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Abstract: Holographic Reduced Representations (HRRs) are a method for encoding nested relational
structures in fixed width vector representations. HRRs encode relational structures as vector represen-
tations in such a way that the superficial similarity of the vectors reflects both superficial and structural
similarity of the relational structures. HRRs also support a number of operations that could be very
useful in psychological models of human analogy processing: fast estimation of superficial and struc-
tural similarity via a vector dot-product; finding corresponding objects in two structures; and chunking
of vector representations. Although similarity assessment and discovery of corresponding objects both
theoretically take exponential time to perform fully and accurately, with HRRs one can obtain approxi-
mate solutions in constant time.  The accuracy of these operations with HRRs mirrors patterns of human
performance on analog retrieval and processing tasks.
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1 Introduction
Vector representations are popular for memory models for a variety of theoretical and practical rea-

sons. They are simple and support fast parallel processing such comparison via dot-products. They are
also neurologically plausible, in that they can be stored and operated upon in parallel networks of simple
neuron-like processing elements, such as associative content addressable memories. However, their use
in models of analogy processing in humans has been limited by the widespread supposition that it is dif-
ficult or impossible to represent compositional structure in vector representations (Fodor and Pylyshyn
1988, Ratcliff and McKoon 1989, Thagard, Holyoak, Nelson and Gochfeld, 1990, Gentner and Mark-
man 1993,Forbus, Gentner and Law, 1994, Wharton, Holyoak Downing, Lange, Wickens, and Melz
1994).

This supposition is false. Structure can be represented in vectors in a number of ways, e.g., Smolen-
sky’s (1990) tensor products, Pollack’s (1990) RAAMs, Kanerva’s (1996) binary spattercodes, and
Plate’s (1995) HRRs. This paper describes HRRs and makes a number of claims for their usefulness in
models of analogy retrieval and processing:

• HRRs provide an adequate vector-based representation of structure (in contrast to feature-vector
approaches which need to be complemented with a conventional symbolic representation for struc-
ture).

• Estimates of similarity that reflect both superficial and structural similarity can be computed
quickly via vector dot-products of HRRs. (Two structured objects have superficial similarity when
they share similar components, and have structural similarity when their components are arranged
in the same, or a similar, structure.) This technique for estimating similarity shows similar abilities
and limitations as are observed in people’s ability to retrieve items from long term memory.

• Corresponding objects in two analogical structures can be found via fast but approximate vector-
based techniques.  Again, the strengths and weaknesses of this technique mirrors those of people.

• HRRs provide an elegant implementation of chunking and “pointers” for complex, structured items
stored as vectors in a content addressable memory.

Appeared in “Expert Systems: The International Journal of Knowledge
Engineering and Neural Networks”, Special Issue on Connectionist Sym-
bol Processing, 17:1, pages 29–40, 2000.
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2 Human Analogy Processing
Analog retrieval and mapping have received a significant amount of attention in the psychological lit-

erature.  Much attention has been devoted to teasing apart the differing effects of superficial and struc-
tural similarity in retrieval and mapping.  A very brief introduction to the concepts and task involved in
analogy processing is given here; for more details, see Forbus et al (1994), Thagard et al (1990), or
Hummel and Holyoak (1997).

Analog processing concerns the processes of retrieving stories or scenarios from long-term memory in
response to some immediate stimulus (another story or scenario), and relating or applying the retrieved
story or scenario to the current one.  In a typical experiment to test how human subjects retrieve and
process analogs, a subject might be presented with a number of stories in the first session, and asked to
reason about them, or merely to remember them for the future.  In the second session, several days or
weeks later, the same subject would be presented with a new story and asked which of the previous sto-
ries they are reminded of.  They might also be asked to rate how similar the retrieved stories are to the
new one, or to point out which objects in a retrieved story correspond to which objects in the new story.
The new story might also involve a problem for which the retrieved story can provide a valuable struc-
tural hint about the solution method (this is an analog inference task).  The types of stories or scenarios
that have been used as stimuli for human experiments are typically specially written ones of the order of
one paragraph in length, involving up to a dozen entities, and having a number of relationships among
them.  For experiments with computers, researchers have used plot-synopsis of Shakespeare’s plays,
Aesop’s fables, and the same materials as in human experiments, encoded into some kind of predicate-
calculus representation.

There are four broad categories of tasks involved in analogy processing:
• Retrieval or reminding: the process of accessing potential analogs of some probe story from long-

term memory.  This process is regarded as not being under conscious control – subjects are merely
asked to write down or indicate all the previous stimuli that the current stimulus reminds them of.

• Judgment: rating the similarity of one story to another, after conscious consideration.  Human sub-
jects are heavily influenced by structural correspondences in making judgments of similarity.

• Mapping: finding the corresponding objects (i.e., the objects that fill the same structural roles) in
two stories that share a large degree of structure.

• Inference: proposing a novel solution or consequence in one story, based on the presence of a simi-
lar solution or consequence in the other story.

In this paper, I will be concerned with the retrieval and mapping tasks, and showing how human per-
formance on these tasks can be modeled using a simple vector-based computations.

For illustrations, the following series of episodes are used in this paper. Together, the episodes involve
dogs (Fido, Spot and Rover), people (Jane, John and Fred), a cat (Felix) and a mouse (Mort). Members
of one species are assumed to be similar to each other but not to members of other species. The “probe”
episode (denoted “P”) to which the others are compared, is “Spot bit Jane, causing Jane to flee from
Spot”. There are five other episodes, which have different combinations of types of similarity to the
probe (all share predicates with the probe):

• LS (Literal Similarity) “Fido bit John, causing John to flee from Fido.” (Has both structural and su-
perficial similarity to the probe P.)

• SF (Surface features) “John fled from Fido, causing Fido to bite John.” (Has superficial but not
structural similarity.)

