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Abstract: Human cognition is unique in the way in which it relies on combinatorial (or 
compositional) structures. Language provides ample evidence for the existence of combinatorial 
structures, but they can also be found in visual cognition. To understand the neural basis of 
human cognition, it is therefore essential to understand how combinatorial structures can be 
instantiated in neural terms. In his recent book on the foundations of language, Jackendoff 
described four fundamental problems for a neural instantiation of combinatorial structures: the 
massiveness of the binding problem, the problem of 2, the problem of variables and the 
transformation of combinatorial structures from working memory to long-term memory. This 
paper aims to show that these problems can be solved by means of neural ‘blackboard’ 
architectures. For this purpose, a neural blackboard architecture for sentence structure is 
presented. In this architecture, neural structures that encode for words are temporarily bound in a 
manner that preserves the structure of the sentence. It is shown that the architecture solves the 
four problems presented by Jackendoff. The ability of the architecture to instantiate sentence 
structures is illustrated with examples of sentence complexity observed in human language 
performance. Similarities exist between the architecture for sentence structure and blackboard 
architectures for combinatorial structures in visual cognition, derived from the structure of the 
visual cortex. These architectures are briefly discussed, together with an example of a 
combinatorial structure in which the blackboard architectures for language and vision are 
combined. In this way, the architecture for language is grounded in perception. Perspectives and 
potential developments of the architectures are discussed.   
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Short Abstract: Human cognition relies on combinatorial (compositional) structures. A neural 
instantiation of combinatorial structures is faced with four fundamental problems (Jackendoff, 
2002): the massiveness of the binding problem, the problem of 2, the problem of variables and the 
transformation of combinatorial structures from working memory to long-term memory. This 
paper presents neural blackboard architectures for sentence structure and combinatorial structures 
in visual cognition, and it shows how these architectures solve the problems discussed by 
Jackendoff. Performance of each architecture is illustrated with examples and simulations. 
Similarities between the sentence architecture and the architectures for combinatorial structures in 
visual cognition are discussed.   
 
Keywords: Binding, blackboard architectures, combinatorial structure, compositionality, 
language, dynamic system, neurocognition, sentence complexity, sentence structure, working 
memory, variables, vision   
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1. Introduction 

Human cognition is unique in the manner in which it processes and produces complex 

combinatorial (or compositional) structures (e.g., Anderson 1983; Newell 1990; Pinker 

1998). Therefore, to understand the neural basis of human cognition, it is essential to 

understand how combinatorial structures can be instantiated in neural terms. However, 

combinatorial structures present particular challenges to theories of neurocognition 

(Marcus 2001), which are not always recognized in the cognitive neuroscience 

community (Jackendoff 2002).  

A prominent example of these challenges is given by the neural instantiation (in 

theoretical terms) of linguistic structures. In his recent book on the foundations of 

language, Jackendoff (2002; see also Jackendoff in press) analyzed the most important 

theoretical problems that the combinatorial and rule-based nature of language presents to 

theories of neurocognition. He summarized the analysis of these problems under the 

heading of ‘four challenges for cognitive neuroscience’ (pp. 58-67). As recognized by 

Jackendoff, these problems do not only arise with linguistic structures, but with 

combinatorial cognitive structures in general.  

This paper aims to show that neural ‘blackboard’ architectures can provide an 

adequate theoretical basis for a neural instantiation of combinatorial cognitive structures. 

In particular, we will discuss how the problems presented by Jackendoff (2002) can be 

solved in terms of a neural blackboard architecture of sentence structure. We will also 

discuss the similarities between the neural blackboard architecture of sentence structure 

and neural blackboard architectures of combinatorial structures in visual cognition and 

visual working memory (Van der Velde 1997; Van der Velde & de Kamps 2001; 2003). 

To begin with, we will first outline the problems described by Jackendoff (2002) in 

more detail. This presentation is followed by a discussion of the most important solutions 

that have been offered thus far to meet some of these challenges. These solutions are 

based on either synchrony of activation or on recurrent neural networks1.  

 

2. Four challenges for cognitive neuroscience 

The four challenges for cognitive neuroscience presented by Jackendoff (2002, see also 

Marcus 2001) consists of: the massiveness of the binding problem that occurs in 
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language, the problem of multiple instances (or the ‘problem of 2’), the problem of 

variables, and the relation between binding in working memory and binding in long-term 

memory. We will discuss the four problems in turn.  

 

2.1. The massiveness of the binding problem 

In neuroscience, the binding problem concerns the way in which neural instantiations of 

parts (constituents) can be related (bound) temporarily in a manner that preserves the 

structural relations between the constituents. Examples of this problem can be found in 

visual perception. Colors and shapes of objects are partly processed in different brain 

areas, but we perceive objects as a unity of color and shape. Thus, in a visual scene with a 

green apple and a red orange, the neurons that code for green have to be related 

(temporarily) with the neurons that code for apple, so that the confusion with a red apple 

(and a green orange) can be avoided.  

In the case of language, the problem is illustrated in figure 1. Assume that words like 

cat, chases and mouse each activate specific neural structures, such as the ‘word 

assemblies’ discussed by Pulvermüller (1999). The problem is how the neural structures 

or word assemblies for cat and mouse can be bound to the neural structure or word 

assembly of the verb chases, in line with the thematic roles (or argument structure) of the 

verb. That is, how cat and mouse can be bound to the role of agent and theme of chases 

in the sentence The cat chases the mouse, and to the role of theme and agent of chases in 

the sentence The mouse chases the cat. 

A potential solution for this problem is illustrated in figure 1. It consists of 

specialized neurons (or populations of neurons) that are activated when the strings cat 

chases mouse (figure 1b) or mouse chases cat (figure 1c) are heard or seen. Each neuron 

has the word assemblies for cat, mouse and chases in its ‘receptive field’ (illustrated with 

the cones in figures 1b and 1c). Specialized neural circuits could activate one neuron in 

the case of cat chases mouse and the other neuron in the case of mouse chases cat, by 

using the difference in temporal word order in both strings. Circuits of this kind can be 

found in the case of motion detection in visual perception (e.g., Hubel 1995). For 

instance, the movement of a vertical bar that sweeps across the retina in the direction 
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from A to B can be detected by using the difference in activation time (onset latency) 

between the ganglion cells in A and B.   

 

 

Figure 1. (a). Two illustrations of neural structures (‘neural word assemblies’) activated by the 
words cat, chases and mouse. Bottom: An attempt to encode sentence structures with specialized 
‘sentence’ neurons. In (b), a ‘sentence’ neuron has the assemblies for the words cat, chases and 
mouse in its ‘receptive field’ (as indicated with the cone). The neuron is activated by a specialized 
neural circuit when the assemblies in its receptive field are active in the order cat chases mouse. 
In (c), a similar ‘sentence’ neuron for the sentence mouse chases cat.  

 

A fundamental problem with this solution in the case of language is its lack of 

productivity. Only specific and familiar sentences can be detected in this way. But any 

novel sentence of the type Noun chases Noun or, more generally, Noun Verb Noun will 

not be detected because the specific circuit (and neuron) for that sentence will be missing. 

Yet, when we learn that Dumbledore is headmaster of Hogwarts, we immediately 

understand the meaning of Dumbledore chases the mouse, even though we have never 

encountered that sentence before.  
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The difference between language and motion detection in this respect illustrates that 

the nature of these two cognitive processes is fundamentally different. In the case of 

motion detection there is a limited set of possibilities, so that it is possible (and it pays 

off) to have specialized neurons and neural circuits for each of these possibilities. But this 

solution is not feasible in the case of language. Linguists typically describe language in 

terms of its unlimited combinatorial productivity. Words can be combined into phrases, 

which in turn can be combined into sentences, so that arbitrary sentence structures can be 

filled with arbitrary arguments (e.g., Webelhuth 1995; Sag & Wasow 1999; Chomsky 

2000; Pullum & Scholz 2001; Jackendoff 2002; Piattelli-Palmarini 2002). In theory, an 

unlimited amount of sentences can be produced in this way, which excludes the 

possibility of having specialized neurons and circuits for each of these sentences.   

However, unlimited (recursive) productivity is not necessary to make a case for the 

combinatorial nature of language, given the number of sentences that can be produced or 

understood. For instance, the average English-speaking 17-year-old knows more than 

60.000 words (Bloom 2000). With this lexicon, and with a limited sentence length of 20 

words or less, one can produce a set of sentences in natural language in the order of 1020 

or more (Miller 1967; Pinker 1998). A set of this kind can be characterized as a 

‘performance set’ of natural language, in the sense that (barring a few selected examples) 

any sentence from this set can be produced or understood by a normal language user. 

Such a performance set is not unlimited, but it is of ‘astronomical’ magnitude (e.g., 1020 

exceeds the estimated lifetime of the universe expressed in seconds). By consequence, 

most sentences in this set are sentences that we have never heard or seen before. Yet, 

because of the combinatorial nature of language, we have the ability to produce and 

understand arbitrary sentences from a set of this kind.  

Hence, the set of possibilities that we can encounter in the case of language is 

unlimited in any practical sense. This precludes a solution of the binding problem in 

language in terms of specialized neurons and circuits. Instead, a solution is needed that 

depends on the ability to bind arbitrary arguments to the thematic roles of arbitrary verbs, 

in agreement with the structural relations expressed in the sentence. Moreover, the 

solution has to satisfy the massiveness of the binding problem as it occurs in language, 

which is due to the often complex and hierarchical nature of linguistic structures. For 
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instance, in the sentence The cat that the dog bites chases the mouse, the noun cat is 

bound to the role of theme of the verb bites, but it is bound to the role of agent of the verb 

chases. In fact, the whole phrase The cat that the dog bites is bound to the role of agent of 

the verb chases (with cat as the head of the phrase). Each of these specific bindings has to 

be satisfied in an encoding of this sentence.  

 

 

 

2.2. The problem of 2 

The second problem presented by Jackendoff (2002) is the problem of multiple instances, 

or the ‘problem of 2’. Jackendoff illustrates this problem with the sentence The little star 

is beside a big star2. The word star occurs twice in this sentence, the first time related 

with the word little and the second time related with the word big. The problem is how in 

neural terms the two occurrences of the word star can be distinguished, so that star is 

first bound with little and then with big, without creating the erroneous binding of little 

big star. The problem of 2 results from the assumption that any occurrence of a given 

word will result in the activation of the same neural structure (e.g., its word assembly, as 

illustrated in figure 1). But if the second occurrence of a word only results in the 

reactivation of a neural structure that was already activated by the first occurrence of that 

word, the two occurrences of the same word are indistinguishable (Van der Velde 1999).  

Perhaps the problem could be solved by assuming that there are multiple neural 

structures that encode for a single word. The word star could then activate one neural 

structure in little star and a different one in big star, so that the bindings little star and big 

star can be encoded without creating little big star. However, this solution would entail 

that there are multiple neural structures for all words in the lexicon, perhaps even for all 

potential positions a word could have in a sentence (Jackendoff 2002).  

More importantly even, this solution disrupts the unity of word encoding as the basis 

for the meaning of a word. For instance, the relation between the neural structures for cat 

and mouse in cat chases mouse could develop into the neural basis for the long-term 

knowledge (‘fact’) that cats chase mice. Similarly, the relation between the neural 

structures for cat and dog in dog bites cat could form the basis of the fact that dogs fight 
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with cats. But if the neural structure for cat (say, cat1) in cat1 chases mouse is different 

from the neural structure for cat (say, cat2) in dog bites cat2, then these two facts are 

about different kinds of animals. 

 

2.2.1. The problem of 2 and the symbol grounding problem    

It is interesting to look at the problem of 2 from the perspective of the symbol grounding 

problem that occurs in cognitive symbol systems. Duplicating symbols is easy in a 

symbol system. However, in a symbol system, one is faced with the problem that 

symbols are arbitrary entities (e.g., strings of bits in a computer), which therefore have to 

be interpreted to provide meaning to the system. That is, symbols have to be ‘grounded’ 

in perception and action if symbol systems are to be viable models of cognition (Harnad 

1991; Barsalou 1999).  

Grounding in perception and action can be achieved with neural structures such as the 

word assemblies illustrated in figure 1. In line with the idea of neural assemblies 

proposed by Hebb (1949), Pulvermüller (1999) argued that words activate neural 

assemblies, distributed over the brain (as illustrated with the assemblies for the words cat, 

mouse and chases in figure 1). One could imagine that these word assemblies have 

developed over time by means of a process of association. Each time a word was heard or 

seen, certain neural circuits would have been activated in the cortex. Over time, these 

circuits will be associated, which results in an overall cell assembly that reflects the 

meaning of that word.  

But, as argued above, word assemblies are faced with the problem of 2. Thus, it 

seems that the problem of 2 and the symbol grounding problem are complementary 

problems. To provide grounding, the neural structure that encodes for a word is 

embedded in the overall network structure of the brain. But this makes it difficult to 

instantiate a duplication of the word, and thus to instantiate even relatively simple 

combinatorial structures such as The little star is beside a big star. Conversely, 

duplication is easy in symbol systems (e.g., if ‘1101’ = star, then one would have The 

little 1101 is beside a big 1101, with little and big each related to an individual copy of 

1101). But symbols can be duplicated easily because they are not embedded in an overall 

structure that provides the grounding of the symbol3. 
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2.3. The problem of variables 

The knowledge of specific facts can be instantiated on the basis of specialized neural 

circuits, in line with those illustrated in figure 1. But knowledge of systematic facts, such 

as the fact that own(y,z) follows from give(x,y,z), cannot be instantiated in this way, that 

is, in terms of a listing of all specific instances of the relation between the predicates own 

and give (e.g., from give(John, Mary, book) it follows that own(Mary, book); from 

give(Mary, John, pen) it follows that own(John, pen); etc.).  

Instead, the derivation that own(Mary, book) follows from give(John, Mary, book) is 

based on the rule that own(y,z) follows from give(x,y,z), combined with the binding of 

Mary to the variable y and book to the variable z. Marcus (2001) analyzed a wide range of 

relationships that can be described in this way. They are all characterized by the fact that 

an abstract rule-based relationship, expressed in terms of variables, is used to determine 

relations between specific entities (e.g., numbers, words, objects, individuals). 

The use of rule-based relationships with variable binding provides the basis for the 

systematic nature of cognition (Fodor & Pylyshyn 1988). Cognition is systematic in the 

sense that one can learn from specific examples and apply that knowledge to all examples 

of the same kind. A child will indeed encounter only specific examples (e.g., that when 

John gives Mary a book, it follows that Mary owns the book) and yet it will learn that 

own(y,z) follows from all instances of the kind give(x,y,z). In this way, the child is able to 

handle novel situations, such as the derivation that own(Harry, broom) follows from 

give(Dumbledore, Harry, broom). 

The importance of rule-based relationships for human cognition raises the question of 

how relationships with variable binding can be instantiated in the brain. 

 

2.4. Binding in working memory versus long-term memory 

Working memory in the brain is generally assumed to consist of a sustained form of 

activation (e.g, Amit 1989; Fuster 1995). That is, information is stored in working 

memory as long as the neurons that encode the information remain active. In contrast, 

long-term memory results from synaptic modification, such as long-term potentiation 

(LTP). In this way, the connections between neurons are modified (e.g., enhanced). When 
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some of the neurons are then reactivated, they will reactivate the others neurons as well. 

The neural word assemblies, illustrated in figure 1, are formed by this process.  

Both forms of memory are related in the sense that information in one form of 

memory can be transformed into information in the other form of memory. Information 

could be stored in a working memory (which could be specific for a given form of 

information, such as sentence structures) before it is stored in long-term memory. 

Conversely, information in long-term memory can be reactivated and stored in working 

memory. This raises the question of how the same combinatorial structure can be 

instantiated both in terms of neural activation (as found in working memory or in 

stimulus dependent activation) and in terms of synaptic modification, and how these 

different forms of instantiation can be transformed into one another. 

 

2.5. Overview 

It is clear that the four problems presented by Jackendoff (2002) are interrelated. For 

instance, the problem of 2 also occurs in rule-based derivation with variable binding, the 

massiveness of the binding problem is found in combinatorial structures stored in 

working memory and in combinatorial structures stored in long-term memory. Therefore, 

a solution of these problems has to be an integrated one that solves all four problems 

simultaneously. In this paper, we will discuss how all four problems can be solved in 

terms of neural blackboard architectures in which combinatorial structures can be 

instantiated.   

First, however, we will discuss two alternatives for a neural instantiation of 

combinatorial structures: the use of synchrony of activation (e.g., Von der Malsburg 

1987) as a mechanism for binding constituents in combinatorial structures, and the use of 

recurrent neural networks to process combinatorial structures, in particular sentence 

structures.  

 

3. Combinatorial structures with synchrony of activation 

An elaborate example of a neural instantiation of combinatorial structures in which 

synchrony of activation is used as a binding mechanism is found in the model of reflexive 

reasoning presented by Shastri and Ajjanagadde (1993). In their model, synchrony of 
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activation is used to show how a known fact such as John gives Mary a book can result in 

an inference such as Mary owns a book.  

The proposition John gives Mary a book is encoded by a ‘fact node’ that detects the 

respective synchrony of activation between the nodes for John, Mary and book, and the 

nodes for giver, recipient and give-object, which encode for the thematic roles of the 

predicate give(x,y,z). In a simplified manner, the reasoning process begins with the query 

own(Mary, book)? (i.e., does Mary own a book?). The query results in the respective 

synchronous activation of the nodes for owner and own-object of the predicate own(y,z) 

with the nodes for Mary and book. In turn, the nodes for recipient and give-object of the 

predicate give(x,y,z) are activated by the nodes for owner and own-object, such that 

owner is in synchrony with recipient and own-object is in synchrony with give-object. As 

a result, the node for Mary is in synchrony with the node for recipient and the node for 

book is in synchrony with the node for give-object. This allows the fact node for John 

gives Mary a book to become active, which produces the affirmative answer to the query.  

A first problem with a model of this kind is found in a proposition like John gives 

Mary a book and Mary gives John a pen. With synchrony of activation as a binding 

mechanism, a confusion arises between John and Mary in their respective roles of giver 

and recipient in this proposition. In effect, the same pattern of activation will be found in 

the proposition John gives Mary a pen and Mary gives John a book. Thus, with 

synchrony of activation as a binding mechanism, both propositions are indistinguishable. 

It is not difficult to see the problem of 2 here. John and Mary occur twice in the 

proposition, but in different thematic roles. The simultaneous but distinguishable binding 

of John and Mary with different thematic roles cannot be achieved with synchrony of 

activation.  

To solve this problem, Shastri and Ajjanagadde allowed for a duplication (or 

multiplication) of the nodes for the predicates. In this way, the whole proposition John 

gives Mary a book and Mary gives John a pen is partitioned into the two elementary 

propositions John gives Mary a book and Mary gives John a pen. To distinguish between 

the propositions, the nodes for the predicate give(x,y,z) are duplicated. Thus, there are 

specific nodes for, say, give1(x,y,z) and give2(x,y,z), with give1(x,y,z) related with John 

gives Mary a book and give2(x,y,z) related with Mary gives John a pen. Furthermore, for 
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the reasoning process to work, the associations between predicates have to be duplicated 

as well. Thus, the node for give1(x,y,z) has to be associated with a node for, say, own1(y,z) 

and the node for give2(x,y,z) has to be associated with a node for own2(y,z).  

