig-
ure 7B); such networks are often referred to as
three-layer networks, although this nomencla-
ture is not always agreed upon10. Units in one
layer propagate their signals to units in the next
layer through uni-directional, weighted connec-
tions. Normally, connections do not exist within
layers, nor do they transcend more than one
layer (i.e., from the input layer directly to the
output layer); however, exceptions do exist.

Furthermore, it is assumed for simplicity
that processing within the network occurs in dis-
crete time intervals. It is further assumed that
all processing is done in parallel; that is, all sig-
nals pass through the connections from one layer
to the next at the same time and all units in a
layer process their activations at the same time.
Thus, the speed of processing|in terms of how long it takes the network to solve a problem|is directly
proportional to the number of layers in the network, not the number of processing units. A three layer
network with 5,000 units theoretically takes the same number of time steps to compute its function as a
three layer network with �ve units (practically, this is not the case as networks are often modeled using
serial computers). Consequently, parallel processing in neural networks is often hailed as a solution to the
100-step constraint11 plaguing classical models.

The major advantage of multilayer networks over single layer networks is that they can theoretically carve
a pattern space into an arbitrary number of decision regions and therefore solve any pattern classi�cation
problem [63], overcoming one of the limitations cited by Minsky and Papert [74]. Furthermore, it can
be shown that such networks are also universal function approximators|that is, they are able to solve
any function approximation problem to an arbitrary degree of precision [16][43][49]. It should be noted that

10For example, Wasserman [114] argues that since input units do not compute any function, they should not be counted as
a layer; therefore, he calls these two-layer networks.

11The 100-step constraint is based on the processing speed of neurons [30]. Most complex behaviours occur in a few hundred
milliseconds|this means entire behaviours are executed in less than a hundred time steps as opposed to the millions of time
steps required by classical models.
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although these proofs of function approximation are theoretically powerful, they are not necessarily tractable
from a practical sense. This reason for this is two-fold: (i) in order to determine the requisite weights for
the model, these proofs assume a highly representative sample of the range and domain of the function, and
(ii) no e�ective procedure is typically given for arriving at the requisite set of weights.

Although MLP's have the required computational competence for cognitive scientists to �nd them in-
teresting, their real allure lies in their ability to learn. Various training techniques have been proposed
previously (e.g., Selfridge's supervised and genetic learning; Rosenblatt's reinforcement rule; Widrow and
Ho�'s Delta Rule), but they have all been limited to training only one layer of weights while keeping the
other layers constant. What connectionism needed to move into the mainstream was a general learning rule
for networks of arbitrary depth. In this way, a relatively simple network with a generic learning algorithm
can be applied to a wide-range of di�erent tasks.

Consequently, the next section will introduce the Generalized Delta Rule|also known as the standard
backpropagation algorithm|and two variations on the rule that use nonmonotonic activation functions
within the processing units. Furthermore, radial basis function networks will also be introduced as they use
the same general framework but are di�erentiated by the net input function that they calculate and the
activation function used within the processing units.

4.6.2 The Generalized Delta Rule

Papert's [81] likening of Perceptrons to the huntsman being sent out to bring back Snow White's heart
is appropriate, for the huntsman did not return with the heart of Snow White, but the heart of a deer.
Similarly, connectionism was not slain by Perceptrons, it was just quietly minding its time until its prince
came. And, for connectionism, Prince Charming turned out to be the Generalized Delta Rule (GDR).

The GDR can be considered one of the most signi�cant contributions to connectionist research: It has
allowed the training of multilayer networks. In fact, the work of Rumelhart, Hinton, and Williams [92][93]
is often cited as the catalyst for the strong resurgence of connectionist research in the latter half of the
1980's (e.g., [8][48]). As the name implies, the GDR is a generalization of the Widrow-Ho� Delta Rule
for training networks of Adaline units [119]. The training procedure, however, is commonly referred to as
backpropagation of error, or backpropagation (backprop) for short.

