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Abstract

This paper discusses the relation of theory and experiment in neuroscience
exemplified by three assumptions often made in models of coherent activa-
tion in the cortex: basic feature-coding oscillators, phase-coding and global
binding of whole objects. Apparently these assumptions are not very well
supported by the experimental evidence. We propose that it is the single
synchronized population-burst that matters: spikes of feature-coding cells are
temporally clustered in our opinion by recurrent associative processes. In
each burst a single stimulus is processed (if there are several). Synchroniza-
tion is restricted to cortical sites which physically interact. These principles
are illustrated by computer simulations.

1 Introduction

The field of neuroscience has rapidly developed in the last 50 years. It
is therefore only natural that a theoretical perspective - largely based on
mathematics and physics - has begun to evolve, and its relation to the
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ongoing experiments has turned out to be particularly intricate. There are
several reasons for this:

e Since many experimental and theoretical developments are very recent
many experimenters have not yet appreciated the need of theorizing,
and conversely, many theoreticans are not aware of the most recent
experimental observations.

e The gap between the level of behavior that has to be explained in
terms of the neural machinery and the currently investigated level of
biophysics and biochemistry of this machinery, is tremendously large.

In spite of these problems neural modelling has meanwhile become a
discipline of its own standing. It can be viewed as a part of computer science,
which tries to understand the processing of information in neural networks.
A strong technical motivation of this enterprise is to exploit the results
for the construction of better (i.e. more flexible, adaptive, fault tolerant,
parallel, human) computers by embedding artificial neural networks into
the soft- and hardware of modern computers.

In this article, however, our concern is of course the use of artificial neural
networks as a modelling tool for theoretical brain research. This approach
already has its own history and we can only refer to some important books,
review articles and reprint collections for a rough orientation (MacGregor
1987; Anderson and Rosenfeld 1988; Shaw and Palm 1988; Palm 1982, 1990;
Abeles 1991).

Instead of trying to discuss all this on some kind of meta-level, we have
decided to focus here on one specific issue, which is today heatedly discus-
sed in the neuroscience community. We believe, that the discussion of this
issue will reveal a style of argumentation that is typical for the relation of
theoretical and experimental paradigms in neuroscience.

2 Gamma oscillations, synchronization and mo-
dels of binding

Experiments on anesthetized cats and alert behaving monkeys have shown
that local populations of cells in peripheral visual areas often respond rhyth-
mically with frequencies in the y-range (30-90Hz) when they are stimulated
by an optimally oriented visual bar or grating (Eckhorn et al. 1988, 1993;
Gray and Singer 1989, Gray et al. 1989; Engel et al. 1991; Reviews in Gray



1994, Singer and Gray 1995). These so-called oscillations can be consistently
observed in local field potentials (LFP), multiple unit activity (MUA) and
often also in single unit spike trains (SUA). Tuning curves derived from
peak amplitudes of power spectra of LFP or MUA have similar properties
as standard single unit receptive fields at the same cortical site and, most
interestingly, ‘oscillations’ at different sites reveal a considerable amount of
synchronization strongly depending on certain non-local stimulus properties:
for example, crosscorrelations between two recording sites are highest when
these are coactivated by a single bar. They are reduced when two indepen-
dent bars, moving in the same direction, are presented together, and nearly
absent when the two bars move in opposite directions, even though the neu-
rons at both sites are stimulated almost equally strongly in all the above
cases (Engel et al. 1991, Singer and Gray 1995). Response synchronization
of this type has been demonstrated within different visual areas, where it
can be detected over a range of several millimeters (Eckhorn et al. 1988). It
also occurs between different areas and even between the two hemispheres
(Eckhorn et al. 1988, Engel et al. 1991, Koénig et al. 1995). However,
a necessary condition for this seems to be that the receptive fields of the
observed cells overlap, or have at least some other property in common (e.g.
orientation). This has been demonstrated by Eckhorn et al. (1988) and is
consistent with other experiments.

