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Abstract

A significant part of everyday learning occurs incidentally — a process
typically described as implicit learning. A central issue in this domain and
others, such as language acquisition, is the extent to which performance
depends on the acquisition and deployment of abstract rules. Shanks and
colleagues [22], [11] have suggested (1) that discrimination between
grammatical and ungrammatical instances of a biconditional grammar
requires the acquisition and use of abstract rules, and (2) that training
conditions — in particular whether instructions orient participants to identify
the relevant rules or not — strongly influence the extent to which such rules
will be learned.  In this paper, we show (1) that a Simple Recurrent Network
can in fact, under some conditions, learn a biconditional grammar, (2) that
training conditions indeed influence learning in simple auto-associators
networks and (3) that such networks can likewise learn about biconditional
grammars, albeit to a lesser extent than human participants. These findings
suggest that mastering biconditional grammars does not require the
acquisition of abstract rules to the extent implied by Shanks and colleagues,
and that performance on such material may in fact be based, at least in part,
on simple associative learning mechanisms.

1.  Introduction

Over development and learning, we acquire a considerable amount of information
incidentally. Natural language offers perhaps the most striking example of such
incidental learning: Infants do not need to be explained grammar rules in order to be
able to communicate effectively and are presumably unaware of the fact that they are
learning something at all. Adult speakers likewise “know” whether expressions of
their native language are grammatically correct but can seldom explain why. Such
dissociations between performance and ability to verbalize the relevant knowledge
are often described as being subtented by processes of implicit learning (IL). Thus,
the notion of "implicit learning" (IL) usually designates cases in which a person
learns about the structure of a fairly complex stimulus environment, without
necessarily intending to do so, and in such a way that the resulting knowledge is
difficult to express [1]. IL is the ability to learn without awareness, as opposed to



explicit learning, which is strategy- and/or hypothesis-driven, and of which one
tends to be consciously aware. A considerable body of empirical evidence now
suggests that people can indeed acquire information about the underlying structure
of ensembles of stimuli in an incidental manner [5]. For instance, in a typical
artificial grammar learning situation (e.g., [16]), Ss are asked to memorize a set of
meaningless letter strings generated based on a simple finite-state grammar that
specifies legal transitions between successive letters. Reber's main finding, now
replicated hundreds of times, is that Ss are subsequently able to discriminate novel
instances of grammatical strings from ungrammatical strings somewhat better than
chance, despite remaining unable to verbalize the rules of the grammar. Based on
these and other findings, Reber accordingly suggested that Ss must have
unconsciously acquired abstract knowledge about the grammar. This early
abstractionist account, however, has now become largely obsolete, based on (1) the
fact that successful performance in this sort of task can be achieved without
knowledge of the rule system (e.g., [2]), and on (2) the fact that when probed
directly about the relevant knowledge, Ss often turn out to be able to express this
knowledge [9], [23].

1.1 Implicit Learning and Abstraction

A central issue in this context is the question of whether the mechanisms through
which implicit and explicit knowledge are acquired are best viewed as being
subtended by separate processing systems or as being different manifestations of a
single set of learning mechanisms. Early theories of IL (e.g. [16]) have tended to
assume that it involves independent rule-based unconscious learning mechanisms.
Today, based on issues raised by the complex measurement challenges associated
with the assessment of awareness, as well as on the fact that many computational
mechanisms can in fact perform in a rule-like manner without necessarily having
acquired rule-based knowledge [17], many authors have proposed instead that
performance in typical IL tasks is in fact best accounted for by assuming that Ss
consciously learn either specific exemplars or fragments thereof during training.
Performance at test can then be explained by simple mechanisms that compute the
similarity between training and test exemplars, or that are sensitive to the overlap
between fragments of the training items and the test items. From this perspective,
the main distinction between implicit and explicit learning should thus not be one of
awareness, but one of information-processing: Implicit learning would essentially
involve incidental or episodic memory-based processes and result in conscious
knowledge of exemplars and or fragments, whereas explicit learning would
essentially involve active hypothesis testing and result in conscious knowledge of
abstract rules. This position has been expressed most clearly by Shanks and
colleagues [23], [22], [24]. However, while it is undeniable that humans are capable
of abstract thought, the extent to which such processes are rooted in dedicated
mechanisms remains unclear. Indeed, the debate about the nature of knowledge
acquired in implicit learning situations finds an echo in recent research dedicated to



various aspects of natural language learning, which we briefly discuss in the next
section.