• CM (Cross-mapped analogy) “Fred bit Rover, causing Rover to flee from Fred.” (Has both struc-
tural and superficial similarity, but types of corresponding objects are switched.)

• AN (Analogy) “Mort bit Felix, causing Felix to flee from Mort.” (Has structural but not superficial
similarity).

• FOR (First-order-relations only) “Mort fled from Felix, causing Felix to bite Mort.” (Has neither
structural nor superficial similarity, other than shared predicates.)

It is generally accepted that in adults, structural similarity plays a large role in analogical mapping and
conscious similarity judgements. The role of structural similarity in retrieval is less clear: some re-
searchers argue that structural similarity usually has little effect on retrieval (Gentner, Rattermann, and
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Forbus 1993) while others argue that under some circumstances, structural similarity can influence re-
trieval (Wharton, Holyoak, Downing, Lange, Wickens, and Melz 1994). Others suggest that structural
similarity matters only when the entities involved in the situations share superficial features (Ross
1989). There is strong evidence that cross-mapping results in lower retrieval performance compared to
the literal similarity condition (Ross 1989).  Overall, the general consensus is that the pattern for retriev-
ability of items from long-term memory seems to be LS > CM ≥ SF > AN ≥ FOR (the disputes are to do
with whether the inequalities are strict or not, or the conditions under which they are strict).

The primary result concerning human performance on mapping is that people, especially children, are
far more prone to making erroroneous mappings in situations where cross mappings are present, e.g., as
in the cross-mapped episode above, where the correct, class-crossing mappings are “dog to person” and
“person to dog”, while alternate, but incorrect, class-preserving mappings of “dog to dog” and “person
to person” are available (Ross 1989, Gentner et al, 1993).

Existing computational models of human performance on analog retrieval tasks such as ARCS (Tha-
gard, Holyoak, Nelson and Gochfeld, 1990), and MAC/FAC (Forbus, Gentner and Law, 1994) have ex-
plained the human retrieval data by invoking two processes. The first is a simple one based on superfi-
cial similarities. This explains much of the human performance, but cannot account for effects of struc-
tural similarity (i.e., LS > SF, and AN ≥ FOR). Thus, these models require a second process that takes
structural similarity into account, which involves additional complex computation. In this paper I will
argue that it is possible to explain the pattern of retrieval ability observed in people with a single-stage
model based on vector matching of HRRs.  Comparisons in this model will be primarily sensitive to su-
perficial similarity, but will also be sensitive to structural similarity, thus mirroring the retrieval prefer-
ences of people; LS > SF, and AN ≥ FOR (the latter being greater or equal, depending on details).  With
HRRs it is also possible to make estimates of corresponding objects that are usually correct, except for
cross-mappings, again mirroring human performance.

3 Vector Representations
There are two types of vector representation: localist and distributed. Structure can be encoded in lo-

calist vector representations, but size of the vectors becomes unreasonably large when realistic numbers
of features are included. Encoding structure in distributed representations requires binding operation.
This section describes circular convolution and how it can be used as a binding operation to encode
structural information in distributed representations. The resulting scheme is called Holographic Re-
duced Representations.

3.1 Vector operations

The two vector operations commonly used with vector representations are superposition (i.e., addi-
tion) and similarity (i.e., dot-product or cosine). These two vector operations, and other scalar-vector
operations such as scaling and normalization, are sufficient for interesting and useful memory models.
They allow one to represent items as sets (superpositions) of features and compute the similarity of
items, as in the feature summation models of McClelland and Rumelhart (1981) and Anderson (1983).
Still, it is not possible to encode structure using just superposition of patterns because superpositions
lump all features together whereas encoding structure requires binding particular features together. For
example, representing “Spot bit Jane” requires recording the associations between “Spot” and the agent
role of the bite action, and “Jane” and the object role, which cannot be done using superposition. How-
ever, with the addition of a suitable third vector operation for binding, one can encode associations in
vector patterns which and thus encode structure. If the binding operation is recursively applicable, one
can encode nested structure.

HRRs use circular convolution for the binding operation. Circular convolution is ideal as a binding
operation for three main reasons: (1) the result of binding two vectors is a vector of the same size, which
makes it recursively applicable; (2) bindings can be decoded easily; and (3) circular convolution pre-
serves structural similarity and but not unstructured similarity.  It is the last property that makes circular
convolution an ideal complement to superposition, which preserves structured and unstructured similar-
ity alike, and is thus suitable for representing collections of objects, but not binding among objects.
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Using the three-operation vocabulary of HRRs (superposition, convolution, and similarity), nested
compositional structure can be represented in vectors in a practical and elegant manner. HRRs have sev-
eral high-level properties that distinguish them from non-structural vector representations and make
them interesting for use in psychological memory models. One is that they provide a natural and sys-
tematic method for chunking and representing the relationships among chunks. Another is that some as-
pects of structure are expressed as surface features in HRRs, which means that vector dot-products of
HRRs can provide indications of structural similarity. Yet another is that some “higher-level” operations
such as guessing at corresponding objects can be done quickly.

3.2 From local to distributed representations

Vector representations come in two flavors: local and distributed. Each involves different tradeoffs of
the properties of the representation space.  For models involving only a small number of features and a
few simple objects, local representations can be more parsimonious.  Because of their greater represen-
tational efficiency, distributed representations come into their own for models in which there are large
numbers of objects and features.

In local vector representations each vector element or unit indicates the strength, or merely presence
or absence, of a particular feature in an object, or an object in a situation. For example, in the vector rep-
resentation used in the MAC stage of MAC/FAC (Forbus, et al 1994), a sparse, high-dimensional “con-
tent vector” is used to summarize each story (an item). Each vector element is a count of the number of
times a particular predicate or attribute occurs in the story.