On the theoretical side, the above results have been taken as evidence
for the so-called temporal correlation hypothesis of sensory integration in the
mammalian cortex (v.d.Malsburg and Schneider 1986, Eckhorn et al. 1988,
Singer and Gray 1995). This states, that neurons which fire in response to
the same external object display correlated - in particular synchronized - fi-
ring. This could help to solve two problems of sensory processing. First, the
binding (grouping or linking) problem, e.g. the question, how togetherness
between parts of a single object can be signalled even if these are processed
over large distributed regions of the brain and, furthermore, if the range
of possible feature combinations is assumed to be of combinatorial com-
plexity. (The latter involves that the solution can not be hardwired but
must arise from cortex-intrinsic dynamical interactions). Second, the super-
position (or segregation) problem, which asks, how different objects can be
simultaneously represented in the same cortical area by neural activation
without becoming mingled. Here it is believed, that neurons corresponding
to different objects simply fire in an uncorrelated way. In this way each
object can be uniquely labelled as a whole entity. Thus, the two seemingly
different problems of grouping and segregation according to the temporal



correlation hypothesis appear as aspects of one and the same mechanism -
the correlation and decorrelation of neural signals.

Rhythmic cortical activity has repeatedly been modelled, numerically
and analytically. Besides differences in methods and details, most of these
approaches explicitly or implicitly contain one or more (most often all) of
the following assumptions:

(i) Basic oscillators: Synchronized cell activity often, but not necessarily,
co-occurs with gamma-range oscillations (30-90Hz). Based on this no-
tion, object features are thought to be represented by means of some
kind of biophysical oscillators. Thus, basic network units are modelled
as abstract kinds of oscillators, so-called phasors or rotators (Neven
and Aertsen 1992, Sompolinsky and Tsodyks 1994), pairs of graded
excitatory and inhibitory cells (which intrinsically display periodic so-
lutions) (Campbell and Wang 1994, Schillen et al. 1994, v.d.Malsburg
and Buhmann 1992), or periodically spiking neurons (Eckhorn et al.
1990, Gerstner et al. 1993, Ritz et al. 1994). Binding then is inter-
preted as synchronization of appropriate subsets of these oscillators.

(i) Phase coding: Starting from feature-oscillators as building blocks, an
obvious solution of the superposition problem is phase segregation:
different objects are separated into different phases within a collective
oscillation of a fixed period (Campbell and Wang 1994, Horn and Usher
1991, Neven and Aertsen 1992, Ritz et al. 1994). This principle relies
further on the assumption of stationary or at least slowly varying input
in comparison with the time-scale of synchronization. Sophisticated
mechanisms for rapid synchronization have therefore been devised (e.g.

Campbell and Wang 1994).

(iii) Globality: Binding is often modelled as a global phenomenon within
and between areas. Conditions are studied, such that every feature of
an object is recruited into a single globally synchronized cell-assembly.
This is most clearly seen in models which synchronize objects (bottles,
cars, helicopters) distributed over extended twodimensional network
structures (Campbell and Wang 1994, Sompolinsky and Tsodyks 1994,
Neven and Aertsen 1992, Tononi et al. 1992, Ritz et al. 1994, Schillen
et al. 1994). Fully connected network schemes may also be envisaged
as an implicit assumption of globality (Horn and Usher 1991, Gerstner
1995 and references therein).



Obviously, these assumptions specialize the more general correlation hy-
pothesis. In the next section we briefly investigate their empirical justifi-
cation. Section 4 outlines an alternative interpretation, which is based on
rapid associative processes taking place in roughly ten milliseconds. Those
processes, if repeated continuously in response to a stimulus, can lead to
oscillator-like behaviour. However, we propose, that single objects are essen-
tially processed in single periods and conflicting stimuli in different periods.
Furthermore, we argue, that cortical sites in and between areas only synchro-
nize, if they physically interact, that is, if they are synaptically connected.
In section 5 simulation results illustrating our hypotheses are presented.