1.2 Implicit Learning and Natural Language

In a series of experiments modeled after the artificial grammar learning paradigm,
Saffran et al. [18] exposed 6-7 years old children and adult Ss to a continuous
speech flow such as bupadapatubitutibudutabapidabu. Ss were told that the
experiment was about the influence of auditory stimuli on creativity. The only cues
to word boundaries were the transitional probabilities between pairs of syllables
(e.g., bu-pa), which were higher within words than between words. Afterwards, Ss
heard two sets of sounds, each consisting of three syllable pairs, and were told to
decide which one sounded more like the tape they had heard. Both adult and child Ss
managed to perform well above chance, suggesting that learning about the deep
structure of the material might proceed in the absence of intention to do so, and after
only short exposure to the relevant material. Saffran et al. concluded that sensitivity
to statistical structure is a fundamental process in language acquisition.

Marcus et al. [13], in stark contrast, claim that sensitivity to statistical structure is
not sufficient to account for their data, and that 7-month-old infants can "represent,
extract, and generalise abstract algebraic rules." The infants were exposed to
artificial auditory "sentences" during a training phase, and were subsequently
presented with test items instantiated with a novel set of sounds, half of which
shared their abstract structure with the training items and half of which did not. For
instance, infants habituated to gatiti or linana (both sharing an ABB structure) were
subsequently presented with test sentences such as wofefe (familiar ABB structure)
or wofewo (novel ABA structure). Despite the test material being instantiated over
completely novel features, infants tended to listen more to the sentences instantiating
a novel abstract structure. Marcus et al. concluded that infants had the capacity to
represent "algebraic" rules, and that simple associative learning models such as
connectionist networks would be unable to generalize as infants do. However,
Marcus et al.'s claim that networks could not model the observed effect was disputed
by several authors (e.g., [19], [15], [8]), essentially based on the fact that successful
transfer need not necessarily be based on the overlap between features of the input
patterns themselves. Instead "the relevant overlap of representations required for
generalisation […] can arise over internal representations that are subject to
learning." ([15], p.2). Transfer and generalization therefore remain complex issues,
in part because of the challenges associated with designing stimulus material that
can only be learned through abstractive mechanisms. Shanks and colleagues [22],
[11] have attempted to address precisely this issue in an interesting series of
experiments described in the following section.

1.3 Biconditional AGL: Shanks et al. (1997)

As mentioned before, Shanks and St John [23] proposed to abandon the idea of a
conscious/unconscious dichotomy in favour of a rule-based/instance-based



dichotomy. The basic idea is that humans possess two learning systems capable of
creating distinct forms of mental representation, one system consisting of symbolic
rule-abstraction mechanisms and the other involving subsymbolic, memory-based,
connectionist mechanisms (see [21] for a discussion). In this context, Shanks et al.
considered transfer in AGL tasks to be at least to some extent mediated by abstract
(rule-) knowledge and claimed that people systematically become aware of the
relevant regularities in those AGL tasks where only rule learning is possible. To
demonstrate, Shanks et al. exposed Ss to artificial grammar strings generated by a
biconditional grammar (see also [14]). Biconditional grammars involve cross-
dependency recursion (see [3]) such that letters that appear at each position before
and after a central dot depend on each other. An example is given in Figure 1, where
letter D is paired with F, G with L, and so on. Shanks et al. constructed biconditional
grammar training strings as well as a set of grammatical and ungrammatical and test
strings, in such a way that grammatical and ungrammatical test items could not be

distinguished — in contrast with the typical transitional grammars used in artificial
grammar learning experiments — on the basis of their overlap with the training
strings in terms of bigrams or trigrams (or any other n-gram). During training, two
groups of Ss were shown strings one at a time on a computer screen and had to
perform one of two tasks on each trial.