In distributed representations features of items are represented by patterns in the vector elements
rather than single elements (Hinton, McClelland and Rumelhart, 1986). Each vector element participates
in the representation of many features, and each feature is represented collectively by many vector ele-
ments. Under not-particularly restrictive conditions, several patterns can be superimposed without losing
the identity of the component patterns. Like the localist content vector, the distributed version can en-
code the presence of several features.

In some respects, localist and distributed representations are equivalent. They can have almost indis-
tinguishable forms when features are numerous and fine-grained. Also, local representations can be
mapped to distributed ones by a simple linear map, and back by a thresholded linear map. However,
there is one difference very pertinent to the representation of structure, which concerns scaling of num-
bers of features with vector dimensionality. This difference is that the total number of possible features
is limited to the number of elements in the vector for localist representations, but is exponential in vector
dimensionality for distributed representations. Users of localist feature vectors have recognized this
problem: Forbus, Gentner and Law (1994) acknowledge that the content vectors used in their MAC
stage will have problems scaling to psychologically plausible representations containing hundreds of
thousands of predicates. This scaling problem becomes of critical importance when we consider using
local feature vectors to represent structural information. The content-vector style of representation does
not capture structure — “Spot bit Jane” has exactly the same content vector as “Jane bit Spot.” Wharton
et al (1994) point out that localist vector representations could be augmented with combinatorial fea-
tures to represent all possible structural combinations, but note that when applied recursively to repre-
sent things such as the sour-grapes feature “thing that is desired but can't be obtained and hence is deni-
grated” this would result in a combinatorial explosion in the size of vectors.

This restrictive limitation on the number of features does not apply to distributed representations (un-
less for some reason patterns are required to be perfectly orthogonal, which is often not necessary). The
limitation is escaped by taking advantage of the property of high-dimensional vector spaces that the
number of approximately-independent directions or patterns (specified as a tolerance angle) grows ex-
ponentially with the number of dimensions (Plate 1994).  Each of these approximately-independent pat-
terns can represent a feature, and thus hundreds of thousands of “virtual” features can be represented in
a vector with far fewer elements. This involves two-tradeoffs. The first is that only relatively few fea-
tures can be present at once. However, this is usually the case when there are large numbers of potential
features. The second is that there is a chance of interference (ghosting or cross-talk) when too many
features are present at once. The probability of interference can be made arbitrarily low by limiting the
number of features present at once and choosing a large enough dimension of the vectors.
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Given that distributed representations provide a sufficient number “virtual” features for the represen-
tation of combinatorial features, what is needed is a systematic way of generating and decoding the pat-
terns which represent combinatorial features.  This is the role of the binding operation. As a binding op-
eration, circular convolution provides a fast, systematic, and reversible way of constructing new patterns
to represent combinatorial features. The remainder of this section explains circular convolution and the
encoding and decoding of HRRs.

3.3 Associations & complex structure

The first step to representing nested relational structure is to represent flat relational structure. This
can be done with associations, or bindings, between roles and fillers. Suppose we have a predicate rep-
resentation for “Spot bit Jane”: bite(spot,jane). Spot is the agent of this relation, and Jane is the object
(or patient). A distributed representation of this relation must be careful to preserve the information
about which person is associated with which role (agent or object) so that there is no confusion with
“Jane bit Spot”.

One obvious way to avoid ambiguity about what is associated with which role is to divide the vector
into several blocks, and devote a block to each role (Hinton, 1990). The drawback of this method is that
it is unsuitable for representing recursively nested relations such as “Spot bit Jane, causing Jane to flee
from Spot”: cause(bite(spot,jane),flee(jane,spot)). An alternative is to use a function that binds roles and
fillers by creating a new pattern from the role and filler patterns, and represent a relation as the superpo-
sition of role-filler binding patterns. This is the approach taken by Smolensky (1990) with tensor prod-
ucts and Pollack (1990) with RAAMs, and is also the approach taken with HRRs, though in each case
the function used to create a new pattern is different.

In order to represent nested relational structure, it is necessary to be able to apply the binding opera-
tion recursively in order to form bindings between role patterns and patterns representing entire rela-
tions, e.g., between the cause-antecedent role and the pattern representing bite(spot,jane). HRRs use cir-
cular convolution as the binding operation. Circular convolution can be viewed as an associative mem-
ory operator that produces noisy but compact representations of associations. Various types of convolu-
tion have been used as the associative operators in a number of computational and psychological asso-
ciative memory models (Willshaw, Buneman, and Longuet Higgins, 1969, Borsellino and Poggio 1973,
Liepa 1977, Willshaw 1981, Murdock 1982, Metcalfe 1982, Murdock 1987, Paek and Psaltis 1987,
Plate 1994, 1995). Circular convolution is particularly suited to recursive application, and thus the rep-
resentation of hierarchical structure, because the number of elements in a binding is the same as in the
role and filler.

3.4 Circular convolution

Circular convolution maps two real-valued n-dimensional vectors onto one. If x and y are n-
dimensional vectors (subscripted 0 to n-1), then the elements of z = x⊗y are

z x yi k i k
k

n

= −
=

−

�
0

1

where subscripts are taken modulo-n. and ⊗ denotes circular convolution. Circular convolution can be
viewed as a compression of the outer (or tensor) product of the two vectors, as shown in Figure 1. Each
of the small circles represents an element of the outer product of x and y, e.g., the middle bottom one is
x2y1. The elements of the circular convolution of x and x are the sums of the outer product elements
along the wrapped diagonal lines.

<Figure 1 about here>
Circular convolution can be regarded as a multiplication operator for vectors and has many algebraic

properties in common with scalar and matrix multiplication. It is commutative (x⊗y=y⊗x), associative
(x⊗(y⊗z)=(x⊗y)⊗z), and bilinear (x⊗(αy+βz)=αx⊗z+βx⊗z). There is an identity vector I (I⊗x=x)
and a zero vector 0  (0⊗x=0 ). Inverses x-1 exist for most vectors (x-1⊗x=I).