3 Brief discussion of the standard hypotheses

We start with the aspect of global binding of whole objects. The search for
conditions guaranteeing precise and/or global synchronization in mathema-
tical models is surely of general biophysical interest and thus it has certainly
motivated many of the studies cited above. But beside this mainly techni-
cal interest, the requirement of global binding seems to be also an outcome
of more general arguments, which briefly proceed as follows: visual objects
are typically represented and processed not in one area but distributed over
several, if not many areas of the brain. Different objects are represented
at once. Psychologically, we can easily distinguish those objects, even in
ambiguous situations. How does the brain know which features belong to
which objects? How can it code togetherness and distinction? The synchro-
nization hypothesis is brought up as a tentative means to solve exactly this
problem. Synchronization can provide an answer, but from this viewpoint
globality seems to be neccessary; if synchronization is only local, i.e. subsets
of features are synchronized, but independend or out of phase with other
subsets, then the problem is not solved.

We do not know of direct evidence for global binding. This would in
principle include synchronization between arbitrary features of arbitrary ob-
jects. Of course, coherent oscillations have been observed between different
areas and hemispheres of the cortex (Eckhorn et al. 1988, Engel et al. 1991,
Konig et al. 1995), but as initially mentioned, a prerequisite for this is that
the observed cells have at least one receptive field property in common; in
most experiments receptive fields of recorded cells overlap. Now, suppose
globality holds. Then, since synchrony is a transitive relation it should be
observable between any two cells responding to a particular object, wha-



tever feature they code. But synchronized cells with completely unrelated
receptive fields have not been reported so far, although it should be possible
to observe this phenomenon (if it exists) in some of the experimental para-
digms. This missing evidence may be partly due to restricted experimental
paradigms often dealing with simple straight bars or gratings only. Thus
cells excited by an object trivially have the property of ‘orientation’ in com-
mon. Nonetheless, stimulating with a moving bar of sufficient width, not
even the two edges are synchronized in area 17 of the cat (Eckhorn, private
communication). Thus binding is not global, not even within area 17.

Investigating experimental recordings of LFP or MUA, one immedia-
tely observes that ‘oscillation’ frequencies and amplitudes strongly fluctuate.
From this it has early been noted that the oscillation frequency - which in ge-
neral is different from single cell firing rates (Eckhorn and Obermiiller 1993)
- is not likely to code for anything whatsoever (Eckhorn et al. 1989, Gray
1994, Wilson and Bower 1991), although there are of course certain systema-
tic dependencies of the frequency on a few stimulus parameters (Wennekers
et al. 1994). Due to the large fluctuations, correlograms often do not have
more than a few side peaks indicating a rather short decay time of temporal
correlations. Hence, adopting the view of neuronal ‘oscillators’ as a physical
substrate, these necessarily must be subject to considerable noise, with the
main effect of perturbing the regularity of the oscillation. Thus, the genuine
property of oscillators, namely periodicity, seems not to be functionally very
important.

With respect to phase-coding similar problems arise. Since there is no
fixed period length, ‘phases’ in the strict mathematical sense of paramete-
rizations of periodic functions cannot be defined. Furthermore spikes in a
single period scatter over several milliseconds. Comparing this with period-
durations of 15-25ms it is obvious that phase-coding can only be very coarse
and timing relations must decay over a few rhythms. Few distinguishable
phases would probably be enough in primary areas, where local ambiguities
are relatively simple, but would hardly suffice to separate entities on a higher
level in a more complex situation. In any case, phases should be observable
in experimental crosscorrelation studies. Indeed, they are not! As already
mentioned, two bars moving in different directions give rise to nearly flat
correlograms not to shifted peaks as they are expected in correlograms of
phase-shiftet signals (Engel et al. 1991, Kénig et al. 1995, Singer and Gray
1995).