This raises the question of how these associations can be formed simultaneously 

during learning. During its development, a child will learn from specific examples. Thus, 

it will learn that, when John gives Mary a book, it follows that Mary owns the book. In 

this way, the child will form an association between the nodes for give1(x,y,z) and 

own1(y,z). But the association between the node for give2(x,y,z) and own2(y,z) would not 

be formed in this case, because these nodes are not activated with John gives Mary a 

book and Mary owns the book. Thus, when the predicate give(x,y,z) is duplicated into 

give1(x,y,z) and give2(x,y,z), the systematicity between John gives Mary a book and Mary 

gives John a pen is lost.  

 

3.1. Nested structures with synchrony of activation 

The duplication solution discussed above fails with nested (or hierarchical) propositions. 

For instance, the proposition Mary knows that John knows Mary cannot be partitioned 

into two propositions Mary knows and John knows Mary, because the entire second 

proposition is the y argument of knows(Mary, y). Thus, the fact node for John knows 

Mary has to be in synchrony with the node for know-object of the predicate know(x,y). 

The fact node for John knows Mary will be activated because John is in synchrony with 

the node for knower and Mary is in synchrony with the node for know-object. However, 

the fact node for Mary knows Mary, for instance, will also be activated in this case, 

because Mary is in synchrony with both knower and know-object in the proposition Mary 

knows that John knows Mary. Thus, the proposition Mary knows that John knows Mary 

cannot be distinguished from the proposition Mary knows that Mary knows Mary.  

As this example shows, synchrony as a binding mechanism is faced with the ‘one-

level’ restriction (Hummel & Holyoak, 1993), i.e., synchrony can only encode bindings 

at one level of abstraction or hierarchy at a time.  
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3.2. Productivity with synchrony of activation 

A fundamental problem with the use of synchrony of activation as a binding mechanism 

in combinatorial structures is its lack of productivity. Synchrony of activation has to be 

detected to process the information that it encodes (Dennett 1991). In Shastri and 

Ajjanagadde’s model, fact nodes (e.g., the fact node for John gives Mary a book) detect 

the synchrony of activation between arguments and thematic roles. But fact nodes, and 

the circuits that activate them, are similar to the specialized neurons and circuits 

illustrated in figure 1. It is excluded to have such nodes and circuits for all possible verb-

argument bindings that can occur in language, in particular for novel instances of verb-

argument binding. As a result, synchrony of activation as a binding mechanism fails to 

provide the productivity given by combinatorial structures.  

The binding problems as analyzed here, the inability to solve the problem of 2, the 

inability to deal with nested structures (the ‘one-level restriction’), and the lack of 

systematicity and productivity, are typical for the use of synchrony of activation as a 

binding mechanism (Van der Velde & de Kamps 2002a). The lack of productivity, given 

by the need for ‘synchrony detectors’, is perhaps the most fundamental problem for 

synchrony as a mechanism for binding constituents in combinatorial structures. True 

combinatorial structures provide the possibility to answer binding questions about novel 

combinations (e.g., novel sentences) never seen or heard before. Synchrony detectors (or 

conjunctive forms of encoding in general) will be missing for novel combinatorial 

structures, which precludes the use of synchrony as a binding mechanism for these 

structures. Synchrony as a binding mechanism would seem to be restricted to structures 

for which conjunctive forms of encoding exist, and which satisfy the ‘one-level 

restriction’ (Van der Velde & de Kamps 2002a).   

 

4. Processing linguistic structures with ‘simple’ recurrent neural networks 

The argument that combinatorial structures are needed to obtain productivity in cognition 

has been questioned (Elman 1991; Churchland 1995, Port & Van Gelder 1995). In this 

view, productivity in cognition can be obtained in a ‘functional’ manner (‘functional 

compositionality’, Van Gelder 1990), without relying on combinatorial structures. The 

most explicit models of this kind deal with sentence structures.  
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A first example is the neural model of thematic role assignment in sentence 

processing presented by McClelland and Kawamoto (1986). However, the model was 

restricted to one particular sentence structure, and it could not represent different tokens 

of the same type, e.g., dogagent and dogtheme in dog chases dog. St.John and McClelland 

(1990) presented a more flexible model based on a recurrent network. The model learned 

pre-segmented single-clause sentences and assigned thematic roles to the words in the 

sentence, but it could not handle more complex sentences, like sentences with embedded 

clauses.  

A model that processed embedded clauses was presented by Miikkulainen (1996). It 

consisted of three parts: a parser, a segmenter and a stack. The segmenter (a feedforward 

network) divided the input sentence into clauses (by detecting clause boundaries). The 

stack memorized the beginning of a matrix clause, e.g., girl in The girl, who liked the 

boy, saw the boy. The parser that assigned thematic roles (agent, act, patient) to the words 

in a clause. All clauses, however, were two or three word clauses, because the output 

layer of the parser had three nodes.  

The ‘simple’ recurrent neural networks (RNNs for short) play an important role in the 

attempt to process sentence structures without relying on combinatorial structures (Elman 

1991; Miikkulainen 1996; Palmer-Brown et al. 2002). They consist of a multilayer 

feedforward network, in which the activation pattern in the hidden (middle) layer is 

copied back to the input layer, as part of the input to the network in the next learning step. 

In this way, RNNs are capable of processing sequential structures. Elman (1991) used 

RNNs in a word prediction task. For instance, with Boys who chase boy feed cats, the 

network had to predict that after Boys who chase a noun would follow, and that after 

Boys who chase boy a plural verb would occur. The network was trained with sentences 

from a language generated with a small lexicon and a basic phrase grammar. The network 

succeeded in this task, both for the sentences that were used in the training session and 

with other sentences from the same language.  

The RNNs used by Elman (1991) could not answer specific binding questions like 

"Who feed cats?”. Thus, the network did not bind specific words to their specific roles in 

the sentence structure. Nevertheless, RNNs seem capable of processing aspects of 

sentence structures in a noncombinatorial manner. But RNNs model languages derived 
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from small vocabularies (in the order of 10 to 100 words). In contrast, the vocabulary of 

natural language is huge, which results in an ‘astronomical’ productivity, even with 

limited sentence structures (e.g., sentences with 20 words or less, see section 2.1.). We 

will discuss ‘combinatorial’ productivity with RNNs in more detail.  

 

4.1. Combinatorial productivity with RNNs used in sentence processing  

Elman (1991) used a language in the order of 105 sentences, based on a lexicon of about 

20 words. In contrast, the combinatorial productivity of natural language is in the order of 

1020 sentences or more, based on a lexicon of 105 words. A basic aspect of such a 

combinatorial productivity is the ability to insert words from one familiar sentence 

context into another. For instance, if one learns that Dumbledore is headmaster of 

Hogwarts, one can also understand Dumbledore chases the mouse even though this 

specific sentence has not been encountered before. To approach the combinatorial 

productivity of natural language, RNNs should have this capability as well.  

We investigated this question by testing the ability of RNNs to recognize a sentence 

consisting of a new combination of familiar words in familiar syntactic roles (Van der 

Velde et al. 2004a). In one instance, we used sentences like dog hears cat, boy sees girl, 

dog loves girl and boy follows cat to train the network on the word prediction task. The 

purpose of the training sentences was to familiarize the RNNs with dog, cat, boy and girl 

as arguments of verbs. Then, a verb like hears from dog hears cat was inserted into 

another trained sentence like boy sees girl to form the test sentence boy hears girl, and 

the networks were tested on the prediction task for this sentence.  

To strengthen the relations between boy, hears and girl, we also included training 

sentences like boy who cat hears obeys John and girl who dog hears likes Mary. These 

sentences introduce boy and hears, and girl and hears, in the same sentence context 

(without using boy hears and hears girl)4. In fact, girl is the object of hears in girl who 

dog hears likes Mary, as in the test sentence boy hears girl.  

However, although the RNNs learned the training sentences to perfection, they failed 

with the test sentences. Despite the ability to process boy sees girl and dog hears cat, and 

even girl who dog hears likes Mary, they could not process boy hears girl. The behavior 

of the RNNs with the test sentence boy hears girl was similar to the behavior in a ‘word 
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salad’ condition, which consisted of random word strings based on the words used in the 

training session. In this ‘word salad’ condition the RNNs predicted the next word on the 

basis of direct word-word associations, determined by all two-word combinations found 

in the training sentences. The similarity between ‘word salads’ and the test sentence boy 

hears girl suggests that RNNs resort to word-word associations when they have to 

process novel sentences composed of familiar words in familiar grammatical structures.  

The results of these simulations indicate that RNNs of Elman (1991) do not posses a 

minimal form of the combinatorial productivity underlying human language processing. 

It is important to note that this lack of combinatorial productivity is not just a negative 

result, that resulted from the learning algorithm used. The training sentences were learned 

to perfection. With another algorithm, these sentences could, at best, be learned to the 

same level of perfection. Furthermore, the crucial issue here is not learning, but the 

contrast in behavior exhibited by the RNNs in these simulations. The RNNs were able to 

process (‘understand’) boy sees girl and dog hears cat, and even girl who dog hears likes 

Mary, but not boy hears girl. This contrast in behavior is not found in humans, regardless 

of the learning procedure used. The reason is the systematicity of the human language 

system. If you understand boy sees girl, dog hears cat and girl who dog hears likes Mary, 

you cannot but understand boy hears girl. Any failure to do so would be regarded as 

pathological5.  

 

4.2. Combinatorial productivity versus recursive productivity 

The issue of combinatorial productivity is a crucial aspect of natural language processing, 

which is sometimes confused with the issue of recursive productivity. Combinatorial 

productivity concerns the productivity that results from combining a large lexicon with 

even limited syntactical structures. Recursive productivity deals with the issue of 

processing more complex syntactic structures, such as (deeper) center-embeddings.  

The difference can be illustrated with the ‘long short-term memory recurrent 

networks’ (LSTMs). LSTMs outperform standard RNNs on recursive productivity (Gers 

& Schmidhuber, 2001). Like humans, RNNs have limited recursive productivity, but 

LSTMs do not. They can, e.g., handle context-free languages like anbmBmAn for arbitrary 
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(n,m). However, the way in which they do this excludes their ability to handle 

combinatorial productivity.  

A LSTM is a RNN in which hidden units are replaced with "memory blocks" of units, 

which develop into counters during learning. With anbmBmAn , the network develops two 

counters, one for n’s and one for the m’s. Thus, the network counts whether an matches 

An and bm matches Bm. This makes sense because all sentences have the same words, i.e., 

they are all of the form anbmBmAn. Sentences differ only in the value of n and/or m. So, 

the network can learn that it has to count the n’s and m’s.  

But this procedure makes no sense in a natural language. A sentence mouse chases 

cat is fundamentally different from the sentence cat chases mouse, even though they are 

both Noun-Verb-Noun sentences. How could a LSTM capture this difference? Should the 

model, e.g., count the number of times that mouse and cat appear in any given sentence? 

Consider the number of possibilities that would have to be dealt with, given a lexicon of 

60.000 words, instead of four words as in anbmBmAn . Furthermore, how would deal with 

novel sentences, like Dumbledore chases mouse? Could it have developed counters to 

match Dumbledore and mouse if it has never seen these words in one sentence before?  

This example illustrates that combinatorial productivity is an essential feature of 

natural language processing, but virtually non-existent in artificial languages. The ability 

to process complex artificial languages does not guarantee the ability to process 

combinatorial productivity as found in natural language. 

 

 

4.3. RNNs and the massiveness of the binding problem 

Yet RNNs are capable of processing learned sentences like girl who dog hears obeys 

Mary, and other complex sentence structures. Perhaps RNNs could be used to process 

sentence structures in abstract terms, i.e., in terms of Nouns (N) and Verbs (V). Thus, N-

who-N-V-V-N instead of girl who dog hears obeys Mary.  

However, sentences like cat chases mouse and mouse chases cat are N-V-N sentences, 

and thus indistinguishable for these RNNs. But these sentences convey very different 

messages, which humans can understand. In particular, humans can answer ‘who does 
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what to whom’ questions for these sentences, which cannot be answered using the N-V-N 

structure processed by these RNNs.  

This raises two important questions for these RNNs. First, how is the difference 

between cat chases mouse and mouse chases cat instantiated in neural terms, given that 

this cannot be achieved with RNNs? Second, how can the structural N-V information 

processed by these RNNs be related with the specific content of each sentence? This is a 

‘binding’ problem, because it requires that, e.g., the first N in N-V-N is bound to cat in the 

first sentence and to mouse in the second sentence.  

However, even if these problems are solved, sentence processing in terms of N-V 

strings is still faced with serious difficulties, as illustrated with the following sentences: 

 

The cat that the dog that the boy likes bites chases the mouse   (1) 

The fact that the mouse that the cat chases roars surprises the boy  (2) 

 

The abstract (N-V) structure of both sentences is the same: N-that-N-that-N-V-V-V-N. 

Yet, there is a clear difference in complexity between these sentences (Gibson 1998). 

Sentences with complement clauses (2) are much easier to process than sentences with 

center-embeddings (1). This difference can be explained in terms of the dependencies 

within the sentence structures. In (1) the first noun is related with the second verb as its 

object (theme) and with the third verb as its subject (agent). In (2), the first noun is only 

related with the third verb (as its subject). This difference in structural dependency is not 

captured in the sequence N-that-N-that-N-V-V-V-N.  

The difference between sentences (1) and (2) again illustrate the massiveness of the 

binding problem that occurs in linguistic structures. Words and clauses have to be bound 

correctly to other words and clauses in different parts of the sentence, in line with the 

hierarchical structure of a sentence. These forms of binding are beyond the capacity of 

language processing with RNNs. Similar limitations of RNNs are found with the problem 

of variables (Marcus 2001).   
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5. Blackboard architectures of combinatorial structures  

A combinatorial structure consists of parts (constituents) and their relations. The lack of 

combinatorial productivity with RNNs illustrates a failure to encode the individual parts 

(words) of a combinatorial structure (sentence) in a productive manner. In contrast, 

synchrony of activation fails to instantiate even moderately complex relations in the case 

of variable binding. These examples show that neural models of combinatorial structures 

can only succeed if they provide a neural instantiation of both the parts and the relations 

of combinatorial structures.  

A blackboard architecture provides a way to instantiate the parts and the relations of 

combinatorial structures (e.g., Newman et al. 1997). A blackboard architecture consists of 

a set of specialized processors (‘demons’, Selfridge 1959) that interact with each other 

using a blackboard (‘workbench’, ‘bulletin board’). Each processor can process and 

modify the information stored on the blackboard. In this way, the architecture exceeds the 

ability of each individual processor. For language, one could have processors for the 

recognition of words and for the recognition of specific grammatical relations. These 

processors could then interact by using a blackboard to process a sentence. With the 

sentence The little star is beside a big star, the word processors could store the symbol 

for star on the blackboard, first in combination with the symbol for little, and then in 

combination with the symbol for big. Other processors could determine the relation 

(beside) between these two copies of the symbol for star. Jackendoff (2002) discusses 

blackboard architectures for phonological, syntactic and semantic structures.  

Here, we will propose and discuss a neural blackboard architecture for sentence 

structure based on neural assemblies. To address Jackendoff’s (2002) problems, neural 

word assemblies are not copied in this architecture. Instead, they are temporarily bound 

to the neural blackboard, in a manner that distinguishes between different occurrences of 

the same word, and that preserves the relations between the words in the sentence. For 

instance, with the sentence The cat chases the mouse, the neural assemblies for cat and 

mouse are bound to the blackboard as the subject (agent) and object (theme) of chases.  

With the neural structure of The cat chases the mouse, the architecture can produce 

correct answers to questions like “Who chases the mouse?” or “Whom does the cat 

chase?”. These questions can be referred to as ‘binding questions’, because they test the 
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ability of an architecture to ‘bind’ familiar parts in a (potentially novel) combinatorial 

structure. A neural instantiation of a combinatorial structure like The cat chases the 

mouse fails if it cannot produce the correct answers to such questions. In language, 

binding questions typically query ‘who does what to whom’ information, which is 

characteristic of information provided by a sentence (Pinker 1994; Calvin & Bickerton 

2000). Aphasic patients, for instance, are tested on their language abilities using non-

verbal ‘who does what to whom’ questions (Caplan 1992). In general, the ability to 

answer binding questions is of fundamental importance for cognition, because it is related 

with the ability to select information needed for purposive action (Van der Heijden & van 

der Velde 1999).  

 

6. A neural blackboard architecture of sentence structure 

In the architecture, words are encoded in terms of neural ‘word’ assemblies, in line with 

Pulvermüller (1999), as illustrated in figure 1. It is clear that the relations between the 

words in a sentence cannot be encoded by direct associations between word assemblies. 

For instance, the association cat-chases-mouse does not distinguish between The cat 

chases the mouse and The mouse chases the cat.  

However, relations between words can be encoded, and Jackendoff ‘s problems can 

be solved, if word assemblies are embedded in a neural architecture in which structural 

relations can be formed between these assemblies. Such an architecture can be formed by 

combining word assemblies with ‘structure’ assemblies.  

A word assembly is a neural structure that is potentially distributed over a large part 

of the brain, depending on the nature of the word (e.g., see Pulvermüller 1999). A part of 

that structure could be embedded in a ‘phonological’ architecture that controls the 

auditory perception and speech production related with that word. Other parts could be 

embedded in other architectures that control other forms of neural processing related with 

other aspects of that word (e.g., visual perception, semantics).  

Here, we propose that a part of a word assembly is embedded in a neural architecture 

for sentence structure, given by ‘structure’ assemblies and their relations. A word 

assembly can be associated (‘bound’) temporarily with a given structure assembly, so that 

it is (temporarily) ‘tagged’ by the structure assembly to which it is bound. A word 
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assembly can be bound simultaneously with two or more structure assemblies. The 

different structure assemblies provide different ‘tags’ for the word assembly, which 

distinguish between different ‘copies’ of the word encoded with the word assembly. 

However, the word assembly itself is not ‘copied’ or disrupted in this process, and its 

associations and relations remain intact when a word assembly is tagged by a given 

structure assembly. Thus, any ‘copy’ of a word is always ‘grounded’ (as discussed in 

section 2.2.1).  

Structure assemblies are selective. For instance, nouns and verbs bind to different 

kinds of structure assemblies. Furthermore, the internal structure of structure assemblies 

allows selective activation of specific parts within each structure assembly. Structure 

assemblies of a given kind can selectively bind temporarily to specific other structure 

assemblies, so that a (temporal) neural structure of a given sentence is created. Thus, 

structure assemblies can encode different instantiations of the same word assembly 

(solving the ‘problem of 2’), and they can bind word assemblies in line with the syntactic 

structure of the sentence.  