Although Rumelhart et al. are often credited with popularizing the GDR, the learning rule itself was
derived previously on three separate independent occasions, �rst by Werbos in 197412, then by Parker in
198213 and �nally by LeCun in 198614. In fact, the GDR is simply a basic form of backpropagation. In
its more general form [116], backpropagation contributes to the prediction and control of large systems (in
terms of optimal planning and reinforcement learning), and not simply to supervised learning as is often
assumed. Consequently, backpropagation can be applied to any di�erentiable, sparse, nonlinear system|it
is not restricted to any speci�c form of MLP, nor is it restricted to arti�cial systems. The main advantage
of backpropagation over traditional methods of error minimization is that it reduces the cost of computing
derivatives by a factor of N , where N is the number of derivatives to be calculated. Furthermore, it allows
higher degrees of nonlinearity and precision to be applied to problems.

Werbos [116] notes that since backpropagation is used in so many di�erent applications, its actual de�-
nition has often become muddled and confused. Therefore, he o�ers these two standard de�nitions (p. 135,
his italics):

1. Backpropagation is a procedure for e�ciently calculating the derivatives of some output quantity of
a nonlinear system, with respect to all inputs and parameters of that system, through calculations
proceeding backwards from outputs to inputs. It permits \local" implementation on parallel hardware
(or wetware).

12Beyond regression: New tools for prediction and analysis in the behavioral sciences. Masters thesis, Harvard University,
Boston, MA.

13Learning logic, Invention Report S81-64, File 1, O�ce of Technology Licensing, Stanford University, Stanford, CA.
14Learning processes in an asymmetric threshold network. In E. Bienenstock, F. Fogelman Souli, & G. Weisbuch (Eds.),

Disordered systems and biological organization. Berlin: Springer.
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2. Backpropagation is any technique for adapting the weights of parameters of a nonlinear system by
somehow using such derivatives or the equivalent.

What we are concerned with, however, is the special form of backpropagation for training neural networks.
Werbos [116] calls this the basic form of backpropagation, although most researchers today simply refer to
it as backprop. The GDR, as applied to neural networks, is a supervised learning algorithm (cf., Widrow
& Ho�'s delta rule|Equation 6) used to adjust the weights in an MLP in accordance with the Principle
of Minimal Disturbance15. To begin, a training vector is presented to the network via the input units and
the activations are then passed through weighted connections to the hidden units. The net input function
to the hidden units is computed (Equation 14), the activation function is applied, then the output signal
is generated (Equation 15) and propagated to the output units. The output units then use Equations 14
and 15 to produce a �nal output signal, opj , which is compared to the desired target output, tpj . The total
error, E, is de�ned in Equation 16, where p is an index over the patterns being presented, j is an index over
output units, o is the actual state of the output, and t is the desired (target) state of the output.

E =
1

2

X
p

X
j

(tpj � opj)
2 (16)

Learning is de�ned therefore as the minimization of this error term by gradient descent through an error
surface in weight space. Gradient descent is described by the relationWk+1 =Wk + �(�rk) whereWk is
a weight vector, � is a parameter that controls stability and rate of convergence and rk is the value of the
gradient of the sum squared error (SSE) surface at Wk. Consequently, to begin gradient descent, an initial
weight vector, W0, is de�ned and the gradient of the error surface at this point is measured. Weights are
then altered in the direction opposite to the measured gradient, producing a new weight vector based upon
the above relation. Every time this procedure is repeated with a newly calculated weight vector, Wk, the
SSE is caused to be reduced on average and moves towards a minimum. Because the true gradient is often
impractical and ine�cient to obtain, the instantaneous gradient is often computed based on the square of
the instantaneous error. The instantaneous gradient is used because it is an unbiased estimate of the true
gradient and is easily computed from single data samples [119].