The match group Ss, who had been told that the task was about memory, were
exclusively exposed to grammatical strings. On each trial, they first had to
memorise a string displayed on the computer screen for a few seconds. Immediately
thereafter, they had to identify this string among three possibilites (the string they
had just memorized and two foils). The edit group Ss, in contrast, were exclusively
exposed to ungrammatical strings. They were told that the strings had been
constructed according to rules and that their task was to find them. On each trial,
edit Ss were shown an ungrammatical string, and they had to indicate which letters
they thought violated (N) or confirmed (Y) the rules. They were then given the
correct string and the correct Y/N sequence as feedback. Shanks et al.  showed a
dissociation between the two groups: While the edit group performed well and most
Ss extracted the rules, the match group performed at chance level, thus suggesting
that "instance-memorisation and hypothesis-testing instructions recruit partially
separate learning processes." ([22], p.243). Their basic claim is thus that
discriminating between grammatical and ungrammatical biconditional strings
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Figure 1: A biconditional grammar string as used by Shanks et al. (1997). Possible
letters in each position before the dot are linked biconditionally with the letters that
may appear after the dot.
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Figure 2: The Simple Recurrent Network as conceptualised by Elman (1990).

requires abstract knowledge of the rule system, and that such knowledge cannot be
learned by associative learning mechanisms such as instantiated in connectionist
networks.  In this paper, our goal is to explore the extent to which such networks can
learn about biconditional grammars. To do so, we report on two simulation studies.
Our first simulation study suggests that biconditional grammar learning can, under
some conditions, be performed by networks developing representations based on
frequency statistics. Our second simulation study was dedicated to exploring how
differences between match and edit learning could be modelled without explicitly
invoking a memory- versus rule-based distinction.

2. Simulation Study 1

In this first simulation study (see also [25]), we simply aimed to determine whether
the Simple Recurrent Network (SRN; see Figure 2) was able to learn material from
the Shanks et al. [22] experiments. The SRN, initially proposed by Elman (e.g. [10];
see also [6]) is one of the most influential connectionist models in the implicit
learning and psycholinguistic literatures. SRNs are typically trained to predict the
next element of sequences presented one element at a time to the network, and are
therefore particularly appropriate to explore tasks involving sensitivity to sequential
structure. To perform this prediction task, the network is presented, on each time

step, with element t of a sequence, and with a copy of its own internal state (i.e. the
vector of hidden units activations) at time step t-1. Based on these inputs, the
network has to predict element t+1 of the sequence. During training, the network's
prediction responses are compared to the actual successor of the sequence, and the
resulting error signal is then used to modify its connection weights using the back-
propagation algorithm. As described in [20] and [4], the network progressively
learns to base its predictions on the constraints set by an increasingly large and self-
developed temporal window. This progressive incorporation of he statistical
dependencies between successive elements of the sequence in the internal
representations of the network eventually enables it to behave as though it had
learned the relevant sequential rules. The SRN can thus, for instance, exhibit perfect



generalization to an infinite number of novel sequences after (necessarily finite)
training on a set of sequences generated from a finite-state automaton.

2.1 Network Architecture and Parameters

An SRN with 100 hidden units and local representations on its pools of input and
output units was trained using backpropagation on the biconditional strings designed
by Shanks et al. [22]. Strings were presented one element at a time to the network by
activating the corresponding input unit (each of the 9 input units represented the
letters D, F, G, L, K, X, the dot, the beginning, and the end of a string respectively)
The learning rate was set to 0.15, and momentum was to 0.9. Context units were
reset to zero after each complete string presentation.

2.2 Training Material

The training material consisted of the set of 18 strings designed by Shanks et al. [22]
(List 1). The test material consisted of 18 novel grammatical and 18 ungrammatical
strings respecting the following constraints: (1) Grammatical strings had to conform
to the biconditional grammar: Letter position 1 is linked to 5, 2 to 6 and so on, with
the linked letters being D–F, G–L, and K–X. (2) The use of the 6 letters was
balanced, so that each letter appeared 3 times in each of the 8 letter locations. (3)
Each training string differed from all other training strings by at least 4 letter
locations. (4) Each training item had a grammatical similar item and an
ungrammatical similar item that each differed from the training item by only 2 letter
positions. Each training item was different from all other test items by at least 3
letter locations. The simulation was carried out on exactly these strings. A training
epoch consisted of all 18 strings being presented once to the network, in a random
fashion.