Summarizing these discussions we observe that all these hypotheses are
not fully justified by the experimental evidence. If they are taken at face-



value, they are most probably wrong. However, there is also a certain degree
of truth in each of these hypotheses so that it is not even unlikely to find
statements in experimental papers that could provide a certain basis for
assuming them. Thus a theoretical paper that fully relies on the truth of
all three hypotheses may effectively claim in the theoreticians’ community
to be dealing with the biological reality, whereas it would be regarded as
quite unrealistic by the experimentalists’ community. In the next section we
will show, how a relatively small twist in the three hypotheses can render a
much more realistic picture.

4 Synchronized spikes and fast associative pro-
cesses

In our opinion it is less the periodicity of rhythmic cortical activity that
matters, but the temporal synchronicity within the single period. Recently
we proposed a tentative framework based on processes of rhythmic associa-
tive spike synchronization, that seems to be consistent with most experi-
mental findings (Wennekers et al. 1995). It was motivated by theoretical
results concerning iterative retrieval in sparsely coded associative memo-
ries (Schwenker et al. 1996). Two outcomes of this work are particularly
important.

1. Pattern association is extremely fast - at most 3 feedback steps for
perfect retrieval - provided firing thresholds are adapted to the network
activity in each step (cf. fig. 1).

2. Pattern completion is most efficient, when the number of ones in the
address pattern is about half that of the stored patterns (fig.2).

The first point in the current context means the following: Taking a few
ms for a single associative feedback step in the cortex, which is determined
by synaptic and axonal delays, perfect pattern completion can be performed
in less than roughly 10ms, which well fits with the observable v-periods of
15 to 25 ms. The second point practically means that the active input
synapses to any relevant neuron that is about to be ‘addressed’, should
not be less than half the synapses that could be activated by the complete
pattern. This implies further, that spikes must be synchronous if efficiency
is required. Since real neurons have an integration time of (again) a few ms,
all relevant information should be present during those short time intervals.
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Figure 1: The mean iteration time of the incremental (left curve) and bi-
nary Hebbian learning rule with matrix size n=1900, k=13 ones per stored
pattern and 1=6 ones in address patterns. Note that usually less than only
3 iterations are needed for pattern completion.
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Figure 2: The capacity in bits/synapse of one-step (o), two-step (¢), and
iterative retrieval (o) for address patterns of different length; the solid line
shows the completion capacity for error free retrieval. The capacity is highest
for [ = k/2 =~ 6, below which retrieval becomes progressively faulty.



In experiments one often observes a concentration of spikes in 4 or 5ms.
Scattering the same spikes randomly over 15-25ms (the period length) wastes
70% or more of the available information, since less than 5ms/20ms = 1/4
of all spikes can then be envisaged as addressing the cortical storage matrix
at one time (compare also Abeles 1991). Therefore input patterns should
be synchronous in the millisecond range.

From these observations and common ideas about anatomy and function
of the cortex (e.g. Braitenberg and Schiiz 1991), we derive the following me-
chanisms for rhythmic cortical processing: 1) Fast associative processes are
carried by sparsely firing pyramidal cells and their excitatory connections.
2) The threshold control necessary for efficiency is supplied by interneurons
which mainly estimate the average local spike-activity and inhibit the exci-
tatory cells accordingly. (See also Palm 1982 for related ideas on ‘threshold
control’).

This basic circuitry naturally leads to a rhythmic network activation
in the gamma frequency range. Every period consists of a short popula-
tion burst (association phase) followed by a period of inhibition (relaxation
phase). The occurrence of oscillations in comparable network structures has
repeatedly been demonstrated in other modelling approaches (e.g. Eckhorn
et al. 1990, Wilson and Bower 1991, Gerstner et al. 1993). Important here
is that in our interpretation subsequent periods can already process different
patters. In principle a new input can be sampled from the sensory stream
every 20ms.! This idea bears similarity to that of ‘correlation-amplification’
proposed by Koch and Schuster (1992), which was intended to give a sim-
ple explanation of the biologically detailed simulations of Bush and Dou-
glas (1991). However, both papers did not directly address computational
aspects.