Therefore, to minimize E by gradient descent, the partial derivative of E with respect to each weight
within the network needs to be computed. For a given pattern, p, this partial derivative is computed in two
passes: a forward pass using Equations 14 and 15, and a backward pass which propagates the derivatives
back through the layers; hence, backpropagation of error. The backward pass begins by �rst di�erentiating
Equation 16 which gives

@Ep

@opj
= tpj � opj

and then applying the chain rule to compute

@Ep

@netpj
=

@Ep

@opj
�
@opj

@netpj
:

The second term of the above equation is produced by di�erentiating Equation 15 which gives

@opj

@netpj
= f 0j(netpj) = opj(1� opj):

Therefore, the e�ect on the error due to a change in the total input to an output unit is known. But, as the
total input is simply a linear function of the output from previous layers and the related connection weights,

15Principle of Minimum Disturbance: Adapt to reduce the output error for the current training pattern, with minimal
disturbance to responses already learned [119](p. 719). It is noted that unless this principle is followed, it is di�cult to store
the required pattern responses simultaneously; hence, learning becomes problematic.
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the e�ect on the error due to a change in the previous outputs and weights can be computed. For a weight
wij from unit i to unit j, the derivative is

@Ep

@wij

=
@Ep

@netpj
� opi

and the e�ect of all connections emanating from unit i is simply

@Ep

@opi
=
X @Ep

@netpj
� wij :

Thus, two di�erent error signals can be de�ned depending on if the unit is an output unit or an internal
unit. For an output unit, the error signal is

�pj = (tpj � opj)f
0

j(netpj) (17)

whereas for an internal unit, the error signal becomes

�pj = f 0(netpj)
X
k

�pkwkj : (18)

Hence, weights in the network are changed by

�pwij = ��pjopi (19)

where � is a learning parameter to scale the weight change, and Equation 17 is used for output units and
Equation 18 for internal units. Finally, learning can be improved by adding a momentum term, �, which
uses the previous weight changes to in
uence the current changes

�pwij(t) = ��pjopi(t) + �(�pwij(t� 1)): (20)

The weights of the network can be updated after every pattern presentation, or after the entire pattern set
has been presented. Typically, training of the network continues until convergence is reached. For function
approximation problems, convergence is measured by a su�ciently small total sum of squared errors (SSE)
as computed by Equation 16. For pattern classi�cation problems, convergence is attained when the network
correctly classi�es all input patterns. The performance of the network is normally assessed by the number
of \sweeps" or \epochs" the network uses to solve the problem, where a sweep is de�ned by the single
presentation of the entire training set.

Thus, the GDR overcomes the earlier limitations of Old Connectionism by allowing multilayer networks
to be trained on any information processing problem. As Minsky and Papert [74] point out in their Epilogue
to Perceptrons, however, many problems still exist with the GDR and the generic PDP architecture. One
problem is that the GDR searches through an error space using gradient descent; although gradient descent
on average moves towards a minimum it is not guaranteed to move towards a global minimum. In other
words it is neither dependable nor e�cient, though there are techniques for trying to improve this [116].
Another problem is that networks with only one layer of hidden units trained with the GDR still must
violate the limited order constraint to solve linearly inseparable problems.

Although basic backpropagation is powerful enough to solve a wide variety of problems, much work
is done on improving the performance of arti�cial neural networks especially in regards to three speci�c
characteristics:

1. Generalization: the ability to predict data outside the original training set,

2. Learning Speed: increasing the convergence rate, especially for systems learning from real-time experi-
ence, and
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3. Fault Tolerance: the ability to perform despite noise or breakage.

The general rule of thumb|at least from an engineering perspective|for the �rst two characteristics is to
make the networks as simple as possible: use fewer connections and smaller weights. The third characteristic,
on the other hand, is trickier to pin down. For example, the ability to perform despite noise can be seen as
the ability to generalize; thus, smaller network structure would seem to be the answer. Performance despite
breakage, however, requires larger network structures with some form of redundancy built in.

As mentioned earlier, one problem with generic PDP networks is that they are static; that is, previous
inputs have no e�ect on new inputs (except during the training period). Consequently, the standard generic
PDP architecture may not be appropriate for modeling some time dependent tasks, such as recognizing a
pattern of sounds as forming a word. Therefore, the recurrent network architecture will be brie
y introduced.

4.7 Recurrent Networks

A recurrent network is de�ned as one in which either the network's hidden unit activations or output values
are fed back into the network as inputs. Figure 11 shows one possible structure for a recurrent network.

Input

Output

State

Hidden

Figure 11: Recurrent network architecture. Con-
nections from output to state units are one-for-
one. Note that not all connections are shown.