An association between two items x and y can be represented by the convolution of the two items:
x⊗y. The inverse vector of x can be used to reconstruct y from x⊗y: x-1⊗ (x⊗y)=y. However, except
under certain restrictive conditions, the inverse is numerically unstable and is not always the best choice
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for decoding. For vectors which have randomly chosen elements independently distributed as N(0,1/n)
(the normal distribution with mean 0 and variance 1/n) there is an approximate inverse with attractive
properties. The approximate inverse of x is denoted by xT. It is a simple rearrangement of the elements
of x: xT

i = x-i, where subscripts are modulo-n. The approximate inverse is simple to compute and is nu-
merically stable. Reconstruction using the approximation inverse is noisy. The convolution product
xT⊗x⊗y can be written as y+ , where the  can be considered as zero-mean noise whose magnitude
(variance) decreases with increasing vector dimension.

Multiple associations can be represented by the sum of the individual associations. For example, sup-
pose x, y, v, and w are all randomly chosen vectors with elements independently distributed as N(0,1/n).
The association of x with y and v with w can be represented by z=x⊗y+v⊗w. To find what is associated
with x we convolve z with xT. The result can be expressed as xT⊗x⊗y+xT⊗v⊗w. The first term here is
approximately equal to y, since xT⊗x I. The second term can be regarded as noise – it will not be
highly correlated with any of x, y, v, or w, or any other randomly chosen vector, provided that the vector
dimensionality is large. The sum of the two terms will be recognizable as a distorted version of y. The
vector dimension required for this to work well with a moderate number of associations is quite high – it
must be in the hundreds to thousands.  For further discussion and quantitative analysis, see Plate 1994.

3.5 Similarity preservation and randomization

Convolution and superposition have complementary properties with respect to how they preserve and
destroy similarity of patterns.

Convolution preserves both similarity and lack of similarity in a multiplicative fashion: the similarity
of two role-filler binding patterns is approximately equal to the product of the similarities of the respec-
tive role and filler patterns (provided that the role patterns are not similar to the filler patterns.) Thus, if
two bindings have the same role, their similarity will be equal to that of the fillers. Conversely, if two
roles have no similarity, bindings involving them will have similarity regardless of the fillers. Further-
more, convolution is randomizing in that role-filler binding patterns are not similar to either the role or
filler patterns.

Superposition behaves differently: a superposition of patterns remains similar to each individual pat-
tern, to a decreasing degree as more patterns are superimposed. This can be seen as an unstructured and
additive kind of similarity preservation.

3.6 HRRs for relational structure

Consider representing a nested proposition such as “Spot bit Jane, causing Jane to flee from Spot” in a
vector pattern. We would like this pattern to faithfully record structure and also to be suitable for de-
tecting at least superficial similarity by computing dot-products.

The structure of a proposition can be represented by superimposing patterns representing the predicate
name and the role-filler bindings. This provides a structural skeleton that faithfully records structure.

The skeleton HRR for the proposition “Spot bit Jane” is constructed as follows:
KP-bite=bite+biteagt⊗spot+biteobj⊗jane

The pattern bite represents the predicate label, biteagt and biteobj its roles, and spot and jane the enti-
ties “Spot” and “Jane”. If we have the pattern KP-bite and know the role patterns, then we can reconstruct
the filler patterns by convolving KP-bite with the approximate inverses of the role patterns. For example,
biteagt

T⊗KP-bite gives a noisy version of spot which, if necessary, can be cleaned up using an auto-
associative item memory. The pattern bite is made a component of KP-bite in order to identify it as a bite
proposition and thus allow a system to deduce that the appropriate role patterns for decoding are biteagt

and biteobj.
The skeleton HRR pattern for the proposition “Spot bit Jane” is an n-dimensional pattern just like the

patterns spot, bite, etc. Thus, it is easily used as a filler in a higher-order proposition. For example, the
skeleton HRR KP representing “Spot bit Jane, which caused Jane to flee from Spot” is constructed as
follows:

KP-flee=flee+fleeagt⊗jane+fleefrom⊗spot
KP=cause+causeantc⊗KP-bite+causecnsq⊗KP-flee
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Such higher-level HRRs can be decoded in the same way as first order HRRs. For example, the pro-
positional filler of the cause antecedent role is decoded as follows:

KP⊗causeantc
T ≈ KP-bite

This could be cleaned up and then decoded again to discover its fillers. Alternatively, lower-level fill-
ers can be decoded more quickly but less reliably with no intermediate cleanup:
 KP⊗causeantc

T ⊗biteagt
T ≈ spot

The result of such fast decoding might be so noisy that it lacks sufficient detail to be recognizable as
spot, but, providing that all dogs are represented by similar patterns, it could still be recognizable as a
dog.

The other goal for a vector representation was that patterns should reflect superficial similarity, i.e.,
two patterns should be similar if the structures they represent merely involve similar fillers or predicates.
The presence of predicate labels in HRRs ensures that patterns for the same predicate are similar. How-
ever, skeleton HRRs do not behave as desired with respect to fillers: the randomizing properties of con-
volution mean that role1⊗filler1 is only similar to role2⊗filler2 to the extent that role1 is similar to role2

and  filler1 is similar to filler2. However, HRRs are easily made to reflect superficial similarity by su-
perimposing the filler patterns together with the structural skeleton HRR. Thus, the fleshed-out HRR for
“Spot bit Jane” is as follows:

Pbite= bite + spot + jane + biteagt⊗spot + biteobj⊗jane
Adding in the fillers makes decoding more noisy, but does not prevent successful decoding. For

higher level propositions, the same idea of adding in fillers can be applied recursively. For example, the
HRR for “Spot bit Jane, causing Jane to flee from Spot” is constructed as follows:

Pflee = flee + spot + jane + fleeagt⊗jane + fleefrom⊗spot
P = cause+Pbite + Pflee + causeantc⊗Pbite + causecnsq⊗Pflee

HRRs constructed like this will be similar if they merely involve similar entities or predicates. Be-
cause of the similarity preserving properties of convolution, they will be even more similar if the entities
are involved in similar roles. Thus it turns out that the similarity of HRRs can reflect both superficial
and structural similarity in a way which neatly corresponds to the data on human analog retrieval.