Associative memories in the strict and simplified theoretical sense are
certainly not a good model for primary visual areas, since those are not likely
to store many thousands of distinct patters, but perhaps act more as filter or
feature-detector hierarchies with the well-known broad tuning of single cells
to stimulus properties. Nonetheless, the main idea of reverberant excitatory
processes succeeded by inhibited phases does also apply in these areas. Short
and long-range excitatory interactions here could recruit best matching cells
into a short population burst, perhaps favourizing cell-constellations that

'Recently Dong and Atick (1995) measured temporal power-spectra of natural time-
varying images; these indicate that rates of some 10Hz would indeed be best for sampling
natural scenes.



resemble ‘Gestalt’-principles. The onset of inhibition evoked by excitatory
activity in turn could suppress cells less well matching or partially conflicting
with the stimulus features. Synchronization, of course, would also increase
signal to noise ratios, thereby improving feature-detection.

We propose that the elementary computational processes at the base of
gamma-range oscillations are temporally confined to single short association
cycles corresponding with distinct gamma-periods. The rythmicity is then
understood as an expression of repeated elementary computations. This
should be contrasted with the idea of ‘phase-coding’, which assumes that
spike-trains of feature coding cells (or other local signals like MUA or LFP)
are intrinsically periodic and become mutually aligned at well defined time-
differences, which depend on whether cells represent the same or different
objects. This notion of ‘phases’ is meaningless in our interpretation. None-
theless timing relations between spikes on the scale of a few milliseconds in
individual population bursts can well carry information and contribute to
cortical computations. Such spatio-temporal patterns need not be repeated
periodically. Systematic timing relations can arise, if cells are differently
strongly excited, which should be the case under almost all stimulus condi-
tions. We would expect that spikes of suboptimally driven cells lag behind
optimally excited ones, because suboptimal cells on average spend a lon-
ger time below but near firing threshold. Hence, optimally stimulated cells,
which have a larger probability to fire, can easily and quickly trigger the
firing of those suboptimal cells. This phenomenon may provide a natural
explanation for firing delays of suboptimal cells as observed in the visual
cortex by Konig et al. (1995a). An interesting point in the context of dy-
namically controlled associative memories is that the interpretation of both
cell-classes, early and late firing cells, is conceptually different: the early
cells can be envisaged as constituting the address-pattern, whereas the la-
ter firing cells represent the retrieved additional information. (Of course
a strict distinction of two cell classes is artificial and the assumption of a
smooth transition between both extremes more plausible, but the argument
essentially remains the same in the second case). The early cells are mainly
input driven and because they receive the strongest external input, they
signal ‘safe’ information about the stimulus. Contrary, the later cells may
not even be able to fire in a significiant manner supplied with relatively
weak external input alone. Their firing times strongly depend on further
supporting input from the early cells via recurrent collateral connections.
Thus, they provide information about the connectivity structure of the net-
work, or, in a more technical sense, about the associative coupling matrix
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and the stored memory patterns. These ideas argue for possible mechanisms
of the generation of temporal short-time relations between spikes and their
tentative functional use. With respect to the detection of spatiotemporal
patterns, we should finally mention, that spike-patterns in the millisecond
range can be easily detected by single cortical cells utilizing propagation
delays and spatiotemporal integration properties of dendritic structures. It
is much harder to imagine mechanisms that detect and take advantage of
repeated patterns, which last for more than several ten milliseconds. Thus,
even if phase-coding should occur in the cortex, it is likely that all temporal
structure a single neuron can effectively make use of, is still concentrated in
a single gamma-period. But since the work of Schwenker et al. (1996) and
the simulations of the next section show that synchronisation is extremely
fast, the function of ‘oscillations’ then is again unclear.