In this network, inputs are received from an external
source, passed to a hidden layer, and then on to the
output layer. The signal from the output layer is passed
to an external source, as well as back to a state layer
which then acts as an input layer (along with the actual
input layer) to the hidden layer on the next pass.

As the output of the network at time (t) is used along
with a new input to compute the output of the network
at time (t+ 1), the response of the network is dynamic.
That is, the network's response can be stable (successive
iterations produce smaller and smaller output changes
until the outputs become constant) or unstable (the net-
work's outputs never cease changing). This stability is-
sue proved a problem for early researchers, but Cohen
and Grossberg [14] devised a theorem showing that at
least a subset of recurrent networks were guaranteed to
produce outputs with stable states. Stable networks are
typi�ed by weight matrices that are symmetrical along
the main diagonal, with diagonal weights of zero (i.e.,
wij = wji; wii = 0).

Much of the early work on recurrent networks was pi-
oneered by John Hop�eld [47]. In fact, some have argued
that it was because of Hop�eld's stature as a well-known
physicist that neural network research was made respectable again [3]. Hence, certain con�gurations of re-
current networks are referred to as Hop�eld nets. One problem that plagued earlier versions of Hop�eld
networks, though, was that the networks tended to settle into local minimum instead of the global mini-
mum. To combat this problem, one can change the weights statistically instead of deterministically. This
technique is known as simulated annealing, and networks trained using this method are known as Boltzmann
machines [46].

It has been shown that recurrent networks can simulate �nite state automata [13] and that one can
construct a second-order recurrent network such that internal deterministic �nite-state automata state rep-
resentations remain stable [79]. Furthermore, it has been proven that �nite size recurrent networks can
simulate any multi-stack Turing Machine in real time and non-deterministic rational nets can simulate non-
deterministic Turing Machines [101].

Adding recurrent connections to the generic PDP architecture is but one way of improving the perfor-
mance of such networks. Another way is to use di�erent activation functions within the processing units.
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Such an approach was taken by Dawson and Schop
ocher [24] when developing the value unit architecture.

4.8 Value Unit Networks

Despite their immense theoretical power as universal function approximators and arbitrary pattern classi�ers,
networks trained with the GDR su�er from severe practical training problems. Networks are prone to local
minima and notoriously slow if they do �nd a solution. One reason for this behaviour is the limitations
imposed on the processing units by the GDR processing units must have a function that is both di�erentiable
and monotonic. Consequently, the most commonly used activation function for processing units is the logistic
(see Equation 15). This choice of activation function is normally motivated by engineering principles; for
example, the logistic function is chosen because it ful�lls the requirements of the learning rule, while similar
functions|such as tanh|are chosen simply for their ability to improve performance in terms of learning
speed over the logistic.

But, we could also adopt a di�erent perspective and choose an activation function based upon neuro-
physiological evidence. Evidence from single-unit recordings (that is, record the output of the neuron with
respect to its input) suggests that there are at least two functionally di�erent types of neurons in the brain
in regards to their output encodings [6]. This can be illustrated by comparing the recordings from neurons
that function as a basic part of the oculomotor system to neurons in the visual areas of the cortex.

The �rst type of neurons|for example, those in the servo system controlling eye movement|have linear
outputs whose �ring rate is proportional to a scalar parameter such as the rate of eye rotation. These neurons
could be characterized as summation or integration devices [6] and have the equivalent activation function
as the logistic used in arti�cial neurons. The outputs of such neurons have two features|larger values mean
more frequent pulses, and the output is one dimensional. From a physiological perspective, these neurons
use frequency encoding. In other words, neurons using a monotonic activation function could be viewed as
encoding variables.

In contrast, neurons in visual areas of cortex use fundamentally di�erent encodings for their output.
These neurons have multidimensional receptive �elds16; that is, if the input stimulus is within a receptive
�eld, the neuron will increase its �ring rate, otherwise it remains at its baseline �ring rate. The �ring rate
is speci�cally determined by the degree of match between the stimulus and receptive �eld|the stronger the
match, the stronger the �ring rate. From a physiological perspective, neurons with this type of �ring pattern
use spatial or place encoding. In other words, neurons using a nonmonotonic activation function could be
viewed as encoding values. Consequently, Ballard [6] terms these neurons value units.