Binding in the architecture occurs between word assemblies and structure assemblies, 

and between structure assemblies. Binding between two assemblies derives from 

sustained (‘delay’) activity in a connection structure that links the two assemblies. This 

activity is initiated when the two assemblies are concurrently active. The delay activity is 

similar to the sustained activation found in the ‘delay period’ in working memory 

experiments (e.g., Durstewitz et al. 2000). Two assemblies are bound as long as this 

delay activity continues. 

Figure 2 illustrates the basic neural structure in the architecture of cat chases mouse. 

The structure consists of the word assemblies of cat, mouse and chases, and structure 

assemblies for noun phrases (NPs) and verb phrases (VPs), together with ‘gating circuits’ 

and ‘memory circuits’. Gating circuits are used to selectively activate specific parts 

within structure assemblies. Memory circuits are used to bind two assemblies 

temporarily. 

The assemblies for cat and mouse are bound to two different NP assemblies (N1 and 

N2), and the assembly for chases is bound a VP assembly (V1). The structure assemblies 

are bound to each other, to encode the verb-argument structure of the sentence. For this 
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purpose, each structure assembly is composed of a main assembly (Ni for NP assemblies 

and Vi for VP assemblies) and one or more subassemblies. In figure 2, the NP and VP 

assemblies have subassemblies for agent (a) and theme (t)6. To encode cat as the agent of 

chases, N1 is bound to V1 with their agent subassemblies. In turn, N2 and V1 are bound 

with their theme subassemblies, encoding mouse as the theme of chases.  

Main assemblies and subassemblies also have the ability for reverberating (‘delay’) 

activity, so that they remain active for a while after they have been activated. 

Subassemblies are connected to main assemblies with gating circuits, which control the 

flow of activation within structure assemblies. For instance, a main assembly can be 

active but its subassemblies not. Control of activation in structure assemblies is of crucial 

importance in the architecture. Before illustrating this in more detail, we will discuss the 

gating and memory circuits in the architecture. 

 

Figure 2. Illustration of the neural sentence structure of cat chases mouse in the neural blackboard 
architecture presented here. The words are encoded with the word assemblies illustrated in figure 
1 (section 2.1.). Sentence structure is encoded with ‘structure assemblies’ for noun-phrases (NP 
assemblies) and verb-phrases (VP assemblies). A structure assembly consists of a main assembly 
and a number of subassemblies, connected to the main assembly by means of gating circuits. The 
labeled subassemblies represent the thematic roles of agent (a), and theme (t). Binding between 
assemblies is achieved with active memory circuits. Here, the assembly for cat is bound to the NP 
assembly N1, the assembly for chases is bound to the VP assembly V1, and the assembly for 
mouse is bound to the NP assembly N2. N1 and V1 are bound by means of their agent 
subassemblies and V1 and N2 are bound by means of their theme subassemblies. 
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6.1. Gating and memory circuits 

A gating circuit consists of a disinhibition circuit (e.g., Gonchar and Burkhalter 1999). 

Figure 3 (left) illustrates a gating circuit in the direction from assembly X to assembly Y. 

The circuit controls the flow of activation by means of an external control signal. If X is 

active, it activates an inhibition neuron ix, which inhibits the flow of activation from X to 

Xout. When ix is inhibited by another inhibition neuron (Ix), activated by an external 

control signal, X activates Xout, and Xout activates Y. A gating circuit from Y to X operates 

in the same way. Control of activation can be direction specific. With a control signal in 

the direction from X to Y, activation will flow in this direction (if X is active), but not in 

the direction from Y to X. The symbol in figure 3 (left) will be used to represent the 

combination of gating circuits in both directions (as in figure 2).  

A memory circuit consists of a gating circuit in which the control signal results from 

a ‘delay’ assembly. Figure 3 (right) illustrates a memory circuit in the direction of X to Y. 

However, each memory circuit in the architecture consists of two such circuits in both 

directions (X to Y and Y to X). The delay assembly (that controls the flow of activation in 

both directions) is activated when X and Y are active simultaneously (see below), and it 

remains active for a while (even when X and Y are no longer active), due to the 

reverberating nature of the activation in this assembly.  
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Figure 3. Left: A gating circuit in the direction from assembly X to assembly Y, based on a 
disinhibition circuit. The large circles depict neural assemblies. The small circles depict (groups 
of) inhibitory neurons (i). A combination of two gating circuits in the directions X to Y and Y to 
X is depicted in other figures with the symbol illustrated at the bottom. Right: A memory (gating) 
circuit in the direction from assembly X to assembly Y, based on a gating circuit with a delay 
assembly for control. A combination of two memory circuits in the directions X to Y and Y to X 
is depicted in other figures with the symbols illustrated at the bottom, one for the inactive state 
and one for the active state of this combined memory circuit.  

 
A memory circuit has two possible states: active and inactive. Each state will be 

represented with the symbol in figure 3 (right). If the memory circuit is inactive, 

activation cannot flow between the assemblies it connects. If the memory circuit is active, 

activation will flow between the assemblies it connects, if one of these assemblies is 

active. In this way, an active memory circuit binds the two assemblies it connects. This 

binding lasts as long as the activation of the delay assembly in the memory circuit. The 

memory circuits in figure 2 are active, binding word assemblies and structure assemblies 

(temporarily) in line with the sentence structure.  
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6.2. Overview of the blackboard architecture  

Figure 4 illustrates the part of the architecture in which nouns can bind as arguments to 

verbs (figure 2). This part is illustrative of the overall architecture.  

 

 

Figure 4. A neural blackboard architecture for verb-argument binding. Word assemblies for verbs 
are connected to the main assemblies of VP structure assemblies by means of (initially) inactive 
memory circuits. Word assemblies for nouns are connected to the main assemblies of NP 
structure assemblies by means of (initially) inactive memory circuits. The agent (a) and theme (t) 
subassemblies of the VP and NP structure assemblies are connected by means of (initially) 
inactive memory circuits. Only subassemblies of the same kind are connected to each other. VP 
main assemblies are connected to a population of inhibitory neurons that can initiate competition 
between the VP main assemblies. Likewise for NP main assemblies.  
 

 

Each noun (word) assembly is connected to the main assembly of each NP assembly 

with an (initially inactive) memory circuit. Likewise, each verb (word) assembly is 

connected to the main assembly of each VP assembly with an (initially inactive) memory 

circuit. Main assemblies of the same kind are mutually inhibitory. Each NP and VP main 
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assembly is connected to a number of subassemblies with gating circuits. The gating 

circuits can be selectively activated by neural control circuits (not shown). For instance, 

the gating circuits between the main assemblies and the agent subassemblies can be 

activated without activating the gating circuits for the theme subassemblies. Finally, all 

subassemblies of the same kind are connected with memory circuits. For instance, each 

agent subassembly of the NP assemblies is connected to each agent subassembly of the 

VP assemblies with an (initially inactive) memory circuit. 

A new NP assembly will be activated when a new noun in a sentence is processed. 

The NP assembly is arbitrary but ‘free’, that is, not already bound to a sentence structure 

(i.e., all its memory circuits are inactive7). The active NP assembly will remain active 

until a new NP assembly is activated by the occurrence of a new noun in the sentence8. 

The selection of a VP assembly is similar.  

When a number of structure assemblies have been activated, the ones activated first 

will return to the inactive state due to the decay of delay activity in their memory circuits. 

In this way, only a subset of the structure assemblies will be concurrently active and 

‘free’ structure assemblies will always be available. As a result, a limited set of VP 

assemblies and NP assemblies is needed in this architecture. 

 

6.2.1. Connection structure for binding in the architecture 

Figure 5 (right) illustrates that the connection structure between the agent subassemblies 

in figure 4 consists of a matrix-like array of ‘columns’. Each column contains a memory 

circuit (in both directions) and the delay assembly that can activate the memory circuit. 

Each column also contains a circuit to activate the delay assembly (figure 5, left). This 

circuit is a disinhibition circuit that activates the delay assembly if the neurons Nin and 

Vin are active at the same time. These neurons are activated by the respective agent 

subassemblies of a NP assembly and a VP assembly. 

In the structure of cat chases mouse (figure 2), the NP assembly for cat (N1) is bound 

with the VP assembly for chases (V1) with their agent subassemblies. This binding 

process is illustrated in figure 5. The activated agent subassembly of the (arbitrary) NP 

assembly Nx activates the Nin neurons in a horizontal row of columns. Likewise, the 

activated agent subassembly of the (arbitrary) VP assembly Vi activates the Vin neurons 
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in a vertical row of columns. The delay assembly in the column on the intersection of 

both rows will be activated if the agent subassemblies of Nx and Vi are active 

simultaneously, which results in the binding of these agent subassemblies.  

 

Figure 5. Connection structure for the agent subassemblies in figure 4. Left: a delay assembly in a 
memory circuit (figure 3, right) is activated when the subassemblies connected by the memory 
circuit are concurrently active (using a disinhibition circuit). Right: Each agent subassembly of all 
NP assemblies is connected to each agent subassembly of all VP assemblies with a specific 
‘column’ in an array of columns. Each column consists of the memory circuits that connect both 
subassemblies, together with the circuit in figure 5 (left). The active subassembly of Nx will 
activate all Nin neurons in its horizontal row of columns. Likewise, the active subassembly of Vi 
will activate all Vin neurons in its vertical row of columns. This results in the activation of the 
delay assembly in the (combined) memory circuit in their corresponding column. Columns in 
horizontal and vertical rows are mutually inhibitory. Inhibition is initiated by active delay 
assemblies in the memory circuits.  

 

The columns within each horizontal and vertical row (figure 5, right) are mutually 

inhibitory. Inhibition is initiated by the active delay assemblies9 (figure 5, left). Thus, 

when the agent subassemblies of Nx and Vi are bound by an active memory circuit, the 

active delay assembly in their mutual column inhibits all columns in the same horizontal 
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and vertical row. This prevents a second binding of Nx with another VP assembly, or of 

Vi with another NP assembly, with agent subassemblies.  

The connection structure illustrated in figure 5 is illustrative of every connection 

structure in the architecture in which assemblies are (temporarily) bound, including the 

binding of V1 and N2 (figure 2) with their theme subassemblies.  

In the binding process of the sentence in figure 2, the assembly for cat is bound to an 

arbitrary (‘free’) NP assembly by the activated memory circuit that connects the two 

assemblies. Likewise, the assembly for chases is bound to a VP assembly. The binding of 

cat as the agent of chases results from activating the gating circuits between the NP and 

VP main assemblies and their agent subassemblies. The active NP and VP main 

assemblies (N1 for cat and V1 for chases) will then activate their agent subassemblies, 

which results in the binding of these two agent subassemblies (as illustrated in figure 5).  

Gating circuits will be activated by neural control circuits. These circuits instantiate 

syntactic (parsing) operations, based on the active word assemblies and the activation 

state of the blackboard. In the case of cat chases mouse, these circuits will detect that in 

cat chases (or N-V), cat is the agent of the verb chases. In response, they will activate the 

gating circuits for the agent subassemblies of all NPs and VPs. The binding of mouse as 

the theme of chases proceeds in a similar manner. We will present an example of a 

control circuit later on.  

 

 

6.2.2. The effect of gating and memory circuits in the architecture 

When a memory circuit is active, activation can flow between the two assemblies it 

connects (figure 3, right). The two connected assemblies are then temporarily associated, 

or ‘merged’, into a single assembly. Figure 6a illustrates the merging of assemblies for 

the structure of The cat chases the mouse (figure 2). In figure 6a, the word assemblies are 

directly connected (merged) with the main assemblies of their structure assemblies. 

Likewise, the agent subassemblies and theme subassemblies are merged into single 

assemblies (one for agent, and one for theme). The resulting structure shows that the 

backbone of a neural sentence structure in this architecture is given by the gating circuits. 
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Figure 6b illustrates what happens if the gating circuits are removed. Subassemblies 

(agent, theme) are now also directly merged with their main assemblies, and structure 

assemblies of a different kind are directly connected with associative links. As illustrated 

in figure 6c, the neural sentence structure in figures 2 and 6a is thus reduced to a single 

merged assembly, that results from directly associating each of the assemblies involved 

in the original sentence structure of figures 2 and 6a. In particular, figure 6c shows that 

the word assemblies for cat, chases and mouse are now directly associated, so that the 

distinction between the sentences The cat chases the mouse and The mouse chases the cat 

is lost.  

 

 

Figure 6. (a). The structure of The cat chases the mouse in figure 2, represented by merging the 
assemblies that are connected with active memory circuits. (b). The structure of The cat chases 
the mouse in figure 2 that results when the gating circuits are removed. (c). The structure in figure 
6b, represented by merging the assemblies involved.  

 

 

With the use of gating circuits, the neural blackboard architecture for sentence 

structure can solve the ‘four challenges for cognitive neuroscience’ presented by 
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Jackendoff (2002, see section 2), as discussed below.   

 

6.3. Multiple instantiation and binding in the architecture 

Figure 7 (left, right) illustrates the neural structures of the sentences The cat chases the 

mouse, The mouse chases the cat and The cat bites the dog in the neural blackboard 

architecture (in the manner of figure 6a). The words cat, mouse and chases occur in more 

than one sentence, which creates the problem of multiple instantiation (the problem of 2) 

for their word assemblies.  

 

Figure 7. Left: combined instantiation of the sentences cat chases mouse, mouse chases cat and 
cat bites dog in the architecture illustrated in figure 4. The multiple instantiations of cat, chases, 
and mouse in different sentences (and in different thematic roles) are distinguished by the 
different NP or VP structure assemblies to which they are bound. Right: the activation of the 
word assembly for cat and the word assembly for chases, due to the question “Whom does the cat 
chase?” 

 

 

Figure 7 shows that this problem is solved by the use of structure assemblies. For 

instance, the word assembly for cat is bound to the NP assemblies N1, N4 and N5. 
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Similarly, different VP assemblies (V1 and V2) encode the verb chases in different 

sentences. In this way, cat can be the agent of chases in one sentence (binding N1 and V1 

with their agent subassemblies) and the theme of chases in another sentence (binding N4 

and V2 with their theme subassemblies). Furthermore, cat can also be the agent of another 

verb (bites) in a third sentence, using N5.  

The internal structure of the NP and VP assemblies, given by the gating circuits, is of 

crucial importance. Without this internal structure, the neural structures in figure 7 would 

collapse into direct associations between neural assemblies, which would result in a 

failure to distinguish between, for instance, The cat chases the mouse and The mouse 

chases the cat (as illustrated in figure 6b,c). Using the gating circuits, the neural 

structures of these two sentences can be selectively (re)activated.  

 

6.3.1. Answering binding questions 

Selective reactivation of a sentence structure in figure 7 is necessary to retrieve 

information from the blackboard architecture, i.e., to answer specific binding questions, 

like “Whom does the cat chase?”. This question provides the information that cat is the 

agent of chases, which activates the assemblies for cat and chases (figure 7, right), and 

the gating circuit for agent. Furthermore, the question asks for the theme of chases (i.e., x 

in cat chases x).  

The answer is produced by a competition process between the VP assemblies, in 

which V1 emerges as the winner. Figure 7 (right) shows that V1 is activated by chases 

and N1 (through cat), whereas V2 is only activated by chases and V3 is only activated by 

N5 (through cat). This results in V1 as the winner of the VP competition. The activation 

of the gating circuits for theme will then result in the activation of N2 by V1, and thus in 

the activation of mouse as the answer to the question. 

In contrast, the question “Who chases the cat?” will result in a VP competition in 

which V2 is the winner. The difference results from the selective activation of the gating 

circuits. Both questions activate the assemblies for cat and chases, but they activate 

different gating circuits. The first question defines cat as the agent of chases, which 

produces the activation of the gating circuits for agent. The second question defines cat 

as the theme of chases, which activates the theme gating circuits, so that N4 (activated by 
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cat) can activate V2. This route of activation was blocked in case of the first question. 

With the second question, V2 emerges as the winner because it receives the most 

activation. Then, mouse can be produced as the answer, because the question asks for the 

agent of chases (i.e., x in x chases cat).  

 

6.3.2. Simulation of the blackboard architecture 

We have simulated the answer of “Whom does the cat chase?” with the sentences in 

figure 7 stored simultaneously in the architecture. The simulation was based on the 

dynamics of spiking neuron populations (i.e., average neuron activity). In all, 624 

interconnected populations were simulated, representing the word assemblies, main 

assemblies, subassemblies, gating circuits and memory circuits used to encode the 

sentences in figure 7. The 624 populations evolved simultaneously during the simulation. 

Appendix A1 provides further details of the simulation. 

An overview of the network as simulated is presented in figure 7a. We used a visual 

tool (dot by Koutsofious and North, 1996) to represent the network. The program dot 

aims to place nodes (neurons) at a reasonable distance from each other and to minimize 

the number of edge (connection) crossings. The network presented in figure 7a is the 

same as the network presented in figure 7 (i.e., the three sentence structures). Both 

networks can be converted into each other by successively inserting the structures 

presented in figures 3, 4, and 5 in the structures presented in figure 7.  
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Figure 7a. Network of the sentence structures in figure 7. Neurons in gating and memory circuits 
are represented with black boxes (inhibitory neurons) and white boxes (excitatory neurons). Main 
assemblies (noun or verb) are represented as inverted triangles. Subassemblies (agent, theme) are 
represented as upright triangles. The circles represent the input (control) for the gating circuits, 
which activate a gating circuit. These include the delay assemblies in the memory circuits. Their 
activity is constant during simulation. The network also contains inhibitory populations that 
initiate winner-take-all competition between verb (noun) assemblies. The labels V1 to V3 and N1 
to N6 refer to the VP and NP assemblies in figure 3. V4 and V5 are two ‘free’ VP assemblies. W 
refers to word assemblies. CPG refers to the central pattern generator.  
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Figure 8 (left, middle) illustrates the simulation of the network with activation of the 

VP and NP assemblies labeled in figure 7a. The figure (middle) also shows two ‘free’ VP 

main assemblies (V4, V5), not used in the sentence encoding of figure 7, to illustrate the 

activation of free assemblies in this process. The simulation starts at t = 0 ms. Before that 

time, the only active assemblies are the delay assemblies in the memory circuits (as in 

figure 2).  

The question “Whom does the cat chase?” provides information that cat is the agent 

of chases and it asks for the theme of the sentence cat chases x. The production of the 

answer consists of the selective activation of the word assembly for mouse. Backtracking 

(see figure 7), this requires the selective activation of the NP main assembly N2, the 

theme subassemblies for N2 and V1, and the VP main assembly V1 (in reversed order). 

This process proceeds in a sequence of steps. We used a central pattern generator 

(CPG) to control the sequence. Basically, a CPG consists of a sequence of neurons, in 

which a neuron is active for a while before activation is passed on to the next neuron in 

the sequence. CPGs can be used in motion control (e.g., Kling and Szekély 1968). Forms 

of sequential motion control could provide a basis for analogous functions in language as 

well (e.g., Dominey 1997).We assume that a question of the type cat chases x? activates 

a specific (type-related) CPG. That is, the same CPG will be initiated with any question 

of the form noun verb x?. The CPG used consisted of 15 neurons, each one active for 25 

ms. This provides 15 time steps of 25 ms. The CPG was activated at t=300 ms (indicated 

with the asterisk in figure 8). It initiated the following sequence: activate VP competition 

(step 1-5), activate agent gating circuits (step 1-4), inhibit word assemblies (step 5), 

activate NP competition (step 6), activate theme gating circuits for VP assemblies (step 8-

11), and activate theme gating circuits for NP assemblies (step 13-15).   