Now, we consider the question how far ‘binding’ might reach. Taking
experimental evidence together, the most natural assumption seems to be,
that it is restricted to cortical sites within or between areas, which are
directly and sufficiently strongly connected via collaterals or interareal fibres.
Those sites often do have similar receptive field properties, which appear to
be necessary for synchronization (Bullier et al. 1993, Salin and Bullier 1995
and references therein). Furthermore physiologically measured correlation
lengths fit well with anatomically observed connectivity ranges (Eckhorn et
al. 1988, Bullier et al. 1993, Salin and Bullier 1995).

Between different cortical areas or hemispheres transmission delays can
become significantly large. We believe that associative processes in this case
can switch to a more iterative nature with volleys of spikes propagating back
and forth between areas, and influencing their respective targets with a lag
of one period. Comparable interarea-interactions have, for example, been
investigated in model studies by Bibbig et al. (1995). They also seem to be
supported by experiments of Konig et al. (1995 b).

Network simulations (cf. next section and Bibbig et al. 1995, Wennekers
et al. 1995) indicate that the duration of excitation-inhibition cycles can be
strongly fluctuating. Caused by many different sources of randomness, this
has to be expected also in the cortex. Therefore, correlations between di-
stant cells with non-related receptive fields and probably few monosynaptic
connections can be easily destroyed. Thus the strict transitivity of ‘synchro-
nization’ can be broken such that it may not be observable in experiments.

We conclude that binding is most likely a local phenomenon, if we define
locality by physical connectivity and not simply by proximity. Since higher
sensory and association areas of the cortex are usually smaller than primary
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sensory areas, this does not necessarily exclude that whole objects can be
bound together in those areas; what we reject is the hypothesis that they
are coherent over the whole primary visual cortex or even the brain.

5 Network simulations

In this section we briefly describe simulations illustrating our main propo-
sals. Figure 3 shows the implemented model network consisting of 3 layers
R, P and C which may be loosely identified as retina, peripheral visual area
and more central visual association area.

The input area R is nothing but a two-dimensional binary pixel array of
size 64x64 at which static patterns can be applied (cf. figures 4a and 5a-d).

P contains 64x64 topographically ordered excitatory spiking neurons
which receive input from R via Gaussian coupling kernels of size 5x5 (depic-
ted as Lin figure 3). The excitatory units are also laterally coupled extending
over 11x11 neighbourhoods (II). These connections have asymmetric Gaus-
sian profiles introducing orientation selectivity. Orientations are random
among cells, neglecting the complex structure of real visual cortexes. Fach
excitatory cell in P is inhibited by an individual interneuron (grey circle, V)
that computes the local average of the excitatory spike-activity over a 7x7
neighbourhood of the particular cell.

The visual association area C consists of 8x8 excitatory neurons which
are modelled as a fully connected associative memory. Input to the excita-
tory cells in C is an average (7x7) over spike activity in P (III). So the input
pattern to the association area is a coarse-grained version of the original
input at R. C contains only a single inhibitory cell that samples the overall
spike-activity and inhibits all excitatory cells with equal strength (VI). The
globality of the inhibition reflects the smaller size of ‘higher’ areas.

All cells in P and C implement membrane leakage in form of first order
low-pass filters with time-constants of 3ms for excitatory and hms for inhibi-
tory cells. Since the latter are intended to represent cell-pools their output
is given by a sigmoid function of the membrane potential. Spiking neurons
are chosen to model the excitatory cells: when their potential reaches a fi-
ring threshold, a spike of 1ms duration is emitted. A refractory mechnism
(dynamical threshold) prevents cells from firing again immediately. (Details
of the neuron model can be found in Bibbig et al. 1995, Wennekers et al.
1995).