As \the value unit way of representing information seems to be a property of most cortical cells" [6], p.
68, the logical move|from a cognitive science perspective|would be to incorporate this type of activation
function into a connectionist network.

4.8.1 The Value Unit Architecture

In considering a nonmonotonic activation function for arti�cial neurons, the most likely choice would be the
Gaussian. Such an activation function is readily apparent not only within the cones of the eye [17], but also
within the tuned neurons in the visual cortex [50]. From a computational perspective, the Gaussian

opj = G(netpj) = e��(netpj��j)
2

(21)

where netpj is the same as in Equation 14 and �j is the bias of the activation function, has the advantage of
being able to carve a pattern space into three decision regions (see Figure 12) while still satisfying the GDR's
requirement that the function be di�erentiable. Consequently, such an activation function could be said to
be limited order 2; it is of limited order because the planes are restricted to parallel cuts in the pattern space.

16In this respect, a receptive �eld is de�ned in terms of all the neuron's inputs, including possible feedback connections from
neurons in other parts of the cortex. This is in contrast to the normal interpretation of receptive �eld which limits itself to the
inputs from a speci�c stimulus.
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Figure 12: A non-monotonic activation function|such as
the Gaussian|carves a pattern space into three regions

The nonmonotonicity of the activation func-
tion buys the value unit networks certain the-
oretical and practical advantages over standard
integration device networks. For example, the
fact that a single value unit can subdivide a
pattern space into three regions by placing two
parallel hyperplanes within the pattern space
means that the processing power of the unit
is increased. Whereas standard integration de-
vice networks require the same number of hid-
den units as the order of the problem (e.g., a 4-
parity problem is order 4 and therefore requires
four hidden units), networks with value units in
both the hidden and output layers require con-
siderably fewer. In fact, for problems such as
parity which require parallel cuts of the pattern
space, the number of hidden units needed is

(order div 2)� 1

where the operation div returns the quotient. Therefore, a solution to the XOR problem can be represented
in a network without any hidden units, and a solution to the 4-parity problem can be represented in a
network with only one hidden unit! Moreover, the added processing power of the value unit means that the
limited order constraint need not be violated; that is, it is possible to solve the parity problem without any
hidden unit connected to every input unit.

On the other hand, the nonmonotonicity of the activation function has the potential to limit the value unit
architecture. For example, value units actually require hidden units to solve linearly separable problems [71].
Furthermore, because the value unit uses a nonmonotonic activation function, it is not uniquely invertible,
and therefore it has been suggested that theoretically, value units are not suitable for function approximation
[24]. On the other hand, the RBF unit which also uses a nonmonotonic activation function is routinely used
for function approximation [75][64]. As will be shown, however, the basis underlying the RBF network is
di�erent than the value unit.17. In all other respects, however, the value unit architecture is the same as the
generic PDP architecture, including its ability to be fully trained by a variation of the GDR.

4.8.2 Modifying the Generalized Delta Rule

Normally, replacing the f 0(netpj) in Equations 17 and 18 with the �rst derivative of the Gaussian causes the
network to fall into a local minimum which asserts that some property of the pattern space p is not true, but
fails to assert the some property of p is true. To avoid these local minima, Dawson and Schop
ocher added a
second term to the standard GDR's error function to produce a new cost function, Cp. The �rst component
of Equation 22 is the standard cost function used in the backpropagation algorithm and measures the failure
of the network to match the observed output opj with the target output tpj . The second component of Cp

measures the network's failure to set netpj = �j (a component of the Gaussian) when the desired output
is equal to 1: It essentially prevents the unit's activation from falling towards either negative or positive
in�nity.