2.3 Procedure

Each of 9 networks initialized with different random weights was trained on the 18
training strings designed by Shanks et al. [22] for 3000 epochs. The networks were
tested on seven different occasions during training. On each test, the networks were
exposed to 18 novel grammatical strings and on 18 ungrammatical strings.
Performance during test was assessed by recording the relative strength of the output
unit corresponding to the actual successor of each element of each string. Different
measurements of accuracy exist, of which we used the Luce ratio [12] — a simple
measure of relative strength in which the activation of the target output unit is
divided by the sum of the activations of all output units. These prediction responses
were then averaged separately for each string so as to obtain a single measure of
how well the networks were able to process each string. A high average luce ratio
thus indicates that the network is successful in predicting each element of the
corresponding string. Global measures of performance for each of the seven tests



were obtained by averaging the mean luce ratios separately for grammatical and
ungrammatical strings over the 9 networks.

2.4 Results

Figure 3 represents global prediction performance obtained during each of the 7
tests, and separately for training, novel grammatical, and ungrammatical strings. The
figure clearly shows that the networks were able to discriminate between novel
grammatical and ungrammatical strings. The training strings were learned almost
perfectly from 100 epochs onwards. Further, the network clearly discriminates

between novel grammatical and ungrammatical strings (i.e., better predictions for
grammatical strings), even before it is completely successful in mastering the
training strings. A MANOVA applied on these data confirmed that the networks
successfully discriminated between novel grammatical and non-grammatical strings,
F(1, 8) = 97.08, p<.0001. Further analyses aimed at ruling out that the networks had
merely learned to predict the central dot or the end of the strings confirmed that
letter-by-letter predictions were indeed better for grammatical than for
ungrammatical strings, particularly for letters occurring after the central dot. Based
on these findings, we can therefore conclude that contrary to what Shanks et al.
claimed, the SRN can in fact distinguish between novel grammatical and
ungrammatical strings generated by a biconditional grammar without making use of
explicit rules.

It is important to note, however, that this result depends on the specific set of
training strings used by Shanks et al. [22]. Indeed, the SRN exhibits well known
specific difficulties in learning material that involves maintaining information across
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Figure 3: Average SRN prediction response strength, represented at various points during
training, and plotted separately for training, novel grammatical and non-grammatical strings.



several times steps [20], as is the case here, and it would have failed had the stimulus
material be perfectly balanced in terms of how frequently the different biconditional
pairs occur in the stimulus set.

3. Simulation Study 2: The Match/Edit Distinction

In this second simulation study, our goal was to explore the effects of different
training conditions on network performance. Recall that in [11], match Ss were
given incidental learning instructions and were only exposed to grammatical strings.
In contrast, edit Ss were informed that the strings instantiated a simple rule system
and that their task consisted of uncovering this structure. Edit Ss were shown only
ungrammatical strings, and had to indicate, on a letter-by-letter basis, which of the
letters of each string they thought violated the rules. To do so, they typed a string of
Y/Ns, endorsing or rejecting each letter of the string as grammatical. They were then
shown the correct string, as well as the correct string of Y/N judgments.

3.1 Network Architecture and Parameters

To capture the match/edit distinction, we designed two simple feedforward
networks. The Match networks were simple autoassociators that were trained
exclusively on grammatical strings. The Edit networks in contrast, were exposed
exclusively to ungrammatical strings during training, and were trained to produce
both the correct string and the Y/N sequence as output, just as human participants.

The networks are shown in Figure 4. Both networks used local representations on
their pools of input and output units. Strings were presented by activating one of 6
units in each of 8 pools of units, each corresponding to the 6 letters that could occur
in each of 8 positions within a string (the central dot was not represented). Edit
networks were endowed with an additional pool of 8 units corresponding to the
judgements about the grammaticality of each letter.

G String

Hidden Units

G String
            

Hidden Units

NG String

Correct G String Y/N judgement

Figure  4: Match (left panel) and Edit (right panel) networks used in Simulation Study 2.