Figure 4 displays the activation dynamics in the topographic area P
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Figure 3: Scheme of the network model. R: binary input layer of size 64 x64
(retina); P: topographically ordered peripheral area of excitatory and inhibi-
tory cells (64x64 each); C: fully connected associative area (8x8 excitatory
cells, one global inhibitor). I&IIT depict feedforward connections (receptive
fields), II&IV recurrent connections between excitatory cells (context fields;
local in P, global in C). V& VI indicate inhibitory interneurons (grey circles)
and their connections.
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Figure 4: Activation in the peripheral area (P) when the grating stimulus
(a) is applied. In (b) 25 single unit spike trains (SUA), their sum (MUA)
and the averaged membrane potential (LFP) of a 5x5 square around unit
(30,37) are shown. Some units fire regularly, others lock randomly into the
population spikes. Thus amplitudes and frequencies are highly irregular.
(c¢) Overall spikepatterns of all excitatory cells at different times (coarsly
1.5 periods). Synchronization is not global, but restricted to connectivity

regions. Fach plot rebins spikes from 6ms.
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when a grating stimulus (a) is applied to R. First observe that the activity
is thythmic (fig.4b), most pronounced in local averages of cell potentials
(here called LFP) or spikes (MUA). Single units (SUA) discharge regularly
when they are excited sufficiently strongly. If their external drive is below
threshold they can only fire, if they receive further input via lateral connec-
tions. Thus they lock into the collective bursts irregularly and their spikes
lag behind those of optimally driven cells, both in agreement with experi-
mental observations (Eckhorn and Obermiiller 1993, Koénig et al. 1995a).

The random involvement of different sets of cells in different single peri-
ods leads to fluctuating burst amplitudes, which in turn give rise to varying
period durations. The latter reflect the action of inhibition: the more cells
fire in a burst, the more pronounced and therefore long lasting is the in-
hibitory response. Thus low amplitudes correspond with faster rhythms,
again consistent with experiments (Wennekers et al. 1994). We take this as
evidence that the observed oscillations and frequencies are to a large extent
a network effect and less due to single unit properties.

Figure 4c¢ shows spikepatterns of all 64 x 64 excitatory cells in P at
consecutive times. As can be immediatly seen, synchrony is not global.
Measuring crosscorrelations of LFP we observe a nearly exponential decay
of spatial correlations. The estimated decay constant of 5.46 (~ 11/2 lattice
units) implies that correlations do not reach much farther than the hardwi-
red connections. Generalizing this result to cortical situations, correlations
should only be observable in the range of long-range collaterals, which in-
deed is the case (Bullier et al. 1993, Koénig et al. 1995b, Eckhorn et al.
1988).

Wilson and Bower (1991) compared correlations evoked in distant cells
in a network similar to our peripheral area P, when either a long bar or
two separated but colinear short bars were used as stimuli. Repeating these
simulations we found essentially the same results: Correlations are larger in
case of the continuous stimulus (long bar) because cells excited by the long
bar which were situated in the activationless region between the two short
bars can relay information between distant sites. Therefore synchronizing
feedback is stronger and correlations are more pronounced. Moreover, when
the distance between the two short bars is larger than the coupling width,
correlations are virtually zero. In contrast to the simulations by Wilson
and Bower, this also happens at distant sites stimulated by a continuous
long bar. The same effect is already revealed by Figure 4¢ for the grating
stimulus: here, synchronized firing of cell groups appears to be localized
in patches of roughly the size of synaptically connected regions and does
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not extend much along the individual bars. This difference to Wilson and
Bower’s work is probably due to the inhomogenous lateral couplings in our
model area P, which give rise to spatially varying average oscillation periods.
Under homogeneous conditions local circuits are everywhere the same, have
the same intrinsic period duration and are therefore easier to synchronize.
The experimental results on the spatial decay of correlations mentioned
above indicate that less homogenous conditions are probably more realistic
for the cortex.