Figure 8 shows the activation of the assemblies for cat and chases (beginning at t = 0 

ms). To produce the selective activation of the word assembly for mouse, other word 

assemblies cannot be active at that moment. Therefore, word assemblies are inhibited 

after a certain time (step 5). The activation of cat results in the activation of the NP main 

assemblies N1, N4, and N5 (figure 8, left), and the activation of chases results in the 

activation of the VP main assemblies V1 and V2 (figure 8, middle). As long as V1 and V2 

are both active, the question “Whom does the cat chase?” cannot be answered. To 
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produce the answer, the gating circuits for the theme subassemblies of the VP assemblies 

have to be activated, because the question asks for the theme of cat chases x. However, 

when both V1 and V2 are active, this will result in the activation of the theme 

subassemblies for V1 and V2, and, in turn, of mouse and cat (via N2 and N4) as the answer 

to the question. Therefore, to produce mouse as the only answer to the question, a winner-

take-all (WTA) competition between V1 and V2 has to occur, with V1 as the winner.  

The competition process between the VP assemblies proceeds as follows. VP main 

assemblies are connected to a population of inhibitory neurons. The competition between 

the VP assemblies is initiated by activating this population. The competition between the 

VP assemblies is decided by activating the gating circuits for the agent subassemblies. 

This results in the activation of the agent subassemblies of N1, N4 and N5, because they 

are the active NP assemblies (figure 8, left). The activation of the N1-agent subassembly 

is illustrated in figure 8 (right).  

The active agent subassemblies of N1 and N5 are bound to the VP assemblies V1 and 

V3 respectively (see figure 7). Thus, the VP assemblies V1 and V3 receive activation from 

these NP assemblies when the ‘agent’ gating circuits are activated. (The agent 

subassembly of N4 is not bound to a VP assembly, because N4 is bound to a VP assembly 

with its theme subassembly, see figure 7). As a result, V1 wins the competition between 

the VP assemblies, because V1 receives activation from chases and N1, whereas V2 only 

receives activation from chases, and V3 only receives activation from N5. (The initial 

drop in activation of V1 results from the fact that verb competition and activation of the 

agent gating circuits start at the same moment, but the activity from N1 has to pass 

through the gating circuit to reach V1). Figure 8 (middle) shows that V1 is the only active 

VP assembly after this competition process. After a transient, the activation of V1 is given 

by its delay (reverberating) activation. The activation of V2 and V3 is reduced to the level 

of the ‘free’ assemblies V4 and V5. 
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Figure 8. Activation of the neural assemblies in figure 7 and 7a (in Hz/ms). Left panel: The NP 
main assemblies N1 to N6. Middle panel: The VP main assemblies V1 to V5. Right panel: The 
word assemblies for cat, chases, and mouse, and the subassemblies for N1-agent and V1-theme. 
The vertical lines are used to compare the timing of events in the three panels. Horizontal bars 
indicate time intervals of activation. The asterisk indicates the onset of the control sequence that 
initiates the competition process.   

 

When V1 remains as the only active VP assembly, the answer mouse can be produced 

by activating the theme gating circuits. This will produce the selective activation of N2, 

which is the NP assembly bound to mouse in figure 7, provided that the active NP main 

assemblies (N1, N4 and N5 in figure 3) are inhibited first (step 6 of the GPG). After the 

inhibition of the active NP assemblies, the theme gating circuits can be activated. As a 

result, the theme subassembly of V1 and the main assembly N2 are now selectively 

activated as well. Finally, the word assembly for mouse will be activated (figure 8, right).  

The dynamics of the network is straightforward, despite its apparent complexity. The 

simulation of the network in figure 7a covers all aspects of the dynamic interaction in the 

blackboard that is needed to answer binding questions. This results from the modular 
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nature of the architecture and the chain-like nature of sentences structures. Only 

assemblies of the same kind interact in the architecture, e.g., VP assemblies with VP 

assemblies and NP assemblies with NP assemblies. The same is true for other types of 

structure assemblies that will be introduced. Furthermore, different kinds of assemblies 

only interact through the specific subassemblies with which they are connected (i.e., 

temporarily bound), and which are selectively activated in the interaction process. Each 

of these bindings in the architecture is of the same kind. That is, with a specific 

subassembly (e.g., theme), a structure assembly of a given kind (e.g., VP) can only bind 

(and thus interact) with one other structure assembly, which has to be of a different kind 

(e.g., NP). These interactions have also been simulated with the network in figure 7a.  

Figures 7 and 8 illustrate that the neural blackboard architecture can solve the binding 

problem in language on the level of verb-argument binding. However, extensions of the 

neural blackboard architecture presented thus far are needed to handle the more massive 

form of binding found in linguistic structures (Jackendoff 2002). For the remainder of the 

paper we will use structures like those in figure 7 to discuss the encoding of sentence 

structures in the architecture. However, each of the structures that we present can be 

transformed into a network as illustrated in figure 7a10.  

 

6.4. Extending the blackboard architecture 

A first extension of the architecture is introduced in figure 9. As Bickerton argued 

(Calvin & Bickerton 2000), an important step in the evolution of language consisted of 

the transformation illustrated in the top-half of figure 9. The left diagram represents a 

sentence structure in protolanguage. The diagram on the right represents a basic sentence 

structure in modern language. One argument of the verb is placed outside the verb’s 

direct influence (i.e., the verb-phrase), in a controlling position of its own (as the subject).  

The bottom-half of figure 9 shows a similar transition in terms of our neural 

architecture. The left structure is the structure of cat chases mouse of figure 2. For 

convenience, we have introduced a (further) shorthand presentation of this structure in 

figure 9. As in figures 6a and 7, memory circuits are not shown, and bounded 

subassemblies are presented as one. Here, the gating circuits are not shown as well, and 

words are simply written close to their structure assemblies11. However, the full structure 
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of figure 2 is still implied. The shorthand version does not result in ambiguities: 

subassemblies are always connected to their main assemblies with gating circuits, 

subassemblies are always bound to other subassemblies with active memory circuits, and 

word assemblies are always bound to structure assemblies of the corresponding type 

(e.g., nouns to NP assemblies).  

The left sentence structure in the bottom-half of figure 9 resembles the left diagram in 

the top-half of the figure. In turn, the sentence structure on the right in the bottom-half of 

the figure (also in shorthand presentation) resembles the diagram on the right in the top-

half of the figure. In this sentence structure, the NP of cat is not directly bound to the VP 

of chases. Instead, it is bound to a new ‘sentence’ structure assembly (S). Binding is 

achieved through the noun subassembly (n) of the NP assembly (not shown in figure 4), 

and the corresponding noun subassembly of the S assembly. Likewise, the VP assembly 

is bound to S with verb subassemblies (v).  

 

Figure 9. Top: Transformation of sentence structure in proto-language (left) to sentence structure 
in modern language (right), after Calvin & Bickerton (2000). Bottom: similar transformation in 
terms of neural sentence structures. The neural sentence structure of cat chases mouse on the left 
is the same as in figure 2, but in a ‘shorthand’ presentation. The neural sentence structure of cat 
chases mouse on the right (also in ‘shorthand’ presentation) consists of a new structure assembly 
for sentence (S), with subassemblies for noun (n) and verb (v). The dotted line between the noun 
and verb subassemblies represents the possibility of encoding agreement between subject and 
verb by means of these subassemblies.  
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The connection structures of the noun subassemblies and the verb subassemblies are 

similar to the connection structure illustrated in figure 5. Furthermore, the S main 

assemblies can inhibit each other, like the NP and VP main assemblies (figure 5). This 

does not mean that only one sentence at a time could be stored in the blackboard. As 

illustrated in figure 2, information is stored in the blackboard by means of active delay 

assemblies, which are not mutually inhibitory (except in the manner illustrated in figure 

5). The inhibitory interaction between main assemblies of the same kind is needed when 

information is stored or retrieved, as in answering binding questions (figure 8).  

The dotted line between the noun and verb subassemblies indicates that these 

subassemblies can be used to encode agreement between the subject cat and the verb 

chases (as in cat chases versus cats chase). For instance, S assemblies could have 

different noun and verb subassemblies for single and plural, which can be activated 

selectively. Once a noun is bound to the noun subassembly for single, this subassembly 

will enforce a binding of the verb to a verb subassembly for single as well.  

Further extensions of the architecture proceed along similar lines. They consist of the 

introduction of new structure assemblies, and new subassemblies needed for appropriate 

binding. New assemblies can be added due to the modular structure of the architecture.  

 

6.4.1. The modular nature of the blackboard architecture 

The modular nature of the blackboard architecture is illustrated in figure 10, with the 

structure for Jackendoff’s (2002) sentence The little star is beside a big star. The new 

structure assemblies here are determiner assemblies (D1 and D2), adjective phrase 

assemblies (Adj1 and Adj2), and prepositional phrase assemblies (P1). The Di assemblies 

are bound to NP assemblies with determiner subassemblies (d), the Adji assemblies are 

bound to NP assemblies with adjective subassemblies (adj), and the Pi assemblies are 

bound to VP assemblies with preposition-verb subassemblies (pv) and to NP assemblies 

with preposition-noun subassemblies (pn). The connection structure of each of these new 

kinds of subassemblies is again similar to the connection structure in figure 5. Main 

assemblies of the same kind are again mutually inhibitory.  
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Figure 10. Neural sentence structure for The little star is beside a big star. The structure 
assemblies are similar to those in figure 9 (bottom-right), with new structure assemblies for 
determiner (Di), adjective phrase (Adji) and prepositional phrase (Pi), and new subassemblies for 
determiner (d), adjective (adj), preposition-verb (pv) and preposition-noun (pn).  

 

 

This sentence structure again illustrates the solution of the problem of 2 provided by 

the architecture, and it illustrates the solution of the massiveness of the binding problem 

in linguistic structures. The word assembly for star can participate in two different 

constituents of the sentence, because it is bound to two different NP assemblies. Bound to 

N1, star has the determiner the and the adjective little, and it constitutes the subject of the 

sentence, bound directly to S. Bound to N2, star has the determine a and the adjective big, 

and it is bound to the preposition beside, which is bound to the verb of the sentence.  

Questions can be again be answered by selectively activating structure assemblies and 

gating circuits. For instance, the question “Which star is beside a big star?” can be 

answered if S1 is activated, together with the gating circuits for the noun subassemblies 

(the question asks for the adjective of the subject). When N1 is activated, D1 and Adj1 can 

also be activated, which produces the answer the little star. S1 will be activated due to the 

information is beside a big star provided by the question. The phrase a big star activates 

N2, which thus initially wins the competition over N1. However, after the selection of S1, 
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N1 will be activated due to the activation of the ‘subject’ gating circuits. Conversely, the 

question “Where is the little star?” produces the activation of S1 and V1, and it asks for 

the prepositional phrase of the sentence. The answer will result from activating the gating 

circuits for the preposition-verb subassemblies.  

The sentence structure in figure 10 raises the question of how many different kinds of 

structure assemblies would be needed in the neural blackboard architecture. A 

preliminary answer is that the architecture would have a particular kind of structure 

assembly for each kind of constituent that can occur in a linguistic structure. Later on, we 

will illustrate this point with the encoding of embedded clauses. First, however, the two 

remaining problems presented by Jackendoff (2002) have to be solved: the problem of 

variables, and the problem of how a combinatorial structure encoded in neural activity 

can be stored in long-term memory (i.e., constituent binding with activation versus 

constituent binding with synaptic modification). We will begin with the latter problem. 

 

6.5. Constituent binding in long-term memory 

An important role in the process of storing information in long-term memory is played by 

the hippocampus and surrounding areas (hippocampal complex, Nadel & Moscovitch 

2001). The hippocampal complex (HC) has the ability for rapid storage of information by 

means of synaptic modifications (Rolls & Treves 1998), depending on, e.g., long-term 

potentiation (LTP).  

In the view of the ‘Hebb-Marr’ model (McNaughton & Nadel 1990), HC neurons 

form a conjunctive encoding of neurons that are concurrently active in the cortex (e.g., 

Rolls & Treves 1998; O'Reilly & Rudy 2001). The encoding results from the 

modification of the synapses between the active neurons in the cortex and the active 

neurons in the HC. Combined, the neurons form an auto-associator (Marr) or a cell 

assembly (Hebb), that can be reactivated as a whole after activating a part of it. In this 

way, the HC forms a ‘snapshot-like’ memory of an event with the duration of about a 

second (Rolls & Treves 1998). Given the ‘sparse connectivity’ structure of the HC, 

different events or episodes can be separated in memory because they can be encoded 

with different and non-overlapping groups of neurons in the HC (O'Reilly & Rudy 2001).  

A crucial aspect of encoding with HC neurons is the unstructured nature of the 
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information stored (Roll & Treves 1998). That is, the HC acts as a simple binding device, 

forming a conjunctive encoding of the input that is concurrently available. The HC does 

not, by itself, encode systematic relations within the input (O'Reilly & Rudy 2001). 

Therefore, as described by O'Reilly & Rudy (2001, p. 320): “all relationship information 

must be present in the inputs to the hippocampus, which can then bind together the 

relational information with other information about the related items in a conjunction”.   

Figure 11. Left: conjunctive encoding of the assemblies for cat, chases and mouse with a neuron 
(or group of neurons) in the hippocampus complex (HC). Right: conjunctive encoding of the 
neural sentence structure of cat chases mouse with a neuron (or group of neurons) in the 
hippocampus complex (HC). 

 

 

Figure 11 (left) illustrates what this means in terms of the word assemblies activated 

(within a second or so) by the sentence The cat chases the mouse. The HC will form a 

conjunctive encoding of the word assemblies, but not of their relations12. The same 

conjunctive encoding of the word assemblies will be formed with the sentence The mouse 

chases the cat. Thus, HC conjunctive encoding of word assemblies creates the familiar 

binding problem. Reactivation by the HC will reactivate the word assemblies for cat, 

mouse, and chases, but not the structure of either sentence.  
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The problem can be solved by including relationship information in the input to the 

HC, as described by O'Reilly & Rudy (2001). This will occur if the activity in the neural 

blackboard architecture is included in the input to the HC (figure 11, right). In this way, 

the HC can reactivate a neural sentence structure by reactivating the neural blackboard. 

Figure 11 (right) illustrates that a neural blackboard architecture plays a crucial role in the 

process of storing combinatorial structures in long-term memory (i.e., in terms of 

synaptic modification). Even a conjunctive encoding as provided by the HC is sufficient, 

if the activity in the blackboard is included in the encoding. 

 

Figure 12. Encoding of the neural sentence structure of The little star is beside a big star (figure 
10) with partly overlapping sets of neurons in the hippocampus complex (HC). Each set of neuron 
encodes a part (‘episode’) of the sentence structure. Both parts can be overlapping.  

 

 

With longer sentences, the HC will encode the sentence structure in terms of a 

sequence of events, each consisting of a conjunctive encoding of a part of the sentence 

structure. Figure 12 illustrates this process for the structure of The little star is beside a 

big star presented in figure 10. Figure 12 also illustrates that encoding in the HC will be a 

form of distributed encoding. Here, two partly overlapping sets of HC neurons encode 

two different parts of the sentence, which could also be partly overlapping. The whole 

sentence structure can be reactivated if some of the HC neurons reactivate the part of the 

sentence structure they encode. The overlap between the HC encoding and the two 
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sentence structures can then result in the activation of the remaining part of the sentence 

structure.  

 

6.5.1. One-trial learning 

In particular, the activity of the delay assemblies in the memory circuits has to be 

included in the input to the HC, because the structure of a sentence is completely 

determined by the set of active delay assemblies. In fact, as hinted at in figure 11 (right), 

the HC encoding would not have to include all (or even any) of the word assemblies of 

the sentence. The overall structure can be retrieved (i.e., binding questions can be 

answered) as long as the delay assemblies can be reactivated by the HC.  

The fact that HC encoding of the active delay assemblies is sufficient to store the 

sentence structure in memory constitutes an important aspect of the use of delay activity 

as a binding mechanism. The delay assemblies in the blackboard can remain active 

concurrently without causing interference, unlike the word and structure assemblies. The 

reverberating activity of delay assemblies will then provide sufficient time for the process 

of synaptic modification to proceed (e.g., long-term potentiation takes in the order of 1-4 

seconds, spoken sentences are processed in the order of 3 to 4 words per second).  

In particular, this solves the problem of one-trial learning, as described by Jackendoff 

(2002, p. 66): “It is usually argued that transient connections have the effect of gradually 

adjusting synaptic weights (so-called Hebbian learning). But what about cases in which 

one trial is sufficient for learning? For example, you say to me, I’ll meet you for lunch at 

noon. I reply, OK, and indeed we do show up as agreed. My long-term memory has been 

laid in on the basis of one trial; there hasn’t been any opportunity to adjust synaptic 

weights gradually”.  

Figure 11 (right) illustrates how one-trial learning can proceed by means of the 

blackboard architecture. The word assemblies in The cat chases the mouse are indeed 

activated briefly, to prevent the interference effects that would otherwise occur. But the 

delay assemblies can remain active for a longer period, because they do not interfere with 

each other. This provides the opportunity to adjust the synaptic weights between the HC 

and the delay assemblies gradually, in line with Hebbian learning. In this way, a long-

term memory of a sentence structure can be formed on the basis of one trial.  
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6.5.2. Explicit encoding of sentence structure with synaptic modification 

Although the conjunctive encoding of the blackboard by the HC provides an encoding of 

sentence structure in terms of synaptic weights, retrieval of information from long-term 

memory would require that the blackboard activation of the sentence structure is 

reactivated by the neurons in HC, probably in a sequence as illustrated in figure 12. One 

could imagine that a more explicit encoding of a sentence structure in terms of synaptic 

weights would be possible, which on its own could be used to retrieve information. An 

important function of the HC is indeed to provide a quick but temporal storage of 

information, so that the interaction between the HC and the cortex can result in a (slower) 

transference of that information to the cortex, where it can be incorporated in the existing 

knowledge base (O’Reilly & Rudy 2001). After such a process, a sentence structure 

could be encoded explicitly in the cortex in terms of synaptic modification.  

Figure 13 presents a neural structure of The cat chases the mouse in terms of synaptic 

modification (the structure in the brackets represents the shorthand version). As in figure 

2, the structure consists of word assemblies, structure assemblies, and the appropriate 

bindings between the assemblies. The word assemblies in figure 13 are the same as those 

in figure 2. The structure assemblies in figure 13 are of the same kind as those in figure 2 

(NP and VP). Structure assemblies in figure 13 also consist of main assemblies and 

subassemblies, connected with gating circuits. However, binding in figure 13 is not 

achieved by memory circuits (as in figure 2), but instead consists of synaptic 

modification. In this way, the word assemblies are directly connected to the main 

assemblies. Subassemblies of the same kind are also directly connected to each other, 

effectively forming a single assembly. 