3.7 Need for a “clean-up” memory

Convolution encodings are remarkably compact: a number of associations between n-dimensional
patterns packed into one n-dimensional pattern. The price we pay for this compactness is noise in de-
coded vectors. Consequently, if we want a convolution-based associative-memory model to provide ac-
curate reconstructions of decoded patterns, it must be equipped with an additional error-correcting auto-
associative item memory. This can clean up the noisy patterns retrieved from the convolution encodings.
This clean-up memory must store all the items that the system can produce. When given a noisy version
of one of those items it must either output the closest item or indicate that the input is not close to any of
the stored items. Note that only a few associations are stored as convolution encodings in a single pat-
tern, whereas many patterns are stored in the clean-up memory.

The clean-up memory can be implemented in any number of ways, as discussed in Section 5. All that
is required of it is that when it is presented with a pattern, it should retrieve the closest stored pattern.
For the experiments described in this paper, the item memory was implemented as a list of vectors with
access by exhaustive comparison.

In order to support faithful decoding, the clean-up memory must contain all patterns that are potential
targets of decoding. This includes patterns for the following that have been previously encountered and
are components in a higher-level pattern in the clean-up memory: (a) objects, such as spot and jane; (b)
roles, such as biteobj and causeantc; (c) predicate labels, such as bite and cause; and (d) propositions of
all levels, such as Pbite and P (i.e., the top-level propositions and their sub-propositions – the “chunks”
discussed in Section 6).  The clean-up memory does not need to contain individual role-filler bindings,
such as biteagt⊗spot, unless the model requires these as potential targets of decoding.  Nor does the
clean-up memory need to contain propositions that have not been previously encountered, or are not a
component of some higher level item, as such patterns are not potential targets of decoding.
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3.8 Normalization

The final point to consider when constructing HRRs is maintaining the overall strength of patterns and
the statistical distribution of their elements. The easiest way to do this is to normalize all patterns to
have a Euclidean length of one. Here, the normalized version of the vector x is denoted by 〈x〉 and is de-
fined as follows (the denominator is the Euclidean length (the magnitude) of x):

x x=
=

−�/ xii

n 2

0

1

There are several side-benefits to normalization. Firstly, there is no concern over the magnitudes of
patterns affecting dot-product similarity scores. Secondly, when two normalized patterns are superim-
posed each has equal weight in the result, though it is still possible to weight components to cause one to
be more prominent in the sum. Thirdly, normalization reduces the noise in recognizing decoded fillers
(Plate, 1994).

3.9 Classes and instances

In many connectionist systems, the patterns representing items are analyzed in terms of “micro-
features”. Each element of the vector is considered to represent a simple feature. For example, Hinton’s
(1990) family trees network learned features representing concepts such as age and nationality. The re-
quirement of HRRs that elements of vectors be randomly and independently distributed seems at odds
with this interpretation.

However, it is not necessary to have a one-to-one correspondence between features (or micro-features)
and vector elements. Features can also be represented by patterns. An item having some features can be
partly the sum of those features. Furthermore, while all the instances in a class might share a set of fea-
tures, instances can be distinguished from each by the addition of some identity-denoting random vector
that is unique for each instance. For example, “John” can be represented by
john=animal+human+idjohn, where animal and human are components of all instances of those classes
and idjohn is a random vector that distinguishes john from patterns for other humans. Importance or sali-
ence of component features can be adjusted by weighting.  This scheme also allows for instances of sub-
classes to inherit the features of superclasses.

4 Estimating Similarity
The six “dog bites human” episodes provide a simple demonstration that HRR scores can reflect

similarity of structural arrangements, as well as similarity of surface features.  It also and demonstrates
that a model based on HRR similarity scores alone can explain the pattern of retrieval observed in peo-
ple: LS > CM ≥ SF > AN ≥ FOR.

The HRRs for the probe (P) and the literally similar episode (ELS) are constructed as follows:
Pbite = 〈bite + 〈spot + jane〉 + biteagt⊗spot + biteobj⊗jane〉
Pflee = 〈flee + 〈spot + jane〉 + fleeagt⊗jane + fleefrom⊗spot〉
P = 〈cause + 〈Pbite + Pflee〉 + causeantc⊗Pbite + causecnsq⊗Pflee〉
ELS-bite =〈bite + 〈fido + john〉 + biteagt⊗fido + biteobj⊗john〉
ELS-flee =〈flee + 〈fido + john〉 + fleeagt⊗john + fleefrom⊗fido〉
ELS = 〈cause + 〈 ELS-bite + ELS-flee〉 + causeantc⊗ ELS-flee + causecnsq⊗ ELS-bite〉

The HRRs for the other episodes are built in an analogous fashion. The patterns for instances of the
same class are designed to be similar. Thus Jane, John, and Fred, being people, are represented by simi-
lar patterns, as are the dogs Spot, Fido, and Rover. The different species, people, dogs, cats and mice,
are not considered similar at all — the examples are simple enough not to require a hierarchy of classes.
The complete set of base vectors and instances used in this experiment is shown in Table 1. All base and
identity (id) vectors were randomly chosen with elements independently distributed as N(0,1/n).