Figure 5 displays the spike activity in the central area C when the test-
pattern (d) is applied to area R. Patterns P1-P3 (a-c) have been stored in a
previous learning phase by means of an incremental Hebbian learning rule.?
Observe that in fig. be each pattern contained in the input is recognized
and completed in a very short time. Usually only one pattern is retrieved
per elementary associative process. This is not trivial, because the patterns
overlap. In fact it is the action of the inhibition that effectively raises the
firing thresholds (by lowering membrane potentials) as soon as the amplifi-
cation of one pattern happens. In this way co-activation of other patterns
is prevented just as in the more abstract model of Schwenker et al. (1996).
Furthermore the dynamic threshold also avoids latching of the associative
area into an attractor state (cf. Koch and Schuster 1992, Horn and Usher
1991, Wennekers et al. 1995). Often attractor states in associative neural
network models are quite stable in the sense that strong input is needed
to destroy such an attractor and enable a new network response towards
another stored pattern. Contrary, a dynamic threshold that rhythmically
resets the network activation, keeps the network sensitive to new - and espe-
cially weak - input at any moment. Which pattern becomes amplified in an
individual retrieval period, mainly depends on fluctuations in the incoming
activity (here from area P) and thus is essentially random. Pattern sizes
can bias the retrieval; a large pattern is detected more often. Furthermore,
by introducing adaptation into the excitatory cells, retrieval can be forced
to occur in cycles (cf. Fahle and Palm 1991, Ritz et al. 1994), but the ele-
mentary associative processes then happen nonetheless on a scale of roughly
25ms. The pattern-cycle and ‘phases’ defined by the ordered retrieval take
place on a slower scale. This is not the usual notion of phase-coding by
40Hz-oscillations.

Finally, we should mention that asynchronous input from layer P to C

2Speedup of Hebbian learning is another yet unmentioned advantage of synchronized
activity. This issue has been discussed in detail in Bibbig et al. (1995).
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Figure 5: Rhythmic associative retrieval in the central area. Patterns P1-P3
(a-c) were presented to the input area during a preceeding learning phase
utilizing an incremental Hebbian coincidence rule in the central store C.
Testpattern (d) is applied during the displayed simulation run. In (e) spike
patterns of all cells in C belonging to central representations of P1-P3 are
shown (above) as well as the overlaps of these representations with the cur-
rent network spike pattern (below). Note that perfect pattern retrieval and
random segregation takes place, but no phase-coding.
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with the same average firing rates as above hardly evokes any activity in the
associative area. When lateral connections and inhibitory interneurons in
the peripheral area are switched off, then the spikes in P are asynchronous
and not locally clustered in time. Therefore cells in the central area are
driven less effectively and respond with very sparse firing rates (data not
shown). Under these conditions retrieval of patterns occurs seldom and
in a non-rhythmical manner (similar arythmical behaviour occurs in the
model of Koch and Schuster 1992). Lowering thresholds does not solve
this problem, since then even single perfect input patterns address different
memory patterns due to overlapping neurons. This problem becomes the
more serious the more patterns are stored in area C (cf. Schwenker et al.
1996). Contrary, increasing firing rates in P can solve the problem, but
the necessary rates correspond to roughly 1/5ms =~ 200Hz, if we assume a
membrane time constant of hms as the necessary coincidence interval. This
is way above the firing rates of typical cortical neurons and again suggests
that at least one important role of synchronized cortical codes is the larger
efficiency in exciting target neurons and the increased signal-to-noise ratio
(cf. Abeles, 1991) that can be achieved even at (arbitrary) low rates.

6 Conclusions

In this paper we have discussed the relation between experimental evidence
and theoretical modelling in neuroscience for the concrete example of high-
frequency oscillations in cortical neural activity and their purpose for neural
computation and representation. We have criticized the three assumptions
of basic oscillators, phase coding and globality of synchronization that are
often made in theoretical papers. Finally we have illustrated a very similar
but to our knowledge much more realistic picture based on spiking neurons
with a refractory mechanism, temporal coincidence and laterally decreasing
coherence by some computer simulations.
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