The structure assemblies in figure 13 do not belong to the blackboard architecture 

illustrated in figure 4. Binding in the architecture of figure 4 is always temporary, lasting 

only as long as the activity of the delay assemblies in the memory circuits. When the 

delay assemblies in the memory circuits connected to a structure assembly are no longer 

active, the structure assembly can be reused in the encoding of a different sentence 

structure (again temporarily). This characteristic is the basis of the productivity of the 

architecture in figure 4. With the ability to reuse the structure assemblies again and again, 

the architecture can encode arbitrary and novel sentence structures on the fly. 
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In contrast, the structure assemblies in figure 13 cannot be reused in this way. Due to 

binding with synaptic modification, the structure in figure 13 is of a more permanent 

nature, created specifically for this particular sentence structure. A knowledge base of 

this kind can only consists of a collection of sentence structures (‘facts’) that have 

actually been encountered. Furthermore, each structure will be created after a (prolonged) 

learning process, in line with the transference of information between the HC and the 

cortex discussed above. Thus, it is possible that the sentence The cat chases the mouse 

belongs to this knowledge base, but the sentence The mouse chases the cat does not.  

 

Figure 13. Explicit encoding of neural sentence structure in long-term memory, illustrated with 
the sentence cat chases mouse. Word assemblies are bound to main assemblies of structure 
assemblies with synaptic modification, with nouns to noun phrase (NP) assemblies and verbs to 
verb phrase (VP) assemblies. Subassemblies of the same kind are bound with synaptic 
modification. This effectively results in a single subassembly, as illustrated with the agent (a) and 
theme (t) subassemblies of NP and VP assemblies. A ‘shorthand’ presentation of the sentence 
structure is given in brackets.   
 

 

6.6. Variable binding  

The knowledge base illustrated with the sentence structure in figure 13 can be used in a 

rule-based derivation with variable binding, such as the derivation that own(Mary, book) 

follows from give(John, Mary, book). Here, we will discuss how the binding question 

“What does Mary own?” can be answered on the basis of the fact (proposition) John 

gives Mary a book and Mary gives John a pen. In section 3, we argued that the model of 
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Shastri and Ajjanagadde (1993), based on synchrony of activation, is faced with serious 

difficulties in the case of such a proposition, due to the multiplication of the arguments 

John and Mary in different roles in the proposition (i.e., the problem of 2).  

Figure 14. The explicit encoding of the (combined) neural structures of John gives Mary a book 
and Mary gives John a pen in long-term memory, in the manner of the structure presented in 
figure 13 (with ‘shorthand’ presentation). The subassemblies include a new subassembly for 
recipient (r). VP main assemblies are mutually inhibitory. 

 

Figure 14 shows how the combination of the facts John gives Mary a book and Mary 

gives John a pen will be encoded in terms of the neural structure introduced in figure 13 

(using the shorthand presentation). The verb give(x,y,z) has three arguments (agent, 

recipient, and theme), thus the VP and NP assemblies have an additional subassembly for 

recipient (r). The word assembly for give is connected to two VP main assemblies (V1 

and V2), which are mutually inhibitory. V1 is bound to the NP assemblies for John (N1), 

Mary (N2), and book (N3), in the manner that it encodes the fact give(John, Mary, book). 

Similarly, V2 is bound to the NP assemblies for Mary (N4), John (N5), and pen (N6), in 

the manner that it encodes the fact give(Mary, John, pen).  

Even though the fact Mary owns a book does not belong to the knowledge base, the 

question “What does Mary own?” can be answered on the basis of the fact John gives 

Mary a book by transforming the information provided by the question into information 

related with give(x,y,z). The question “What does Mary own?” provides the information 

that Mary is the agent of own, and it asks for the theme in the proposition. In short, the 
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question provides information of the form own(Mary, ?). In terms of give(x,y,z), the 

question provides the information that Mary is the recipient of give, and it asks for the 

theme in the proposition. In short, the question provides information of the form give(-, 

Mary, ?). In general, information of the form own(X,?) can be transformed into 

information of the form give(-,X,?) on the basis of a long-term association between own-

agent and give-recipient (as in the model of Shastri and Ajjanagadde, 1993).  

In line with the process of answering binding questions (sections 6.3.1. and 6.3.2.), 

the information of the form own(X, ?) will produce the activation of the assembly for own 

and the gating circuits for agent. In contrast, the information of the form give(-,X, ?) will 

produce the activation of the assembly for give and the gating circuits for recipient. 

Therefore, the activation produced by own(X,?) cannot be concurrently active with the 

activation produced by give(-,X,?). In figure 14, this would result in the activation of give 

and the combined activation of the gating circuits for agent and recipient. The VP 

assemblies V1 and V2 would then receive an equal amount of activation when the 

assembly for X (Mary) is active, so that book and pen would have an equal probability of 

being produced as the answer to the question.   

Concurrent activation produced by own(X,?) and give(-,X,?) would be prevented if 

the activation produced by own(X,?) consists of an ‘attractor’ state (Amit, 1989) of a 

control network, which is associated with the attractor state in the control network 

produced by give(-,X,?). First, the control network will be in the attractor state related 

with own(X,?). But when an answer is not produced in this way (because own(Mary, 

book) does not belong to the knowledge base), the attractor state in the control network 

would change into the associated attractor state that corresponds with give(-,X,?)13. 

When the information related with give(-, Mary, ?) is singled out, the answer can be 

produced by activating Mary and give, and the gating circuit for recipient. As illustrated 

in figure 14, this will result in V1 as the winner of the competition between the VP 

assemblies (as in figure 8). After that, the answer can be produced by activating the 

gating circuits for theme.  

The transformation of the information related with own(X,?) into information related 

with give(-,X,?) does not depend on Mary, or on any of the other word assemblies in 

figure 14 (i.e., book, pen, or John). It only depends on the association between own-agent 
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and give-recipient. Thus, the derivation of own(Mary, book) from give(John, Mary, book) 

is a rule-based derivation with variable binding. The same process can operate on the 

blackboard architecture in figure 4, so that a novel structure like give(Dumbledore, 

Harry, broom) can result in the answer to the question “What does Harry own?”.  

 

6.6.1. Neural structure versus spreading of activation 

In the neural structure illustrated in figure 14, the fact give(John, Mary, book) can be used 

to answer the question “What does Mary own”, even though the fact give(Mary, John, 

pen) is also instantiated in the architecture. The two facts do not interfere, because the 

gating circuits control the flow of activation in the structure assemblies. 

Figure 15. Illustration of the collapse of the neural structures presented in figure 14 when the 
gating circuits are removed. The result is a network of assemblies based on spreading of 
activation. 
 

 

Figure 15 shows the collapse of the structure presented in figure 14 when the gating 

circuits are removed, to illustrate again the importance of activation control provided by 

the gating circuits in the neural structures presented here (see also figure 6b,c). Without 

the gating circuits, a main assembly and its subassemblies merge into a single assembly. 

In fact, the NP assemblies can be omitted altogether, because the word assemblies for the 

nouns are now directly connected with the VP main assemblies V1 and V2. Because all 

assemblies are now directly connected with excitatory or inhibitory connections, 

processing only depends on spreading of activation. The information related with give(-, 
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Mary, ?) results in the activation of the assemblies for give and Mary. Due to the 

uncontrolled spreading of activation, the activation of give and Mary results in an equal 

activation of V1 and V2, so that a correct answer to the question cannot be given without 

ambiguity or error.  

In fact, any question will result in ambiguities or error in this uncontrolled spreading 

of activation network. For instance, a question like “Who gives a book?” will result in the 

activation of both John and Mary as potential answers, even though V1 will win the 

competition over V2. In contrast, in the structure in figure 14, the question “Who gives a 

book?” will result in John as the answer, because the question will result in the activation 

of the gating circuits for agent after V1 has won the VP competition.  

 

6.7. Summary of the basic architecture  

The ability of the architecture to encode arbitrary sentence structures is based on the fact 

that binding between a word assembly and a structure assembly, and between two 

structure assemblies, is only temporal. The duration of the binding between two 

assemblies is given by the duration of the reverberating activity of the delay assembly in 

the memory circuit that connects the two assemblies. When the reverberating activity in 

the delay assemblies disappears, the structure assemblies are ‘free’ again, which means 

that they can be used to encode another sentence structure. Furthermore, only a small set 

of structure assemblies is needed in the architecture (enough to account for the memory 

span of language users and the duration of reverberating activity). As a result, an arbitrary 

number of sentence structures can be encoded without an explosion of structure 

assemblies.   

Binding in this architecture is not a state of the system that needs to be observed for 

read-out purposes (as in the case of binding with synchrony of activation). Instead, it is a 

process, in which binding relations can be retrieved by posing ‘binding questions’. A 

system can only answer a binding question on the basis of information that is available to 

the system itself. Thus, the answer to a binding question shows that the system has solved 

the binding problem implicated in the question. For instance, mouse is bound to chases as 

its theme when it emerges as the answer of the question “Whom does the cat chase?”, as 

illustrated in figures 7 and 8. The process of answering binding questions affects 
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(manipulates) the activity of the structure and word assemblies, as illustrated in figure 8. 

But the activity of the delay assemblies is not disrupted by the process of answering 

binding questions. This is crucial for retrieving the binding information in the 

architecture, because that information is based on the activity of the delay assemblies 

(and not on the activity of the word and structure assemblies). Thus, read-out is always 

possible as long as the delay assemblies remain active. Subsequent processing stages can 

retrieve information in this way from the architecture and use that, for instance, to 

produce a long-term memory structure of the binding relations in the sentence, as 

illustrated in figures 13 and 14.  

The process of encoding a sentence structure is controlled by neural circuits that can 

selectively activate a specific type of gating circuits, such as the gating circuits for the VP 

agent subassemblies. An example of a control circuit will be given below. The type of 

gating circuit that is activated at a given moment is determined by syntactic structure of 

the sentence. Thus, the neural circuits that control the encoding of a sentence structure 

instantiate basic parsing operations. Activated gating circuits will activate subassemblies, 

which can then bind in the manner illustrated in figure 5. Binding between subassemblies 

depends on the concurrent activation of these assemblies at a given moment. In that case, 

they activate a specific delay assembly by means of a circuit that instantiates an AND 

operation, as illustrated in figure 5. Other circuits that instantiate AND operations (e.g., 

see Koch 1999) could also be used for this purpose.  

The process of retrieving information (answering binding questions) in the 

architecture requires a form of dynamic control. As noted, this form of control does not 

depend on the information stored in the blackboard. Instead, the sequence depends on the 

type of the question asked. This form of control is not unlike that found in motor 

behavior, which also depends on a precise sequence of excitation and inhibition of 

muscle innervations.  

The activation in the architecture is a form of working memory that is specific for 

encoding language structure. To show how information encoded in this way can be 

transferred to long-term memory, we introduced the hippocampus (and surrounding 

areas) as a ‘simple’ binding device, in line with the literature on that subject. This does 

not mean that the hippocampus would be necessary for encoding sentence structure in the 
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architecture itself. Sentence encoding in the blackboard architecture can occur 

independently of the hippocampus. In fact, the activity of the delay assemblies that 

encodes a sentence structure in the blackboard is needed for the use of the hippocampus 

as a simple binding device, as illustrated in figures 11 and 12.  

 

6.8. Structural dependencies in the blackboard architecture  

As Jackendoff (2002) noted, a solution of the ‘four challenges for cognitive 

neuroscience’, as presented above, would allow a more productive interaction between 

neural network modeling and linguistic theory to begin. To illustrate the possibility of 

such an interaction, we will discuss the neural blackboard structures of the sentences (1) 

and (2), discussed in section 4.2. They are repeated here for convenience:  

 

The cat that the dog that the boy likes bites chases the mouse               (1) 

The fact that the mouse that the cat chases roars surprises the boy       (2) 

 

In section 4.3, we argued that these two sentences pose a problem for models that 

process sentences in terms of strings of word category labels (N-V strings). Both 

sentences have the same word category structure (N-that-N-that-N-V-V-V-N), but they are 

different in terms of complexity (Gibson 1998), with (1) rated as far more complex than 

(2). The difference in complexity between the sentences is related with the different 

bindings between the constituents in both sentences. In (1) the subject of the main clause 

(cat) is also an argument (theme) of a verb in an embedded clause (bites), whereas in (2) 

the subject of the main clause (fact) is not an argument of any of the verbs in the 

embedded clauses (chases and roars). The contrast between (1) and (2) forms an 

interesting example of the massiveness of the binding problem that occurs in language.  

A neural instantiation of sentence structure has to account for the differences in 

constituent binding illustrated with sentences (1) and (2), as any linguistic theory of 

sentence structure would have to do. But a neural instantiation of sentence structure 

should also provide an explanation of the observed differences in complexity between 

these sentences (and other performance effects, Van der Velde 1995). 
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As noted, the structural difference between sentences (1) and (2) is related with the 

nature of the embedded clauses they contain. Therefore, we first have to discuss how 

embedded clauses can be instantiated in the neural architecture presented here.  

 

6.8.1. Embedded clauses in the blackboard architecture 

Figure 16a presents the structure of the sentence The cat that bites the dog chases the 

mouse (without the determiners the). This sentence contains the subject-relative clause 

that bites the dog. To encode and bind this clause, a new clause structure assembly (C) is 

introduced, with a new clause subassembly (c). C assemblies play a role in the encoding 

of a clause that is similar to the role played by S assemblies in the encoding of the main 

sentence (cat chases mouse in figure 16a). However, there are a few differences between 

the role played by S and C assemblies, which motivates their distinction14. C assemblies 

have to be bound to one of the structure assemblies in the sentence, as illustrated with the 

binding between C1 and N1 in figure 16a, which requires a new kind of subassembly (c). 

Furthermore, the word assemblies of complementizers can bind with C assemblies, as 

illustrated with that in figure 16a. 

A verb (verb-phrase) can only have a single argument for each of its thematic roles, 

but a noun (noun-phrase) can be the argument of two verbs. That is, a noun can bind to 

the verb on the same level as the noun in the sentence structure (the ‘sister’ of the noun), 

and it can bind to a verb in a subordinate clause. Because binding is achieved with 

subassemblies in this architecture, different subassemblies will be needed for binding a 

noun with its ‘sister’ verb and with a subordinate verb. In figure 16a, to encode that cat is 

the subject of the verb in its subordinate clause (bites the dog), N1 binds with a nc (noun-

clause) subassembly to the n subassembly of C1. The nc subassembly of N1 is similar to 

its n subassembly, except that it is activated under the influence of the (subordinate) 

clause C1, introduced with that.   

Like S assemblies, C assemblies can be used to encode agreement between subject 

and verb. In the case of a subject-relative clause, agreement exists between subject of the 

main sentence (cat) and the verb of the relative clause (bites), as indicated with the dotted 

line between the noun and verb subassemblies of the C assembly in figure 16a.  
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Figure 16. (a). Illustration of the neural sentence structure of The cat that bites the dog chases the 
mouse (without the determiners). The structure is based on the sentence structure presented in 
figure 9 (bottom-right), with the addition of a clause structure assembly (C) and a clause 
subassembly (c). The dotted lines represent agreement between subject and verb. (b). Illustration 
of the sentence structure of The cat that the dog bites chases the mouse, using the same kind of 
structure assemblies as in (a).  

 

 

Figure 16b presents the structure of the sentence The cat that the dog bites chases the 

mouse. This sentence contains the object-relative clause that the dog bites. In this case, 

dog is the subject of bites, so it is bound to the noun subassembly of C1 by its n 

subassembly (because bites is a sister of dog in the clause). As before, agreement 

between dog and bites is encoded by agreement between the noun and verb 

subassemblies of C1, as indicated with the dotted line. In an object-relative sentence like 

The cat that the dog bites chases the mouse, the subject of the main sentence is the theme 

of the verb in the relative (subordinate) clause. To this end, the tc (theme-clause) 

subassembly of N1 (cat) is used to bind with the t subassembly of V2 (bites). The tc 

subassembly of N1 is similar to its t subassembly, except that it is activated under the 

influence of the subordinate clause, as in the case of the nc subassembly of N1. 

The activation of the tc subassembly of N1 poses a problem for the control of binding 

in this sentence. When V2 is active, N2 is the active NP assembly, not N1. Therefore, the 
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tc subassembly of N1 has to be activated before the activation of N2 (a subassembly can 

remain active even if its main assembly is deactivated). Thus, the gating circuits for 

theme-clause have to be activated before the activation of the main assembly of N2. With 

the object-relative sentence in figure 16b, the control circuits could conclude from the 

sequence cat that dog (or N that N) that cat is the theme of a verb in the clause, so that 

the gating circuits for tc have to be activated before the activation of N2. This control of 

activation is not needed for the subject-relative sentence in figure 16a. Furthermore, the 

theme of bites (V2) in figure 16a presents itself directly with the occurrence of dog (N2), 

resulting in a direct binding between V2 and N2. In figure 16b, the theme of bites (cat-N1) 

can only bind with V2 due to the prolonged activation of tc. These activation differences 

between the structures in figure 16b and figure 16a could be the basis for the fact that 

object-relative sentences are more difficult to process than subject-relative sentences 

(Gibson 1998).  

Because a verb can have only one argument, the distinction between t and tc 

subassemblies needed for NP assemblies does not occur with VP assemblies. For the 

same reason, the distinction between n and nc subassemblies needed for NP assemblies 

does not occur with C assemblies. In this way, the verb bites can have only one subject 

(either cat-N1 in figure 16a or dog-N2 in figure 16b) and only one theme (either dog-N2 in 

figure 16a or cat-N1 in figure 16b).   

In case of a sentence The cat that the dog bites chases the mouse (figure 16b), the 

question “Who bites the cat that chases the mouse?” can be answered by activating the 

word assemblies, and the gating circuits in the direction from mouse (theme) to chases 

(subject) to cat (theme) to bites. This will result in bites (V2) winning the competition (in 

particular, because it receives more activation from cat (N1) than chases (V3) receives 

from mouse (N4).  

An interesting comparison can be made with answering the question “Whom does the 

cat that chases the mouse bite?” with the sentence The cat that bites the dog chases the 

mouse (figure 16a). The difficulty here is that cat is both the subject (agent) of chases and 

bites. So, it has to be figured out that cat bites dog is an embedded clause, that is, that 

activating the gating circuits in the direction from mouse to chases to cat results in the 

activation of the S assembly instead of the C assembly. In other words, the architecture 
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predicts that answering this question will be more complex than answering “Who bites 

the cat that chases the mouse?” with the sentence The cat that the dog bites chases the 

mouse. Notice that this difference in complexity is the reverse of that of the sentences 

involved. That is, the object relative sentence The cat that the dog bites chases the mouse 

is more complex than the subject relative sentence The cat that bites the dog chases the 

mouse (Gibson, 1998). 

 

6.8.2. Multiple embedded clauses  

Figure 17 illustrates the structure of The boy sees the mouse that likes the dog that chases 

the cat.  