Cp =
1

2

nX
j=1

(tpj � opj)
2 +

1

2

nX
j=1

opj(netpj � �j)
2 (22)

The new learning rule is therefore based on changing the weights such that the cost function in Equation 22
is minimized. Consequently, the desired weight change for the connection originating from unit i and

17In fact, recent results have shown that, in practice, value units can perform some types of function approximation tasks[71]
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terminating at unit j for given pattern p can be computed as

�pwij = �(�pj � �pj)Ipi (23)

where �pj = (�tpj � opj)G
0(netpj) is equivalent to �pj in Equation 19 with the exception that the derivative

is of the Gaussian and not the logistic. The �pj term is equal to Tpj(netpj � �j) and is the augmented
error-minimization function from Equation 22. Similarly, the unit's bias term can be modi�ed using the
equation

�p�j = ��(�pj � �pj) (24)

by treating the parameter �j as a connection weight between output unit j and some other unit whose
activation is always 1. Furthermore, it can be shown that, at the end of training, the error function minimized
is equivalent to that of the GDR's. These modi�cations allow a network trained with the backpropagation
algorithm to use non-monotonic activation functions.

4.8.3 Value Unit Performance

Value unit networks have been applied to a wide variety of pattern classi�cation tasks, from \toy" problems
[24] [25] [72], to diagnosing Alzheimer's patients from SPECT data [20], to identifying logical problems [9],
to classifying mushrooms [22]. One of the surprising aspects of the value unit architecture is that, from an
engineering perspective, they have been shown to converge faster and more reliably on linearly inseparable
problems than the more traditional MLPs that use monotonic activation functions. Furthermore, value unit
networks show better generalization, and better ability to be \scaled up" from toy problems.

(A) (B) (C) (D)

Figure 13: Network architectures for solving the 4-parity problem. Network (A) is an intergration device,
while networks (B), (C), and (D) are value unit networks. Note that (A) and (B) have identical network
structure (except for the processing unit), (C) requires only one hidden unit to solve the 4-parity problem,
and (D) does not violate the limited order constraint.

To quickly show the processing power of value units over standard integration devices on linearly insep-
arable problems, a small experiment was conducted using four di�erent network architectures to solve the
4-parity problem (see Figure 13). The �rst network was a standard integration device network with four
hidden units (A). The second network had the same structure (i.e., 4 hidden units), but used value units
instead (B). The third network (C) used the minimal value unit architecture of one hidden unit to solve the
problem. Finally, the fourth network used two value units, but did not violate the limited order constraint
(D); that is, no hidden unit was connected to every input unit. All networks were trained to a criterion
of 0.0025 and had an upper limit of 10,000 sweeps imposed. Table 1 reports the results of the experiment;
speci�cally the percentage of converged networks (total of 50 individual runs for each architecture), and the
minimum, median, and maximum number of sweeps to reach convergence. As can be seen, all value unit
networks clearly outperformed the integration device network.

The �rst thing to note is that all value unit networks, regardless of network topology, outperformed the
integration device network both in terms of convergence rate and speed of convergence. In fact, when the
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Table 1: Performance of Networks Trained on the Four Parity Problem

CONVERGENCE

ARCHITECTURE % MIN MED MAX

A - Integration Device 24 1929 3607 9246
B - Value Unit 100 46 213 621
C - Minimum Value Unit 88 98 267 620
D - Limited Value Unit 64 133 134 209

integration device network did converge|which was only approximately one quarter of the time|it took an
order of magnitude longer to do so.

Consequently, from a computational perspective, value unit networks show more competence than inte-
gration device networks in solving linearly inseparable problems such as parity. Furthermore, many di�erent
types of network topologies can be used to solve the 4-parity problem (see section 3.4). As it has been argued
that networks are algorithms [94], this means that the di�erent network topologies are di�erent algorithmic
descriptions for solving the 4-parity problem. Choosing the correct algorithm (network architecture) simply
becomes a matter of comparing the computational competence between systems we are modeling. Finally,
it should be noted that the fourth value unit network architecture (D) satis�es the Minsky and Papert's [74]
limited order constraint, e�ectively addressing one of their concerns about neural networks.