Base vectors Instance vectors
person bite jane = 〈person + idjane〉
dog flee john = 〈person + idjohn〉
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cat cause fred = 〈person + idfred〉
mouse spot = 〈dog + idspot〉

fido = 〈dog + idfido〉
biteagt biteobj rover = 〈dog + idrover〉
fleeagt fleeobj felix = 〈cat + idfelix〉
causeantc causecnsq mort = 〈mouse + idmort〉

Table 1

Average HRR similarity scores are shown in Table 2. These are from 100 runs with different random
base and identity vectors, and a vector dimension of 2048. The directions of differences between aver-
age similarity scores were reliable – the standard deviation of the scores ranged between 0.016 and
0.026.

For comparison, MAC-style similarity scores are also shown. These are based on the dot product of
normalized content vectors over the following features: the entities person, dog, mouse, and cat and the
predicates cause, bite, and flee. For example, the content vector for the probe is (1,1,0,0,1,1,1)/√5.

The pair of episodes ELS and ESF each have the same surface commonalities (object features and
predicate names) with the probe. The difference between them is that ELS is structurally isomorphic to
the probe, while ESF is not. Because there is no structural information beyond the names of the higher-
order predicates encoded in content vectors, ELS and ESF have the same content-vector similarity to the
probe. On the other hand, the HRR similarity scores indicates that ELS is more similar to the probe than
ESF.

When episodes do not share object attributes with the probe, HRR scores are low and do not always
reflect structural match. Although in Table 2 the HRR score for EAN is higher than for EFOR (due to the
“bite” and “flee” propositions filling the same roles in EAN as in the probe), this difference is not reliable
across a range of AN and FOR episodes: it is possible to construct other FOR examples that have a
higher score than AN examples (Plate, 1994).

ECM is a cross-mapped analogy. It has the same structure and types of objects as the probe, but unlike
ELS and the probe, the similar objects do not map to each other (the dog maps to the person, and the per-
son maps to the dog). Since HRR similarity scores are sensitive to having similar objects fill similar
roles, ECM has a lower HRR similarity to the probe than ELS. In contrast, the content-vector similarities
of ECM and ELS to the probe are the same.

Overall, vector dot-products of HRRs model the observed pattern of retrievability in humans: LS >
CM ≥ SF > AN ≥ FOR.  They capture in a simple way the dominant effect of superficial similarity (LS
& SF > AN), the positive effects of shared structure (LS > SF always, and AN > FOR sometimes, de-
pending on details; see Plate 1994) and the negative effects of cross-mapping (LS > CM).  In contrast,

Commonalities
with probe

P Spot bit Jane, causing Jane to flee from Spot.
Similarity

scores

Episodes in long-term memory: O
bj

ec
t

at
tr

ib
ut

es
Fi

rs
t-

or
de

r
re

la
tio

n 
na

m
es

H
ig

he
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ru
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HRR MAC
ELS Fido bit John, causing John to flee from Fido. ü ü ü 0.71 1.0
ESF John fled from Fido, causing Fido to bite John ü ü × 0.47 1.0
ECM Fred bit Rover, causing Rover to flee from Fred. ü ü ü 0.47 1.0
EAN Mort bit Felix, causing Felix to flee from Mort. × ü ü 0.42 0.6
EFOR Mort fled from Felix, causing Felix to bite Mort. × ü × 0.30 0.6

Table 2
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the vector dot-products of content vectors (the MAC model) only capture the dominant effect of superfi-
cial similarity.

4.1 Why HRR dot-products reflect structural similarity

HRR dot-products reflect structural similarity because of the presence of components representing
higher-order (combinatorial) features, like biteagt⊗spot, causeantc⊗bite, and causeantc⊗biteagt⊗spot.
These components in turn contain combinatorial features involving inherited features, like biteagt⊗dog
(because spot=〈dog+idspot〉).

All of these higher-order features derive from role-filler bindings. Consequently, the HRRs described
here reflect differences in structural similarity when those differences concern whether or not similar
objects fill similar roles. Hence the large difference between ECM and ELS in their HRR similarity scores
with the probe. Although ECM and ELS have the same component objects and isomorphic structure, ECM

does not have similar objects filling the same roles as in the probe, whereas ELS does. Thus, ECM has
class-level combinatorial features like biteagt⊗person, which are not at all similar to those like
biteagt⊗dog in the probe, while ELS has the same class-level combinatorial features as the probe.

This pattern of sensitivity to structural similarity, in which structural similarity is only detected when
similar objects fill similar roles, is very similar to the pattern observed by Ross (1989) in experiments
with people.  Ross found that shared structure enhanced retrieval in the presence of similar objects, pro-
vided that corresponding objects were similar, and that cross-mapping inhibited retrieval.

5 Interpretations of an Analogy
Retrieval of analogies is only the first step in many analogy processing tasks. After retrieving a poten-

tially analogous episode we may want to decode the structure in order to evaluate more accurately the
degree of structural consistency, or to use the episode for analogical reasoning. The structure of a HRR
could be decoded using the techniques described in Section 2, and then used in a symbolic processor
like SME or in some other connectionist architecture. However, some apparently more symbolic tasks,
like finding corresponding entities, and thus deriving an interpretation of an analogy, can be computed
with vector operations directly on HRRs.

Consider the probe P “Spot bit Jane, causing Jane to flee from Spot”, and ELS “Fido bit John, causing
John to flee from Fido.”  The entity corresponding to Jane (which is John) can be found in two steps:

1. Extract the roles Jane fills in the probe with the operation:
jane-roles = 〈P⊗janeT〉

This pattern is a blend of various roles and other noise patterns. The following are the positive
dot-products of the jane-roles pattern with other role patterns:

jane-roles ⋅ causeantc = 0.20
jane-roles ⋅ causecnsq = 0.18
jane-roles ⋅ fleeagt = 0.13
jane-roles ⋅ biteobj = 0.12

Note that jane fills the roles causeantc and causecnsq because jane is a component of Pbite and
Pflee, which are bound to those roles.