 
Figure 17. Illustration of the neural sentence structure of The boy sees the mouse that likes the 
dog that chases the cat (ignoring the), with the same kind of structure assemblies as in figure 16a.  

 
 

The right-branching nature of this sentence structure is a straightforward extension of 

the structure in figure 16a. In this case, each embedded clause is attached to the theme of 

its superordinate clause. The structure can easily be constructed in an incremental manner 

by binding each new C assembly to the last active NP assembly. This is in agreement 

with the fact that strictly right-branching sentences are easy to process in English (Gibson 
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1998).  

Figure 17 illustrates (again) how the constituent structure of a sentence can be 

instantiated in the neural architecture presented here. The phrase (mouse) that likes the 

dog that chases the cat is a constituent because it is ‘dominated’ by N2. This results from 

the fact that (e.g.) N2 is bound to C1 with c subassemblies, whereas N3 is (indirectly) 

bound to C1 with v subassemblies. The nature of binding, i.e., the subassemblies used, 

determine the dominance relations in the structure: N2 dominates C1, whereas C1 

dominates N3 (which, in turn, dominates C2). 

Figure 18. (a). Illustration of the neural sentence structure of The cat that the dog that the boy 
likes bites chases the mouse, with the same kind of structure assemblies as used in figure 16b. (b). 
Likewise, the neural structure of the sentence The fact that the mouse that the cat chases roars 
surprises the boy.  
 

 

Figure 18a presents the structure of the sentence The cat that the dog that the boy 

likes bites chases the mouse (1). Sentence (1) contains the double center-embedded 

object-relative clause that the dog that the boy likes bites. Sentences of this type are 
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notoriously hard to process, to the point that they can be classified as unprocessable 

(Gibson 1998). The encoding of the phrase The cat that the dog proceeds in the same way 

as in figure 16b, so that the tc subassembly of N1 (cat) will be activated to bind with the 

theme subassembly of the next verb. However, another embedded clause is introduced, 

instead of a verb. The phrase the dog that the boy is structurally similar to the phrase the 

cat that the dog, so that the tc subassembly of N2 (dog) will be activated to bind with the 

theme subassembly of the next verb. Thus, when the first verb (likes) appears, there are 

two subassemblies that can bind with the theme subassembly of this verb, whereas the 

verb should bind with dog (N2) as its theme argument. The situation is similar with the 

second verb (bites), which should bind with cat (N1) as its theme argument. The two 

problematic bindings are indicated with the dashed lines in figure 18a.  

Figure 18b shows the structure of the sentence The fact that the mouse that the cat 

chases roars surprises the boy (2). The structure of (2) is very similar to the structure of 

(1), except for the fact that roars (V2) does not have a theme argument. A phrase 

beginning with The fact that will be interpreted as a complementary clause, so that the tc 

subassembly of N1 (fact) will not be activated. When the object-relative clause in the 

mouse that the cat chases appears, the tc subassembly of N2 (mouse) will be activated to 

bind mouse as the theme of the verb in its subordinate clause (chases), as in figure 16b. 

However, in contrast with the structure of (1) in figure 18a, the binding of mouse (N2) 

with the first verb (chases) as its theme can succeed because the theme subassembly of 

N2 is the only active theme subassembly at that moment. 

Thus the difference in complexity between (1) and (2) results from a difference in 

structural dependency between both sentences. In (1) the subject of the main sentence 

(cat) is also the theme of a verb in an object-relative clause. In combination with the 

second object-relative clause, this results in an ambiguity of the binding of cat (N1) or 

dog (N2) as the theme of likes (V1) or bites (V2). In contrast, in (2) the subject of the main 

clause (fact) is not bound to any of the verbs in the embedded clauses, so that the 

ambiguities in (1) do not arise in (2). Hence, sentence complexity in (1) results from 

binding problems that arise when a number of structure assemblies of the same kind have 

to bind in sequence with the overall sentence structure (in line with the notion of 

similarity-based interference as the basis of sentence complexity, Lewis 1999)  
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At face value, the binding problem that arises with the theme subassemblies of the 

sentence structure in figure 18a would also have to arise with the verb subassemblies in 

both sentence structures in figure 18, in particular for the verb subassemblies connected 

to the C assemblies (the verb subassembly of the S assembly could be activated after the 

binding of C assemblies has been completed). The activation of C2 will inhibit the 

activation of C1 in both sentence structures, thus the verb subassembly of C1 has to be 

activated before C2 is activated. But the first verb in the sentence (likes or chases) has to 

be bound to C2, which requires the activation of the verb subassembly of C2 as well. 

However, the binding problem with the verb subassemblies can be solved in terms of the 

dynamics of the binding process, as discussed below.  

 

6.8.3. Dynamics of binding in the blackboard architecture 

The binding of subassemblies occurs in a connection structure as illustrated in figure 5. 

Figure 19 illustrates the process of subassembly binding between two arbitrary structure 

assemblies A and B.  

In figure 19a, the subassembly of Ai-1 has activated its horizontal row of columns in 

the connection structure. If the Bj subassembly would activate its vertical row of columns 

in the connection structure, a binding would result between Ai-1 and Bj, in the manner as 

discussed in section 6.2.1. However, the subassembly of Ai is activated first, which 

results in the activation of a second horizontal row of columns.  
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Figure 19. Four stages in the process of subassembly binding between arbitrary structure 
assemblies A and B, with the connection structure as illustrated in figure 5. (a). The 
subassemblies of Ai-1 (first) and Ai (second) have activated their horizontal row of columns. (b). 
The subassembly of Bj has activated its vertical row of columns. (c). Binding occurs between Ai 
and Bj, because the activation in the row of Ai is stronger than the activation in the row of Ai-1. 
(d). After completion of the binding process in (c), Ai-1 can bind to another B assembly. In this 
way, the connection structure can operate as a pushdown stack.  

 

 

In figure 19b, the subassembly of Bj activates its vertical row of columns in the 

connection structure. At this moment, a conflict arises between the binding of Ai-1 with Bj 

and the binding of Ai with Bj. Due to the inhibitory interaction between the columns in 

the vertical row of Bj (initiated by activated delay assemblies), only the stronger of these 

two bindings will survive (as in the VP competition illustrated in figure 8). Figure 19c 

illustrates that Ai will bind with Bj if the activation in the horizontal row of Ai is stronger 

than the activation in the horizontal row of Ai-1.  

When the binding process of Ai and Bj has been completed, the columns in the 

horizontal row of Ai (and the vertical row of Bj) will be inhibited due to the active delay 
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assembly in the column that binds Ai with Bj. However, as illustrated in figure 19d, the 

columns in the horizontal row of Ai-1 are still active (with the exception of the column in 

the vertical row of Bj). Thus, the subassembly of Ai-1 can bind with another B 

subassembly if that is activated.   

The process illustrated in figure 19 shows that two A subassemblies can bind in 

sequence with B subassemblies if there is a clear difference in activation strength 

between the two A subassemblies. In that case, the stronger activated A subassembly will 

bind with the first activated B subassembly and the other A subassembly will bind with 

the second activated B subassembly. In theory, one could have a whole series of A 

subassemblies that can bind in sequence with B subassemblies, if the A subassemblies 

have distinguishable differences in their activation strengths. 

Pulvermüller (1999) suggested that a gradual decay of activation in reverberating 

assemblies (such as the delay assemblies in the memory circuits) could form the basis of 

a neural pushdown stack. Figure 19 illustrates this possibility. If the subassemblies of Ai-n 

to Ai have been activated that order, and if the activation strength of the subassemblies 

decays over time, then the subassembly of Ai would have the strongest activation and it 

would bind to the first B subassembly, as illustrated in figure 19. Then, the subassembly 

of Ai-1 would bind to the next B subassembly, as illustrated in figure 19d. In the same 

manner, all the subassemblies of Ai-n to Ai would bind to B subassemblies in the reverse 

order of their activation, in line with the notion of a pushdown stack15.  

It is not clear whether such a distinctive and reliable decay of reverberating activity 

will be found in the brain, due to the fluctuations that can occur in this kind of activity 

(Amit 1989). However, in one circumstance one can find a clear difference in activation 

strength between reverberating assemblies. Fuster et al. (1985) investigated the relation 

between reverberating activity in the prefrontal cortex and the visual cortex. First, they 

identified neurons in both areas of the cortex that responded to the same objects and that 

maintained their activation in a delay period. Then, they applied a technique of reversible 

cooling to one of the areas involved. In this way, the activity of the neurons in that area 

can be blocked temporarily, but the activity will reappear when the temperature is 

increased to a normal level. Fuster et al. (1985) observed that blocking the activity of 

neurons in one area also reduced the activity of the neurons in the other area. The activity 
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in the second area increased again when the activity in the first area reappeared (by 

terminating the cooling in that area).  

The results of Fuster et al. (1985) indicate that reverberating activity in a neural 

assembly is stronger when the assembly also receives activation from outside. In this 

way, the binding of the verb subassemblies in the sentence structures in figure 18 can be 

explained. The main assembly of C2 is active when the first verb (likes or chases) 

appears. Therefore, the verb subassembly of C2 is also activated by the main assembly, 

unlike the verb subassembly of C1. As a result, the activity of the verb subassembly of C2 

is stronger than the activity of the verb subassembly of C1. In line with the binding 

process illustrated in figure 19, the verb subassembly of C2 will bind with the verb 

subassembly of V1 (likes or chases), and the verb subassembly of C1 will bind with the 

VP assembly (V2) of the next verb (bites or roars).    

In contrast, the main assembly of N2 in figure 18a is not active, due to the activation 

of N3 (boy), which is needed to bind boy with likes. Without a clear distinction in 

activation strength between the theme subassemblies of N1 and N2, the binding process 

illustrated in figure 19 will produce a conflict, which results in the complexity associated 

with sentence (1).  
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6.8.4. Control of binding and sentence structure  

Figure 20 illustrates the structure of the sentence The boy says that the dog knows that the 

cat chases the mouse, combined with a circuit that can be used to control the binding of 

the constituents in the sentence structure.  

 

 

Figure 20. Illustration of the neural sentence structure of The boy says that the dog knows that the 
cat chases the mouse, combined with a control circuit for this sentence. I-nodes are the input 
nodes for the circuit, activated by the words in a sentence. E-nodes are expectation nodes with 
sustained (delay) activation, and C-nodes are conjunction nodes that activate the gating circuits 
for a specific binding. Connections with an arrow head are excitatory. Connections with a dot are 
inhibitory. Connections with an arrow head and a dot represent two (bi-directional) connections. 
The binding symbol Sx-n-Ny represents the binding of an arbitrary active S assembly with an 
arbitrary active N assembly by means of their noun (n) subassemblies. The other binding symbols 
represent similar forms of binding.   

 

 

S1

N1

n

V1

v

boy
says

C1

V2

v

that

c

n

N2

dog

mouse

C2

V3

tv

chases

that

c

n

N3

cat

knows

N4

VtVcN CS

VcSvSn Cn Cv Vt

VSv CVcNCn VCvNSn NVt

I-nodes

E-nodes

C-nodes

Sx-n-Ny Sx-v-Vy Cx-v-VyCx-n-Ny Vx-c-Cy Vx-t-Ny Binding



 65

The control circuit is given in the form of a connectionist network consisting of I-

nodes (input nodes), E-nodes (‘expectation’ nodes), and C-nodes (‘conjunction’ nodes). 

The I-nodes are activated by the words in the sentence, based on their lexical type. It is 

assumed that one I-node is active at a time (with the exception of the I-node S). The I-

node S is inhibited by the E-nodes (not shown in figure 20). The E-nodes are activated by 

specific I-nodes or C-nodes. They remain active until inhibited. The C-nodes are 

activated by a specific conjunction of an I-node and an E-node. They activate the gating 

circuits that result in a specific binding of constituents in the sentence structure, and they 

inhibit the E-node by which they are activated.  

When boy is presented, it binds with N1 and it activates the I-node N. Furthermore, 

boy will be seen as the beginning of a sentence, because there are no active E-nodes that 

would force a binding of boy in an existing sentence structure (see below). As a result, 

boy also activates S1 and the I-node S, which in turn activates the E-nodes Sn and Sv. The 

conjunction node NSn is then activated, which results in the binding of S1 and N1 with 

their noun (n) subassemblies. The activation of the E-node Sv reflects the expectation of a 

verb for the main (matrix) sentence. 

When the verb says is presented, it activates V1 and the I-node Vc, which entails that 

says is interpreted as a verb that requires a complement clause (given by the lexical 

information related with says). In turn, Vc activates the expectation node Vc. The 

combined activation of the I-node Vc and the E-node Sv results in the activation of the 

conjunction node VSv. This node activates the gating circuits for the binding of V 

assemblies and S assemblies with their verb (v) subassembly, which results in the binding 

of V1 with S1. The word that activates C1 and the I-node C, which in combination with 

the E-node Vc activates the C-node CVc. In turn, CVc produces the binding of C1 with V1, 

and activates the E-nodes Cn and Cv (i.e., the expectation of a clause subject and verb).  

Continuing in this manner, dog (N2) and knows (V2) will bind with C1. The verb 

knows again activates the I-node Vc, which results in the binding of that (C2) with knows 

(V2). Then, cat (N3) and chases (V3) will bind with C2. The verb chases is a verb that 

requires a theme. This lexical information related with chases will activate the I-node Vt, 

which in turn activates the E-node Vt. The word mouse will bind with N4 and will 

activate the I-node N. In combination with the active E-node Vt, this results in the 
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binding of mouse (N4) as the theme of chases (V3). Notice that the nouns dog, cat and 

mouse are bound in an existing sentence structure due to the active expectation nodes in 

the circuit.  

The circuit in figure 20 illustrates how the process of binding could proceed in the 

architecture for sentence structure presented here. However, it is clear that a more 

detailed account of this process is a topic for further research, as described below.  

 

6.9. Further development of the architecture  

The neural blackboard architecture for sentence structure outlined here provides a 

solution to the ‘four challenges for cognitive neuroscience’ presented by Jackendoff 

(2002). The discussion in section 6.8 also illustrates that the architecture can potentially 

account for structural and performance aspects of language processing. However, further 

research is clearly needed to provide a more complete fulfillment of this potential. A few 

directions of further research can be indicated with the architecture presented thus far. 

One line of research would concern the development of the architecture, both in terms 

of evolution and in terms of growth and learning. As figure 7a illustrates, the architecture 

consists for the most part of gating circuits, which can be seen as the first level of 

organization in the architecture. The second level consists of gating circuits organized in 

structure assemblies. The third level of organization consists of the distinction between 

different kinds of structure assemblies and the way they interact. Gating mechanisms are 

found in the brain (e.g., Newman et al. 1997). So, the study of the development of the 

architecture would be focused on the way in which the second and third level of 

organization arise.  

In terms of evolution, an important issue is the development of the connection 

structure presented in figures 5 and 19. A benefit of an explicit model as the one in figure 

5 is that the model can be used as a target in computer simulations. Thus, starting with 

more elementary structures, one could investigate whether such a connection structure 

could develop in an evolution-like process. In terms of growth and learning, an important 

issue is the question of how specific bindings with connection structures like the one in 

figure 5 could develop. That is, assuming that an undifferentiated connection structure 

exists for undifferentiated assemblies, one can investigate whether a learning process 
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could reorganize the undifferentiated connection structure into a connection structure in 

which distinctions are found between different kinds of structure assemblies and 

subassemblies, as illustrated above. Furthermore, one could investigate whether different 

languages used in the learning process would result in a different reorganization of the 

initial connection structure.   

Another line of research concerns the issue of parsing in this architecture. Parsing will 

result from the neural circuits that control the binding process in the architecture. An 

example is presented in figure 20. As noted earlier, the control circuits instantiate basic 

parsing operations. Thus, they will be sensitive to the coding principles used in languages 

to express structural information, like word order, or case marking in languages with free 

word order (Van Valin 2001). However, the neural control circuits will also be sensitive 

to the pattern of activation that arises in the blackboard during sentence processing. 

Figure 19 provides an illustration. An active subassembly produces a significant amount 

of activation in its connection structure (i.e., its row of columns), which provides the 

information that a specific binding is required. This information can be used by the 

control circuits to initiate the activation of a subassembly of the same kind (e.g., a VP 

theme subassembly when a NP theme subassembly active).  

One topic in the study of parsing will be the question of how constraints are 

implemented in the control circuits, and how they relate with aspects of sentence 

ambiguity. An example of a constraint is presented in the circuit in figure 20. It consists 

of the inhibitory connection from the C-node VCv to the C-node VSv. This connection 

implements the hierarchical constraint that verb-binding in a clause precedes verb-

binding in a main (matrix) sentence (as in figure 18). This form of constraint is a ‘hard’ 

constraint in which one demand (verb-binding in a clause) overrides another (verb-

binding in a matrix sentence). An important issue will be how ‘soft’ constraints can be 

implemented, including those given by statistical regularities and semantic information.  

It is clear that the study of parsing in the architecture presented here is just beginning. 

However, the examples illustrated thus far suggest that the neural control circuits that 

control the binding process in the architecture are engaged in a form of pattern 

recognition and pattern completion, in which the current state of activation in the 

blackboard together with the active word assemblies constitute the input pattern and the 
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new state of activation in the blackboard constitutes the output pattern. Pattern 

recognition is a core capability of networks (Bechtel & Abrahamsen 2002). The fact that 

a neural blackboard architecture of sentence structure could transform parsing operations 

into forms of pattern recognition is an attractive prospect of further research. 

In combination with parsing, the study of sentence complexity and other 

psycholinguistic effects is also an important line of further research. Figures 16 and 18 

illustrate the potential of the architecture to account for complexity effects, but there are 

number of other complexity issues that should be accounted for as well (e.g., see Gibson, 

1998). An interesting topic here will be the complexity related with answering binding 

questions, as discussed in section 6.8.1. The architecture we presented suggests that this 

can be a source of complexity of its own, that needs to be investigated further.  

A fourth line of investigation consists of relating the structure and dynamics of the 

architecture with observable brain structure and activation. The connection structure in 

figure 5 is a prediction of how the brain could realize combinatorial productivity. The 

activation in the architecture during sentence encoding, as illustrated in figure 7a, is also 

a prediction of activation that would occur in the brain. Dynamic causal modeling 

(Friston et al. 2003) can be used to compare activation simulated in a model with 

activation observed with neuroimaging. As an example, this approach could be used to 

investigate the sustained activation needed to handle long-distance dependencies. Figure 

20 illustrates a long-distance dependency with object-relative clauses in the architecture, 

which can be simulated in terms of the neural dynamics illustrated in figure 8. Ben-

Sachar et al. (2003) observed activation in specific brain regions produced by sentences 

of this type (as compared with sentences with complement clauses). With the approach of 

dynamic causal modeling, we can begin to compare the activation in the architecture 

produced by these sentence types with the activation observed in the brain.    

Likewise, the neural activity that occurs in a simulation, as illustrated in figure 7a, 

can be transformed mathematically into an EEG signal, and compared with observations. 