4.9 The Radial Basis Function Network

One of the misconceptions surrounding the value unit architecture is based upon its use of a Gaussian
activation function. This is because another network architecture, the Radial Basis Function (RBF) network
[75] uses a similar activation function. That, however, is where the similarities end. The RBF network is
a three-layer feedforward network that uses a linear transfer function for the output units and a nonlinear
transfer function (normally the Gaussian) for the hidden units. The input layer simply consists of n units
connected by weighted connections f�ijg to the hidden layer and a possible smoothing factor matrix f

P
jg.

A hidden unit can be described as representing a point x in n-dimensional pattern space. Consequently the
net input to a hidden unit is a distance measure between some input, xp, presented at the input layer and
the point represented by the hidden unit; that is, netj = kx�xpk . This means that the net input to a unit
is a monotonic function as opposed to the nonmonotonic activation function of the value unit. The Gaussian
is then applied to the net input to produce a radial function of the distance between each pattern vector and
each hidden unit weight vector. Hence, a RBF unit carves a hypersphere within a pattern space whereas a
value unit carves a hyperbar.

In general, an RBF network can be described as constructing global approximations to functions using
combinations of basis functions centered around weight vectors. In fact, it has been shown that RBF
networks are universal function approximators [38]. Practically, however, the approximated function must
be smooth and piecewise continuous. Consequently, although RBF networks can be used for discrimination
and classi�cation tasks (see [64] for some examples), binary pattern classi�cation functions that are not
piecewise continuous (e.g., parity) pose problems for RBF networks[75]. Thus, RBF networks and value unit
networks are not equivalent.

4.10 The Importance of New Connectionism

The major turning point in connectionist research occurred with the discovery of methods for training
multilayer networks. With this discovery, connectionist models not only had the computational power to
answer those questions interesting to cognitive science, but also had a method of learning how to answer
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those questions. Thus, there is an explicit distinction between network architectures and the learning rules
used to train them within new connectionism.

By understanding the di�erent types of architectures and learning rules, researchers are in a position
to choose the appropriate type of network to solve speci�c problems. For example, if one wanted to solve
a pattern recognition problem that was linearly separable, then an integration device network would be
appropriate. If the problem was linearly inseparable, however, then the value unit architecture would be
more appropriate.

It should be noted that the �eld of connectionism is ever-evolving, and new architectures and learning rules
are being constantly developed. For example, McCaughan [65] has trained networks that use a sinusoidal
activation function and has found that such networks can solve both linearly separable and inseparable
problems with relative ease. In a di�erent approach to connectionism, Zemel [122][123] has applied minimum
description length analysis to connectionist networks in order to optimize their internal representations.
Similarly, Bayesian theories are being incorporated in connectionism in order to understand aspects of
rationality in human cognition [67] and to guide unsupervised learning of higher order structure in patterns
[61]. As these new techniques are building upon the previous research presented in this paper, they will not
be elaborated here. Instead, we will conclude with what we have learned about the history of connectionism,
and its possible future directions.

5 Conclusions

Connectionism has a long and varied past|it has borrowed and incorporated ideas from philosophy, psy-
chology, neuroscience, mathematics, and computing science. By studying the history of connectionism, we
place ourselves in a knowledgeable position to support or deny claims about connectionism. For example,
we now know that claims about connectionism merely being another form of associationism [32] are false.
Furthermore,claims that connectionism may o�er a Kuhnian-like paradigm shift for psychology [98] are not
necessarily true either, especially when connectionism's rather long history is considered. On the other hand,
we can support the claim that connectionist networks have the computational power to be a valuable tool
within cognitive science.

We know where connectionism has come from, and what the current state of connectionism is|but, where
should connectionism be headed? Within cognitive science, there have been recent calls for a third genera-
tion18 of neural network models to be developed (e.g.,[35]). It has been argued that this third generation of
networks should take the \neural" a little more seriously, and incorporate as many known neurobiological
principles as possible. That is, these \neuromorphic" networks should transcend the simpli�ed components,
layered architectures, and limited scale of the �rst and second generation networks. Results [24][72] [21]
have shown that such principles can be successfully applied to network architectures and learning rules.
Furthermore, these neuromorphic networks often result in unanticipated improvements in performance and
interpretability [9][23] over standard networks. Thus, we may have lots to learn by returning to the \neural"
roots of connectionism.
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