2. Use jane-roles to extract the fillers from ELS and compare (dot-product) with the entities in
ELS:

〈ELS⊗jane-rolesT〉 ⋅ john = 0.38
〈ELS⊗jane-rolesT〉 ⋅ fido = 0.05

The most similar pattern is john, which is in fact the entity in ELS corresponding to Jane.
Table 3 shows the extraction, without intermediate role clean-up, of the entities corresponding to Jane

in the various episodes. Correct extractions are checkmarked, and cases where there is no clear corre-
sponding object have a question mark.

〈ELS ⊗ jane-rolesT〉 john
fido

0.38
0.07

ü
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〈ECM ⊗ jane-rolesT〉 fred
rover

0.25
0.17

×

〈EAN ⊗ jane-rolesT〉 felix
mort

0.16
0.09

ü

〈ESF ⊗ jane-rolesT〉 john
fido

0.23
0.07

?

〈EFOR ⊗ jane-rolesT〉 mort
felix

0.11
0.06

?

Table 3

The correct answer is obtained in ELS, where corresponding objects are similar, and in EAN, where
there is no object similarity. This extraction process has a bias towards choosing similar entities as the
corresponding ones, which leads to a reasonable answer for ESF and an incorrect answer ECM. There are
no correct answers for ESF and EFOR, because there are no consistent mapping between P and those epi-
sodes. However, because of the bias for mapping similar items, Fred is strongly indicated to be the en-
tity in ESF corresponding to Jane. The only wrong answer is given for the cross-mapped analogy ECM

where again the more similar object is indicated to be the corresponding one.  Again, the effect of cross-
mapping is similar to that observed by Ross (1989) in people: cross-mapping causes less accurate map-
ping performance.

Closer examination of the extraction process reveals both the reason for this bias and several ways of
eliminating it, if that should be desired. Consider patterns containing just two of the components from P
and ECM:

P′ = cause + biteobj⊗jane
E′CM = cause + biteobj⊗rover

The roles of Jane in P′ are calculated as follows:
jane-roles′ =  P ⊗janeT

≈  cause⊗janeT + biteobj

The role pattern biteobj (and other role patterns like fleeagt and causeantc in the full version of P⊗janeT)
are what are wanted here. The other patterns like cause⊗janeT, which are not roles at all, are the source
of the same-class bias in finding the corresponding object. When jane-roles′T is used to extract the fill-
ers from ECM, we get the following:

corresp = jane-roles′T⊗E′CM

≈  (cause⊗janeT + biteobj)
T ⊗ (cause + biteobj⊗rover)

= jane+cause⊗janeT⊗biteobj⊗rover + biteobj
T⊗cause+rover

This includes the pattern rover as desired, but includes the pattern jane (from
(cause⊗janeT)T⊗cause). Although corresp′ only contains one term like this, there is a jane component
in corresp for every pattern which is shared by P and ECM, which adds up to a very strong component
of jane in corresp. When corresp is compared to the fillers of ECM, corresp is more similar to fred
than rover, due to the strong jane component in corresp.

One way of eliminating this similar-class bias is to perform a linear, multi-way, role-clean-up on jane-
roles. This should pass all positive role components and suppress negative role and non-role compo-
nents like cause⊗janeT. Thus, the clean version of jane-roles is as follows:

clean-jane-roles = 0.20⋅causeantc + 0.18⋅causecnsq + 0.13⋅ fleeagt + 0.12⋅biteobj

This clean-up can be viewed as a less competitive version of the standard clean-up. The corresponding
objects extracted using role clean-up are shown in Table 4. This process gives the correct answers for
the three episodes where there is a consistent mapping.

〈ELS⊗cleaned-jane-rolesT〉 john
fido

0.27
0.20

ü
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〈ECM⊗cleaned-jane-rolesT〉 fred
rover

0.20
0.29 ü

〈EAN⊗cleaned-jane-rolesT〉 felix
mort

0.25
0.20

ü

〈ESF⊗cleaned-jane-rolesT〉 john
fido

0.25
0.17

?

〈EFOR⊗cleaned-jane-rolesT〉 mort
felix

0.26
0.19

?

Table 4.

The other way of avoiding the similar-class bias is to use a different binding operation, in which the
algebraic properties of encoding and decoding do not result in terms like (cause⊗janeT)T⊗cause
equating to jane. Two possible suitable alternative binding operations are convolution of permuted
vectors, and random sums of pairwise products (Plate, 1994).

There are two more limitations with these fast techniques for deriving interpretations. One is that each
corresponding pair in a mapping is extracted independently. This matters when there is more than one
consistent mapping. For example, if we have two possible consistent mappings {X↔A, Y↔B} and
{X↔B, Y↔A}, then the choice of mapping for X should constrain the choice for Y, but this will not be
the case with the above techniques. To overcome this problem requires some other mechanism for
checking that a mapping is one-to-one. The other problem is that these techniques fail when two differ-
ent objects have the same set of roles – in such a case ambiguous results can be produced.

6 Chunking & Memory Organization
HRRs provide a natural method for chunking, i.e., breaking large structures into pieces of manageable

size and indexing them. In fact, to store structures of unlimited size, a model based on HRRs must store
sub-structures (i.e., chunks) in clean-up memory (see Section 3.7).