This is technically demanding, but in conceptual terms it can be done. An important issue 

here is the topology of the network, which will affect the EEG signal. The model could 

be used to test and develop specific topologies, by deriving the imaging signal using a 

given topology and comparing it with empirical results.  
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A fifth line of research is the relation between the architecture for sentence structure 

and other architectures for combinatorial structures in language (Jackendoff 2002) and 

cognition in general. For instance, words can have an internal structure of their own, 

which does not seem to agree with word encoding by means of (unstructured) word 

assemblies (Bierwisch 1999). However, the word assemblies used here can be seen as the 

interface between word structure (e.g., phonological structure) and sentence structure. 

That is, a word assembly is the part of a neural word structure that connects (or 

‘anchors’) that structure within the sentence structure. An example is given in figures 2 

and 13, in which the assemblies for cat, chases and mouse form the interface between 

sentence structures in working memory (figure 2) and sentence structures long-term 

memory (figure 13).  

The interaction between a neural architecture for combinatorial (e.g., phonological) 

word structure and a neural architecture for sentence structure could explain how new 

words can be embedded easily in a sentence structure. A new word is itself a novel 

combination of familiar constituents (phonemes), instantiated in its own (assumed) 

phonological neural blackboard. Thus, a new word would create a word structure in this 

word architecture similar to the way in which a new sentence creates a sentence structure 

in the neural sentence architecture. In this way, a new word would be temporarily 

encoded with (say) a Wx assembly, just like a sentence is temporarily encoded with an Sx 

assembly. The Wx assemblies could bind with the structure assemblies in the sentence 

architecture, which would result in the embedding of the new word in the sentence 

structure. Over time, the new word would form a direct link with the kind of structure 

assemblies in the sentence architecture to which it belongs.   

Word assemblies could also form the interface between sentence structures and 

cognitive structures outside language, such as structures in visual cognition. This issue is 

addressed in more detail below.  

 

7. Neural blackboard architectures of combinatorial structures in vision 

The aim of this paper is to show that combinatorial structures can be encoded in neural 

terms by means of neural ‘blackboard’ architectures. Although combinatorial structures 

are the ‘quintessential property’ of language (Pinker 1998), they can also be found in 
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visual cognition. Therefore, we will briefly discuss neural blackboard architectures of 

combinatorial structures in visual cognition, in particular for binding visual object 

features like shape, color and (relative) location. In this way we can investigate the 

differences and similarities that exist between neural architectures of combinatorial 

structures in two different domains like language and vision. Furthermore, we will 

discuss how the architectures for visual cognition and language can be combined in a 

combinatorial structure like The little star is beside a big star.  

As in the case of the architecture for sentence structure, we will discuss the issue of 

binding in the ‘vision’ architecture, such as the binding of color and shape, in terms of the 

process that answers binding questions, like “What is the color of this shape?”. The 

reason why we discuss the binding problem in this way is related with the coordinate 

system or frame of reference in which the binding problem should be solved. As outside 

observers, we could see some form of related (e.g., concurrent ) activity in brain areas 

that are involved in processing information in a given task, such as binding the color and 

shape of visual objects. But it is not clear that the observed relation in activity is used by 

these brain areas to solve the binding problem at hand. That is, it is not clear that these 

brain areas ‘know’ that they are (say) concurrently active with each other, so that they 

can use that information effectively. What is needed is information that is available 

within the system itself (instead of only from an outside perspective). A binding question 

like “What is the color of this shape?” probes for information that is available within the 

system itself, because the system generates behavior when it answers such a question, 

which it can only do by using information that is available within the system itself. 

Investigating the process that results in answering binding questions is, in our view, the 

best way to study (and solve) the issue of binding in combinatorial structures, including 

the binding of color and shape (and the binding of words in a sentence structure).  

In a blackboard architecture for visual cognition, one would have processors for the 

recognition of shape, color, location and other visual object features. Combined, these 

processors would correctly process a visual display of objects, such as a blue cross on the 

left and a yellow diamond on the right, if they could communicate with each other 

through a blackboard. In this way, the architecture could answer binding questions like 

“What is the color of the cross?" or "What is the shape of the yellow object?".  
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A neural blackboard architecture for combining visual object features in this manner 

is illustrated in figure 21. The architecture is based on the pathways that determine the 

structure of the visual cortex (e.g., Livingstone & Hubel 1988; Felleman & van Essen 

1991; Oram, & Perrett 1994; Farah et al. 1999).  

 

 

Figure 21. A neural blackboard architecture of combinatorial structure in visual cognition. The 
‘blackboard’ consists of the retinotopic areas in the visual cortex (e.g., V2 to PIT). Information 
about visual features (color, form, motion, location) is processed in feedforward pathways leading 
to ‘feature domains’ in specialized areas in the visual cortex (e.g., AIT for shape information, PP 
for location information). In turn, the feature domains send information to the retinotopic areas by 
means of feedback connections. (AIT = anterior infero-temporal cortex, PIT = posterior infero-
temporal cortex, PFC = prefrontal cortex, PP = posterior parietal cortex). 

 

 

The ventral pathway in the visual cortex includes the areas V2, V4, the posterior 

inferotemporal cortex (PIT) and the anterior inferotemporal cortex (AIT). This pathway is 
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Objects are identified through a feedforward network of areas, going from the primary 

visual cortex (V1) to the higher areas in the temporal cortex (e.g., AIT). The network 

gradually transforms retinotopic encoding in the lower areas (e.g., V2 to PIT) into a 

location-invariant identity (e.g., shape, color) encoding in the higher areas (e.g., AIT). 

The dorsal pathway in the visual cortex leads to the posterior parietal cortex (PP). This 

pathway is involved in the processing and selection of spatial information (e.g., location 

of objects) and spatial transformations (e.g., for making eye movements). Both pathways 

start from the primary visual cortex (V1), but they are also interconnected on the levels of 

V2, V4 and PIT. Both pathways project to the prefrontal cortex.  

Figure 22 (left) illustrates how the shape and the color of two objects, a blue cross 

and a yellow diamond, would be processed in this architecture. After the primary visual 

cortex V1 (not shown), the features are processed initially in a feedforward manner 

(Oram & Perrett 1994). Each object produces a pattern of distributed activation in the 

areas V2 to PIT that corresponds to the retinotopic location of the object. The activated 

neurons could respond to one feature (e.g., shape) or to conjunctions of features, like 

conjunctions of elementary shapes and color (Motter 1994).  

The retinotopic object information in the lower layers is gradually transformed into 

location invariant information, due to the increase in the receptive field size from layer to 

layer (illustrated with the cones in figure 22). Furthermore, feature encoding is separated 

in the higher levels of the architecture, where distinctions are made between, for instance, 

color encoding (e.g., blue vs. yellow) and shape encoding (e.g., cross vs. diamond). The 

distinctions between object features at this level form the basis for the constituents (parts) 

that are used to identify combinatorial visual structures.  

In human cognition, object features as illustrated in figures 21 and 22 form the basis 

for conceptual knowledge (e.g., Barsalou 1999; Barsalou et al. 2003). Human language 

provides ample evidence for the ability to encode object features like shape and color 

separately, that is, independent of any conjunction of these features. For instance, we can 

use a word (e.g., red) to instruct a viewer to select an object in a visual display based on 

its color, irrespective of its shape or location (e.g., see Van der Heijden et al. 1996). 
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Figure 22. The process of answering the binding question “What is the color of the cross?” in the 
neural blackboard architecture of figure 21. Left: The shapes, cross and diamond, and the colors, 
blue (b) and yellow (y), of two objects are processed in feedforward pathways in the retinotopic 
areas. The receptive field size of neurons increases in higher areas (as indicated with the cones), 
until encoding is location invariant in the feature domains. Middle: The shape of the target object 
(the cross) is selected as a cue in the shape feature domain. The selected cue initiates feedback 
activation in the retinotopic areas. Right: Interaction between feedforward and feedback 
activation in the retinotopic areas results in the selection (enhancement) of the activation related 
with the target object in these areas. In turn, this results in the selection of the other features of the 
target object (its color in this example) in the feature domains. In this way, the features of the 
target object (‘cross’ and ‘blue’) are bound by the interaction in the neural blackboard 
architecture.  

 

 

7.1. Feature binding  

Figure 22 illustrates the binding of shape and color in the blackboard architecture 

(binding of other features proceeds in a similar manner). The shape of the cross is given 
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binding process in the architecture consists of an interaction between a feedforward 

network and a feedback network.  

The feedforward network (figure 22, left) processes the visual display, which results 

in the identification of the features of the cross and the diamond in the feature domains. 

The activation pattern in the feedforward network that produces object identification is 

object selective. That is, when an object is presented on a particular location in the 

display, it produces a pattern of (distributed) activation in the retinotopic areas in the 

feedfoward network. This pattern of activation is sufficiently different from the pattern of 

activation produced by another object, presented on the same location in the display. 

(Otherwise, a selective identification of the object could not succeed.)  

The feedback network in figure 22 (middle) carries information about the selected 

feature (cue) from the feature domains back to the lower retinotopic areas in the 

architecture. The feedback network should be seen as lying ‘on top’ of the feedforward 

network. That is, neurons in the retinotopic areas of the feedforward network have 

corresponding neurons in the retinotopic areas of the feedback network. The 

corresponding neurons in both networks could belong to different layers of the same 

cortical column. Feedback connections are found between almost all areas in the visual 

cortex (e.g., Felleman & van Essen 1991).  

Through the feedback connections, information processed at the level of object 

features (figure 21) can interact with information processed in the lower retinotopic areas. 

Thus, the blackboard nature of the visual cortex, as discussed here, basically results from 

the feedback connections in the visual cortex (Van der Velde 1997; Bulier 2001). The 

activation patterns in the feedback network are also object selective. This can be achieved 

by adapting the connections in the feedback network with Hebbian learning (see below), 

using the selective activation patterns in the feedforward network that occur in the 

process of object identification (Van der Velde & de Kamps 2001).  

The cue-related information in the feedback network (figure 22, middle) interacts 

with the processing of the display in the feedforward network (figure 22, left). The 

interaction enhances (‘selects’) the neural activation related with the cue (cross) in the 

retinotopic areas. The selection of cue-related activation results from the match between 

the object selective activation in the feedforward network and the object selective 
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activation in the feedback network, as produced by the Hebbian learning procedure in the 

feedback network described above. The enhanced (selected) cue-related activation in the 

retinotopic areas can be used to select the color (and the other object features) of the cued 

object (cross) in the feature domains, as illustrated in figure 22 (right).  

The process presented in figure 22 is an illustration of the fact that the basis for the 

blackboard architecture in figure 21 is given by the interaction between the retinotopic 

areas, in which elementary information about the features of an object is combined, and 

the feature domains, in which identity information of object features is separated. In 

general terms, the visual features of an object can be bound in a combinatorial manner by 

selecting a feature (e.g., its shape or color) in one of the feature domains. Using an 

interaction process as described above, the activation related with a selected object 

feature will be enhanced in the retinotopic areas. In turn, this enhanced activation can be 

used to produce the selection of the other features of the object in the feature domains. In 

particular, a novel combination of familiar visual features (e.g., a purple cow16) can be 

identified in this way.  

 

7.1.1. A simulation of feature binding 

A simulation of the process of feature binding illustrated in figure 22 is presented in 

figures 23 and 24. The simulation is based on Van der Velde & de Kamps (2001) and De 

Kamps & van der Velde (2001a). The display in this case consists of a red cross (on the 

location top-left) and a green triangle (on the location bottom-right). The figure illustrates 

the binding of the color (red) and the shape (cross) of an object in the display, when the 

shape is given as a cue (i.e., the answer to the binding question "What is the color of the 

cross?").  

The left panel in figure 23 shows two layers in a feedforward network that can 

identify shapes and colors of the objects in a display. The network also contains an input 

layer (V1) and the layer V2 between V1 and V4 (not shown here, see De Kamps & van 

der Velde 2001a). Each small square within a layer represents the activation of one 

neuron. The input layer (V1) consists of a 24 × 24 matrix in which each element 

represents a V1 receptive field (RF). For each RF in V1 there are four input neurons that 

each encode one of four line orientations (vertical, horizontal, left diagonal, or right 
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diagonal) and three input neurons that each encode one of three colors (red, green, or 

blue). The area V2 (not shown) consists of 529 neurons, arranged in a 23 × 23 matrix. 

Each of these neurons has a RF that covers a (unique) 2 × 2 sub-matrix of V1 RFs (529 in 

all). Thus, each neuron in V2 is connected with the 4 × 7 V1 neurons in its RF. In turn, 

V4 consists of a 21 × 21 matrix of neurons (441 in all). Each V4 neuron has a RF that 

covers a (unique) 4 × 4 sub-matrix of RFs in V1 (441 in al). Thus, a V4 neuron is 

connected with all (9) V2 neurons that have RFs that are fully covered by the RF of the 

V4 neuron. PIT consists of a 17 × 17 matrix of neurons (289 in all). Each neuron in PIT 

has a RF that covers a (unique) 8 × 8 sub-matrix of RFs in V1 (289 in all). Thus, a PIT 

neuron is connected to all (25) V4 neurons that have RFs that are fully covered by the RF 

of that PIT neuron. The RFs of the identity neurons in the network (cross, triangle, red, 

and green in figure 23) fully cover all RFs in V1. Thus, each neuron in the top-layer is 

connected to all neurons in PIT.  

The feedforward network is trained (with backpropagation, Rumelhart et al. 1986) to 

identify the shapes and colors separately on all of the four potential locations in the 

display (top-left, top-right, bottom-left, bottom-right). The network used is an artificial 

network, in which activation values of neurons range from -1 to 1. Networks of this kind 

can be transformed into networks of populations of spiking neurons (see De Kamps & 

van der Velde 2001b). The left panel in figure 23 illustrates the pattern of activation in 

the feedforward network that results when a display of a red cross (on the location top-

left) and a green triangle (on the location bottom-right) is presented to the network. Each 

object produces distributed retinotopic activation in V4 and PIT (and V2, not shown 

here), and it activates the identity neurons for cross, triangle, red, and green.  

The middle panel in figure 23 shows the corresponding layers in a feedback network 

that propagates (top-down) cue-related activation to the lower areas. The feedback 

network has the same connection structure as the feedforward network, but with 

reciprocal connections. The feedback network is trained with the activation in the 

feedforward network as input. In this procedure, the feedforward network identifies a 

shape or a color presented on a given location. The resulting distributed activation pattern 

is then used to modify the connection weights in the feedback network with Hebbian 
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learning (e.g., Brunel 1996). The procedure is repeated for various shapes and colors on 

all potential locations (for details, see De Kamps & van der Velde 2001a).  

 

 

Figure 23. Left panel: Distributed retinotopic activation produced in two layers (V4 and PIT) of a 
feedforward network that can identify shapes and colors (here, cross, triangle, red, green). Middle 
panel: Distributed retinotopic activation in the two layers of the corresponding feedback network 
when the shape of one object (cross) is selected as a cue. Right panel: Match between the 
retinotopic activation in the feedforward network and the retinotopic activation in the feedback 
network. The match can be used to select (bind) the shape (cross) and the color (red) of the same 
object (see below, figure 24). Each small square within a layer represents the activation of one 
neuron. The object display consists of a red cross on the location top-left and a green triangle on 
the location bottom-right. 

 

 

The rationale behind this procedure is that a feedforward network can only identify a 

shape or a color if that shape or color produces a selective activation pattern in that 

network (selective enough for correct identification to occur). The selective activation 

pattern produced in the feedforward network is the result of learning in that network. The 

actual learning procedure used is in fact irrelevant, because any learning procedure will 

have to produce a selective activation pattern in the feedforward network for 

identification to occur. By using the Hebbian learning procedure, as described above, the 
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shape or color selectivity in a feedforward network can be transferred to a corresponding 

feedback network.   

The middle panel in figure 23 illustrates the distributed retinotopic activation in the 

feedback network that is produced when the cross is selected as a cue. The retinotopic 

activation in the feedback network is related with all four potential object locations in the 

display. This ‘fan-out’ of activation results from the ‘fan-out’ connection structure of the 

feedback network. It also reflects the fact that top-down selection of a cue is location 

invariant.  

The right panel in figure 23 illustrates the match between the retinotopic activation in 

the feedforward network and the retinotopic activation in the feedback network. Local 

match in activity is given by the product of the activation in both networks, and it varies 

from positive match (+1) to negative match (-1). Inspection of the figure suggests that 

there is a higher match of retinotopic activity between the feedforward network and the 

feedback network related with the cued object (red cross) in the display, compared to the 

match of retinotopic activity between the feedforward network and the feedback network 

related with the distractor object (green triangle) in the display.  

Figure 24 illustrates that there is indeed a higher match of retinotopic activity 

between the feedforward network and the feedback network related with the cued object 

in the display (the red cross on the location top-left). Figure 24 (left) illustrates the circuit 

with which the feedforward network and the feedback network interact locally (i.e., for 

each retinotopic activation related with one of the potential object locations in the 

display). The circuit consists of interacting populations of excitatory neurons (A, B) and 

inhibitory neurons (I). The (inhibitory) connection from I to I represents the existence of 

disinhibition circuits in population I. The stimulus produces feedforward activation of 

stimulus (shape, color) selective neurons in population A. The cue produces feedback 

activation of cue selective neurons in population I, in a manner that results in 

disinhibition of stimulus selective neurons in the circuit when the cue matches the 

stimulus and inhibition of stimulus selective neurons in the circuit when the cue does not 

match the stimulus. Further details of the circuit are presented in appendix A2. 

Figure 24 (right) illustrates the retinotopic activation of the B population produced by 

the circuit in the areas V4 and PIT. The retinotopic activation is related with the four 
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potential object locations in the display. The activation related with the cued object (the 

red cross on the location top-left) clearly stands out, which demonstrates the selection of 

cue-related activation by means of the interaction between the feedforward network and 

the feedback network. The role of the B population in the circuit is comparable to the role 

of the neuron Xout in the gating circuit presented in figure 3. In this case, the cue-related 

activation of the B population can be use to produce (additional) activation within each 

(feedforward) network that processes cue-related information. The (additional) activation 

will result in the selection (binding) of the features of the cued object, like the color (and 

shape) of the cued object illustrated in figure 23.  

 

Figure 24. Left: Local circuit for the interaction between the feedforward and feedback networks 
in figure 23. The circuit consists of populations of excitatory (A, B) and inhibitory neurons (I). 
Each population receives a small background activation from outside the circuit. Right: 
Retinotopic activation of population B produced by the circuit in the areas V4 and PIT. The 
activation is related with the four potential object locations in the display. Feedforward activation 
is present from the beginning (and causes inhibition of the B population, due to the increased 
activation of the I population in the circuit). The onset of feedback activation is indicated with an 
asterisk. 
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As in the case of the architecture for sentence structure, binding in the visual 

architecture illustrated in figure 23 is not a state of the system, but the result of a process 

initiated with a ‘binding question’ (i.e., the selection of one of the features of the object 

as a cue).   