3.2 Procedure

A total of 9 networks in each condition were trained and tested in the same manner
as described for Simulation Study 1. However, to assess performance in a way that
more closely corresponds to human performance, we followed the procedure used
by [7] so as to obtain percentages of correct classifications based on the networks’
responses. To do so, we first computed average Luce Ratios for each test string, as
described before (the activation of the nodes representing the Y/N input was not
taken into account). Next, we computed the probability that each string would be
classified as grammatical by entering its Luce Ratio in the following expression:

(1) p("grammatical") = 1/ 1 + e – k luce - T

where k is a scaling parameter, luce is the average luce ratio for the string, and T is a
threshold that was adjusted manually so as to yield equal numbers of "grammatical"
and "ungrammatical" responses. The resulting individual probabilities were then
averaged separately over grammatical and ungrammatical strings for each of the set
of networks trained under match or edit conditions to yield global endorsement rates
broken down by string type. Finally, based on these global endorsement rates, we
computed the percentages of correct classifications expected for grammatical and
ungrammatical strings in each condition.

3.3 Results

Results are shown in Figure 5. Following Shanks's analyses, Edit networks were
classified as ‘learners’ and ‘nonlearners’ on the basis of the % correct responses at
1000, 2000 and 3000 epochs. The left panel shows the percentage of novel
grammatical and ungrammatical strings that were endorsed by the networks as
grammatical. The figure clearly shows that the Match networks fail to discriminate
between G and NG strings, endorsing about 57% of each as grammatical. Edit
Nonlearner networks perform better for most of the training period, but eventually
likewise end up failing to discriminate between G and NG strings. In contrast, Edit
Learner networks very quickly discriminate between G and NG strings, eventually
endorsing about 57% of grammatical strings as grammatical, and correctly rejecting
about 52% of the ungrammatical strings. The right panel of Figure 4 shows these
data in a more compact form, representing the percentage of correct classifications
produced by each type of network. Edit learner networks manage to achieve 57% of
correct classifications overall. This result is well in line with standard results in the
artificial grammar learning literature, but falls far short of the 95% correct
classifications reported by [11]. Further manipulations of the simulation parameters
and architecture will explore the extent to which this significant discrepancy can be
reduced, but at this point, one can nevertheless conclude the following: First, the
simulations were successful in showing that training the networks under "match"
conditions indeed results in their failing to learn the biconditional grammar. Mere
exposure to grammatical instances of biconditional strings does not seem to be



sufficient for the auto-associator networks to become sensitive to the structure of the
grammar. Second, we observed, like [11], that some Edit networks fail to learn
while others succeed. Third, the simulations again suggest, consistently with
Simulation Study 1, that biconditional grammars can be learned to some extent

through purely associative learning mechanisms. We discuss the implications of
these findings in the general discussion that follows.

4.  General Discussion

The goal of this paper was to explore the extent to which simple networks can learn
about biconditional grammars. These grammars, in contrast to typical finite-state
grammars, cannot be learned based on surface similarity, to the extent that neither
memorized instances or fragments of the training strings contain cues about the
grammatical status of a test item. Our main finding is that simple networks such as
the SRN or some of the auto-associators networks used in Simulation Study 2 can
actually learn to discriminate between novel grammatical and ungrammatical
instances of biconditonal grammar strings. This outcome does not entail that rule-
based learning never occurs (as it obviously does for some Ss in Shanks et al.'s
experiments), but simply (1) that biconditional grammars might not address all the
issues involved in efforts to dissociate rule-based vs. memory-based learning
processes in the implicit learning literature, and (2) that abstraction might, at least on
the larger portion of a representational continuum extending from pure instance-
based representations to fully abstract, propositional representations, be a graded
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Figure 5: Left panel: Classification performance, plotted separately for grammatical (filled
symbols) and ungrammatical (open symbols) strings, and for match (diamonds), non-learning
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dimension. In this respect, connectionist models are particularly striking examples of
the graded character of abstraction, to the extent that their internal representations
can span most of the underlying continuum depending on task demands. Hence,
while genuine abstraction may ultimately involve dedicated mechanisms closely tied
to awareness and language, we believe that simple learning mechanisms based on
functional similarity are often surprisingly powerful in the critical steps of
developing ensembles of relevant sub-symbolic representations upon which further
processes can then operate.
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