As more items and bindings are stored in a single HRR the quality of the items that can be extracted
drops. If too many component patterns are stored the quality will be so low that the extracted items will
be easily confused with similar items or, in worse cases, completely unrecognizable. The number of
items and bindings in a HRR grows with both the height and width of the structure being represented.
For example, the skeleton HRRs KP-bite and KP have 3 and 7 component patterns respectively, while the
full HRRs Pbite and P (the structural skeletons plus filler patterns) have 5 and 19 component patterns.
Since the number of items and bindings that can be stored for a given quality of decoding grows linearly
with the vector dimension (Plate 1995), storing large structures which might have hundreds or more
components would require extremely high dimensional vectors. A superior approach to storing large
structures is to break the structure into chunks. This requires storing sub-structures in the item memory,
and using them when decoding components of complex structures. For example, to decode the agent of
the cause antecedent of P we first extract the cause antecedent pattern. This gives a noisy version of
Pbite, which can be cleaned up by accessing item memory and retrieving the closest match. Now we have
an accurate version of Pbite from which we can extract the filler of the agent role. Using chunks during
decoding means that only top-level items and bindings count towards the total effective number of items
and bindings. This makes it possible to store structures of unlimited size.

To use chunks there must be a way of referring, or pointing to the chunks. In content-addressable
memory in general, “pointers” to sub-chunks cannot be addresses, but must somehow hint at the con-
tents of the sub-chunk. In HRRs, a decoded filler or sub-chunk, which is derived from a chunk by de-
coding with a role pattern, functions as an associative “pointer” to a pattern in item memory. These as-
sociative pointers are different from conventional pointers in that their form conveys information about
their referent, information that is noisy but immediately available without the need to access memory.
The advantage of having pointers that encode information about their referents is that some operations
can be performed without following the pointer. This can save much time. For example, we can decode
nested fillers quickly if very noisy results are acceptable, or we can get an estimate of the similarity of
two structures without decoding them.
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6.1 Overall memory organization

In a system that uses HRRs there must be two levels of memory organization. One level encodes the
structure in and among chunks. The other level stores large numbers of chunks (the large-scale clean-up
memory).

<Figure 2 about here>
Convolution encoding is most suited for encoding structure in and among small chunks in memory.

Figure 2 shows the contents of large-scale memory when several chunked items are stored, and the
relationships among the chunks. Each rectangle is a pattern stored in long term memory. Arrows show
sub-chunk relationships and are labelled with the role-pattern (in italics) through which the sub-chunk
can be found. The two top level chunks shown here are P and ELS from earlier. These contain lower
level chunks like Pbite (Spot bit Jane) and Pflee (Jane fled from Spot). Decoding fillers via role vectors is
one way of navigating among related chunks. Similarity can also be used to traverse memory: Pbite is
similar to bite, spot and jane, though these “links” are not shown in the figure.

Because of its memory capacity characteristics and noise in retrieval, convolution does not provide a
suitable associative memory technique for the clean-up memory, which must store all the chunks. For
this purpose we require some sort of large-scale error-correcting auto-associative memory. This large-
scale memory should have the following properties:

auto-associative & error-correcting ability: when given a pattern, it should return accurately the
closest one(s) stored, and

high capacity: the number of patterns which can be stored should be exponential in the size of the
patterns.

There are several ways the clean-up memory could be implemented, e.g., Kanerva’s (1988) sparse
distributed memory, and Baum, Moody and Wilczek’s (1988) various associative content addressable
memory schemes. The simplest of the latter schemes, which is perfectly adequate for the purposes of
HRRs, is the unary “grandmother cell” memory. This type of memory can be thought of as a feedfor-
ward neural network with one hidden layer. A hidden unit (the grandmother cell) is devoted to each
pattern stored. Incoming and outgoing weights on a hidden unit are the pattern that unit stores, and the
activity of hidden units is the result of a winner-take-all competition. Thus, when the network is pre-
sented with a noisy pattern, the hidden unit which stores the closest pattern becomes active and propa-
gates the clean version of the pattern to the output. This type of network can be straightforwardly im-
plemented in parallel hardware and also can be easily and efficiently simulated on a serial computer by
storing vectors in a list and doing an exhaustive search for the closest match.

7 Discussion
This paper has described a scheme for encoding structure in vector representations based on circular

convolution. Other approaches, such as Smolensky’s (1990) tensor products, Pollack’s (1990) RAAMs,
Kanerva’s (1996) binary spattercodes, and Gayler’s (1998) braided codes have much in common – see
Plate (1997) for a discussion – and could also be used in models of analogy processing.

The origin of patterns representing classes such as ‘dog’, ‘cat’ and ‘human’ must be addressed at some
stage. One possible automatic technique for learning such patterns is Latent Semantic Analysis (LSA),
which learns high-dimensional vector patterns for words from large quantities of text (Landauer, Laham,
and Foltz 1998). These patterns reflect human similarity judgements and could easily be used with
HRRs.

The existence of a fast technique for computing good guesses at object correspondences suggests a
new model for analogical mapping. Mapping could be done by “guessing” correspondences while step-
ping through the components of two structures and verifying that the proposed correspondences are con-
sistent. This would require three mechanisms, one for traversing structures, another for guessing corre-
spondences, and the last for storing correspondences and checking their consistency. All can be imple-
mented with operations on vector representations. Such a model differs from ACME and SME in that it
puts complexity at a different level. The top level involves simple sequential computation (traversing a
structure and checking for mapping inconsistencies) rather than complex structural matching or con-
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struction of special networks, while the bottom level involves information-rich vector processing to
measure similarities and estimate correspondences.

8 Conclusion
Holographic Reduced Representations provide a useful vector representation for analog retrieval and

processing tasks. They provide chunking, which will be essential in vector-based model that stores large
structures. They also afford fast operations for computing similarity and object correspondences. These
fast operations appear to have the right amount of power for modeling human abilities: their strengths
and weaknesses follow a similar pattern to human performance on similarity estimation and mapping. In
particular, HRRs provide a simple, single-stage model of human performance on analog retrieval: HRR
dot-products are sensitive to superficial similarity, and also to structural similarity in situations where
corresponding roles have similar fillers, which is the same pattern of performance as observed in human
subjects on analog retrieval tasks.
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