A similar interaction process as illustrated in figures 23 and 24 was used by Van der 

Velde and de Kamps (2001) in a model of object-based location selection (e.g., for 

making eye movements). The model integrated the results of a number of experiments 

that investigated aspects of object-based selection in the monkey visual cortex. In 

particular, the selection of a cue in the higher levels (AIT) of the ventral pathway (e.g., 

Chelazzi et al. 1993), the interaction between cue and stimulus information in the 

retinotopic areas of the ventral pathway (e.g, Motter 1994), and the selection of the 

location of the cue-related object in the dorsal pathway (e.g., Gottlieb et al. 1998;).  

 

7.2. A neural blackboard architecture of visual working memory 

Feature binding as discussed above could also occur in visual working memory. 

Neuroimaging studies in humans have shown overlapping areas of activation in the 

prefrontal cortex (PFC) with spatial and object memory tasks (e.g., Prabhakaran et al. 

2000; D’Esposito 2001). Neurons that selectively respond to both identity and location 

information have been found in monkey PFC as well (Rao et al. 1997; Rainer et al 1998). 

These results indicate an integrative role of (lateral) PFC in memory tasks (Fuster 2001; 

Duncan 2001).  

A combined selectivity of spatial and object information in PFC is in line with the 

notion of a blackboard architecture for visual working memory. The neurons in a 

blackboard visual working memory will respond selectively to combined (elementary) 

object and location information, similar to the neurons in the retinotopic areas of the 

visual cortex. Figure 25 (left) illustrates a putative connection between both blackboard 

architectures. One or more areas in the blackboard of the visual cortex (e.g, PIT) could be 

connected with a ‘working memory’ (WM) blackboard in lateral PFC. A display of 

objects could then be encoded in both areas in a similar manner. The difference between 

the two areas will be found in the nature of the activation. Whereas the activation in the 

blackboard of the visual cortex results from the processing of the visual display, the 
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activation in the WM blackboard is a form of self-sustained or reverberating activity, in 

line with WM activity found in PFC (Fuster 1995; Durstewitz et al. 2000).  

 

Figure 25. Left: A putative relation between the neural blackboard architecture in the visual 
cortex and a neural blackboard architecture in visual working memory (WM) in the prefrontal 
cortex (PFC). Right: An interaction between feature domains and the WM blackboard in PFC can 
be used to bind the features of an object (e.g., ‘cross’, ‘blue’, and ‘left’) in working memory, 
similar to the binding process illustrated in figure 21. 
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The reverberating activity in the WM blackboard can be used retrieve (select) and bind 

the features of the objects in a visual working memory task. Figure 25 (right) illustrates 

that selection and binding of features (again) results from interactions between a 

blackboard and neurons that encode object features. These neurons could be located in 
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consist of interactions between neurons in PFC and neurons in posterior visual areas 

(Ruchlin et al. in press).  

The nature of the WM blackboard produces the behavioral effects reported by Luck 

& Vogel (1997). They observed that the number of objects that can be maintained in 

working memory is limited, but the number of their features is not. In terms of the WM 

blackboard, too many objects in a display will cause an interference between their 

distributed activations in the WM blackboard. This interference results in a limitation of 

the number of objects that can be maintained in working memory, as simulated by Van 

der Voort van der Kleij et al. (2003). However, the number of features for each object is 

not limited. That is, all features of an object can be selected by means of the interaction 

with the blackboard (figure 25, right) as long as the object activations in the WM 

blackboard do not interfere.   

 

7.3. Feature binding in long-term memory 

Feature binding in visual working memory, as described above, is instantiated in terms of 

the sustained activation in the WM blackboard. As discussed in section 2.4, this raises the 

question of how feature binding can be achieved in terms of synaptic modification, which 

forms the basis of long-term memory. In the case of linguistic structures, this question 

was answered in terms of the process illustrated in figure 11. The answer proceeds along 

similar lines for visual feature binding.  

Figure 26 (left) illustrates the role of the HC in the case of visual features. A neuron 

in the HC forms a conjunctive encoding of the object features that are activated by a 

display of two objects (a blue cross on the left and a yellow diamond on the right). In this 

way, the neurons that encode the object features can be reactivated when the neuron in 

the HC is reactivated. However, it is clear that the conjunctive encoding by the HC 

neuron results in the familiar binding problem (Von der Malsburg 1987), because the 

relations between the object features are lost in this form of encoding. A display of, say, a 

yellow cross and a blue diamond (on any of the two locations) would activate the same 

object features, and would thus be encoded in the same way by the HC neuron as the 

display in figure 26.  
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Figure 26. Left: Conjunctive encoding of the object features (e.g., shape, color, location) of two 
objects with a neuron (or group of neurons) in the hippocampus complex (HC). Right: 
Conjunctive encoding of the object features and a neural blackboard with a neuron (or group of 
neurons) in the hippocampus complex (HC). 

 

 

However, as in figure 11, the relations between the object features can be encoded by 

the HC neurons, if a neural blackboard (e.g., the WM blackboard) is included in the 

conjunctive encoding, as illustrated in figure 26 (right). In this case, the relationship 

information is part of the input to the HC (as described by O'Reilly & Rudy 2001), so that 

the HC can encode the relationship information (the blackboard) together with the object 

features. When the HC neurons reactivate the blackboard and the object features, the 

relations between the features of the objects in the display can be retrieved in the manner 

illustrated in figure 25. The encoding of different events (episodes) in this architecture 

can proceed in a manner similar to the process illustrated in figure 12.  

Figure 26 illustrates again how a blackboard architecture can be play an important 
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role in the storage of combinatorial structures in long-term memory (i.e., in terms of 

synaptic modification). Even a conjunctive encoding as provided by the HC is sufficient, 

if the blackboard activations are included in the encoding. In fact, as in figure 11, the 

encoding of the blackboard alone would suffice.  

Furthermore, figure 26 again illustrates the importance of using delay activity as a 

binding mechanism. The sustained activity in the WM blackboard provides the time for 

the synaptic modifications (e.g., LTP) to occur (e.g., in the order of a second, Rolls & 

Treves 1998). In contrast, if synchrony of activation is used to bind features in visual 

working memory (e.g., Luck & Vogel 1997; Raffone & Wolters 2001), it is not clear how 

the relations between the features can be preserved in the transition from working 

memory to long-term memory, that is, how information encoded with synchrony of 

activation can be stored in terms of synaptic modifications. If the HC forms a conjunctive 

encoding of the neurons that are active in a time window (event) of about 1 second (Rolls 

& Treves 1998), it will form a conjunctive encoding of the features of all objects in a 

display, in the manner illustrated in figure 26 (left). In that case, the relations between the 

features, expressed with synchrony of activation, are lost in the transition from working 

memory to long-term memory.  

 

7.4. Integrating combinatorial structures in language and vision  

A longstanding issue in cognition is the relation between visual processing and language 

processing (e.g., Bloom et al. 1996). We will briefly touch upon that issue by discussing 

the combinatorial structure of The little star is beside a big star in terms of the 

architectures in figures 21 and 25, as illustrated in figure 27. The visual structures in 

figure 27 should be combined with the sentence structure in figure 10. In particular, the 

neural assemblies for words will be connected with neurons that encode visual features or 

visual operations (e.g., translations, visual selections). Figure 27 illustrates in a schematic 

fashion how the question “Where is the little star?” can be answered in this way.  

In figure 27a, the word star has selected the shape of the star as a cue in the shape 

feature domain. As a result, the cue-related activation in the feature domain is enhanced 

(in line with Chelazzi et al. 1993). In terms of the process illustrated in figures 22, 23 and 

24, the selection of the cue initiates an interaction in the visual blackboard (B), where the 
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information of the visual display is processed (or maintained, as in figure 25). The 

interaction produces an enhancement of cue-related activation in the blackboard, which 

results in the selection (enhancement) of the neurons in the location domain (L) that 

encode the locations of the stars (Van der Velde & de Kamps 2001). The neurons in this 

domain also encode the spatial magnitude of the objects in a display.  

In figure 27c, a shift of spatial attention is produced in the location domain. As a 

result, the neural activity that encodes the location of another object in the vicinity of the 

attended location in figure 27b is enhanced. If spatial information is (initially) encoded in 

eye-centered coordinates (Batista et al. 1999), a shift of spatial attention will produce a 

spatial transformation in terms of eye-centered coordinates. The spatial transformation 

involved can be used to activate the associated word assembly (beside). 

In figure 27d, the newly selected neural activity in the location domain can be used to 

obtain a measure of the spatial magnitude of the newly attended object (‘big’, in 

comparison with the previous object). It can also be used to influence processing in the 

blackboard, so that the shape of the newly attended object can be selected in the shape 

feature domain. Both selections can produce the activation of their associated word 

assemblies (big and star).  
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Figure 27. The structure of The little star is beside a big star in the neural blackboard 
architectures of figure 21 and 25. (a). Selection of the shape of the star (related with the word 
star) in the shape feature domain, which results in an interaction in the blackboard (B) and a 
selection of location and size information in the location (L) domain. (b). Selection within the 
location domain of the smaller size (related with the word little), which is now the focus of 
attention. (c). Shift of attention (related with the word beside) in the location domain to the 
location beside the attended location in (b). The newly selected location is now the focus of 
attention. (d). Feedback activation from the location domain interacts with the activation in the 
blackboard. This results in the selection of the feature in the shape domain (star, related with the 
word star) that corresponds with the location (and the size, related with the word big) of the 
newly attended object in (c).     

 

 

The process illustrated in figure 27 would operate in a similar manner with a structure 

like The little triangle is beside a big triangle. The only difference would be the selection 

of the shape of the triangle in the shape feature domain. The processes in the other 

domains are not affected by the change from star to triangle. Thus, for instance, the 

attention shift in figure 27c operates in the same manner for the shift from a little star to a 

big star as for the shift from a little triangle to a big triangle, because it is only based on 
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the information in the location domain. Likewise, in a structure like The little diamond is 

above a big square, the process in figure 27a is only affected by the (initial) selection of 

the shape of the diamond (instead of the star or the triangle), and the process in figure 27c 

is only affected by the nature of the spatial transformation (above, instead of beside).  

The similarity between these examples emphasizes the combinatorial nature of the 

process illustrated in figure 27. Each of the individual processes operates only on 

information that is available in its own domain. However, by using the blackboard, a 

process in one domain can influence the processes in the other domains. In this way, a 

combinatorial structure can be produced by the architecture as a whole. For instance, with 

The little diamond is above a big square, the attention shift in figure 27c will produce the 

square as the second object selected in the shape feature domain (instead of the star or the 

triangle in the other examples), by the interaction process in the blackboard illustrated in 

figure 27d.   

 

7.5. Related issues  

The architecture for combinatorial structures in vision discussed here is related with a 

number of issues that we can only briefly mention. The interactions between object 

(feature) information and spatial information, illustrated in figure 27, have a clear relation 

with attentional processes in the cortex (e.g., as in the ‘bias competition’ model of 

attention, Desimone & Duncan 1995). The blackboard architecture in the visual cortex 

(figure 21) and the blackboard architecture of visual working memory (figure 25) can be 

combined in a ‘closed-loop attention model’ (Van der Velde et al. 2004b). Another issue 

is the question of how and to what extent the architectures for combinatorial structures 

discussed here are related to processing of object identification (e.g., Biederman 1987; 

Edelman & Intrator 2003). Finally, the interaction between neural sentence structures 

(figure 10) and visual blackboard structures, as illustrated in figure 27, could also form 

the basis of a model that combines pictorial and propositional aspects of mental imagery 

(for a discussion on that topic see Pylyshyn 2002, Van der Velde and de Kamps 2002b).  
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8. Conclusion and perspective 

The aim of our paper is to show that the problems described by Jackendoff (2002) can be 

solved by means of neural blackboard architectures. To this end, we have discussed and 

illustrated how two kinds of combinatorial structures (linguistic and visual) can be 

instantiated in terms of neural blackboard architectures. As can be expected, there are 

clear structural differences between these architectures, which derive from the nature of 

the information processing in which they are involved (in this case, the spatial 

arrangement of visual features in a visual display versus the sequential arrangement of 

words in a sentence). However, there are also important similarities between the different 

blackboard architectures.  

One similarity concerns the solution for the binding problem in each architecture. In 

both architectures, the binding problem is solved in terms of a process that answers 

specific ‘binding questions’ related to the binding at hand. This process consists of a 

selective flow of activation. Thus, the binding of features in the visual blackboard 

architectures consists of a selective flow of activation from one feature domain to 

another, determined by the interaction process in the blackboard. Likewise, the 

blackboard architecture for sentence structure produces a selective flow of activation in 

the process of answering a ‘binding’ question.  

Another similarity between the architectures concerns the transition from working 

memory to long-term memory, and the role of delay activity as a binding mechanism. 

Combinatorial structures can be stored in long-term memory (using synaptic 

modification) when the blackboard activity is included in a conjunctive form of encoding 

as provided by the hippocampus complex. The delay activity in the blackboard provides 

the time for the synaptic modifications (Hebbian learning) to occur, even in the case of 

one-trial learning.  

We also discussed and illustrated the potential for further development of the 

architectures we presented. It is clear that a substantial amount of work is needed to fulfill 

this potential. However, concerning the problems he discussed, Jackendoff (2002, p. 64) 

noted that “some further technical innovation is called for in neural network models … 

upon the development of such an innovation, the dialogue between linguistic theory and 

neural network modelling will begin to be more productive”. The examples of the neural 
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sentence structures we discussed illustrate how such a dialogue could proceed.  

We would argue that this technical innovation is also needed for the development of 

cognitive neuroscience models. In the preface of “The Cognitive Neurosciences”, 

Gazzaniga (1995, p. xiii) described the aim of cognitive neuroscience as follows: “At 

some point in the future, cognitive neuroscience will be able to describe the algorithms 

that drive structural neural elements into the physiological activity that results in 

perception, cognition, and perhaps even consciousness. To reach this goal, the field has 

departed from the more limited aims of neuropsychology and basic neuroscience. Simple 

descriptions of clinical disorders are a beginning, as is understanding basic mechanisms 

of neural action. The future of the field, however, is in working toward a science that 

truly relates brain and cognition in a mechanistic way.” 

If the ultimate aim of cognitive neuroscience is to deliver detailed neural models of 

cognitive processes, the question arises how such models can be developed and tested17. 

In some cases, like visual processing, an animal model exists that can be studied with the 

kind of experiments described in section 7.1.2. But for language and other aspects of 

high-level human cognition an animal model is missing, which excludes the kind of 

rigorous investigation of neural activity on a cell level that is possible with visual 

processing. In figure 8, we presented the neural activity of some of the assemblies 

presented in figure 7a. As the lines and labels in figure 7a suggest, one can see the 

activity presented in figure 8 as the result of virtual electrodes inserted in the model. In a 

similar way, one could compare the model with observations made with real electrodes, 

except for the considerations that prevent such a testing. On the other hand, neuroimaging 

methods like EEG and fMRI provide rather coarse observations of neural activity, not 

(yet) on the level of the detailed neural mechanisms needed to relate brain and cognition 

in a mechanistic way. 

If the aim of cognitive neuroscience is to relate brain and cognition in a mechanistic 

way, then the gap that seems to exist between detailed neural mechanisms and the current 

methods of observation is a problem for both modelling and neuroimaging18. In our view, 

the best way to close this gap is the integration of modelling and neuroimaging that we 

described in section 6.9. In short, on the basis of detailed models, activation processes 

can be derived that can be compared with neuroimaging observations. In turn, these 
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observations can be used to modify or change the existing models. This process is 

technically demanding and can only proceed in a step by step manner, but it may be the 

only way to fulfil the aim of cognitive neuroscience as described by Gazzaniga.   

However, the success of this process depends on further advances in both 

neuroimaging and modelling. In neuroimaging, further development of techniques like 

dynamic causal modelling (e.g., Friston et al. 2003) and further integration of EEG and 

fMRI is needed. In modelling, neural models are needed that can capture important 

aspects of human cognition, such as the productivity and systematicity that derives from 

the ability to process combinatorial structures.  

Thus, it is clear that a substantial amount of work, both theoretically and empirically, 

is needed to develop an understanding of the neural basis of combinatorial structures in 

human cognition. However, the similarities between the potential neural instantiation of 

combinatorial sentence structures and the (more familiar) neural instantiation of 

combinatorial structures in visual cognition as described here provide the hope that such 

a development can be successful in the near future.  

 

 

 

Notes 

1. Tensor networks could perhaps be included here. However, tensor networks fail to 

instantiate combinatorial structures (Fodor and McLaughlin, 1990). Basically, this results 

from the fact that a tensor is just a list of constituents, organized in a particular fashion 

(i.e., as a n-dimensional list for a rank-n tensor). Any operation on a tensor consists of 

selecting a k-dimensional subset of the constituents in the tensor (with k ≤ n). But all 

selected subsets have to be listed in the tensor beforehand, which limits the instantiation 

of novel structures. Furthermore, adding constituents to the tensor increases the 

dimensions of the tensor, which requires adjustments to all components in the cognitive 

system that can interact with the tensor.  

 

2. The sentence presented by Jackendoff (2002) is The little star's beside a big star, with 

the clitic z ('s) to emphasize the phonological structure of the sentence. Phonological 
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structure is not discussed here, therefore the clitic z is omitted.  

 

3. When a symbol is copied and moved elsewhere, it is detached from its network of 

relations and associations. One could try to reestablish these relations and associations 

from time to time, but this requires an active process, executed by a control structure. 

Active control would be needed constantly, to decide how many of these relations and 

associations have to be reestablished (and how often).  

 

4. Pilot simulations showed that RNNs are very good at reproducing learned word-word 

associations. Thus, with the test sentence boy hears girl, we wanted to avoid 

combinations like boy hears and hears girl in the training sentences. Other than that, we 

wanted to train as much relations between these words as possible. In the case of this test 

sentence, the RNNs learned the relation boy Verb girl. Furthermore, they learned the 

relation dog Verb girl with dog hears Noun, and the relation boy Verb cat with Noun 

hears cat. 

 

5. We are not aware of pathological behavior of this kind. Broca's aphasics, for instance, 

often fail on sentences like girl who dog hears obeys Mary, but they can still understand 

sentences like boy hears girl (Grodzinsky 2000). 

 

6. Verbs can have one, two, or three arguments, or thematic roles. Although in semantic 

terms many different kinds of arguments can be distinguished, they can be grouped into 

‘semantic macroroles’(Van Valin 2001). We will refer to these as ‘agent’, ‘theme’, and 

(later on) ‘recipient’.   

 

7. When a NP assembly is bound to a sentence structure, at least one of its memory 

circuits is active. This activation can be used as a signal that the NP assembly is not free. 

Or, one could have an ‘inhibition of return’ that prevents the reactivation of a structure 

assembly activated recently.  

 

8. The inhibition of the active NP assembly could result from initiating a competition 
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between the NP assemblies. Due to its high transient activity, frequently found with a 

new stimulus, the new NP assembly could win the competition. Or, the occurrence of a 

new noun could result in the inhibition of the active NP assembly before a new NP 

assembly is generated. 

 

9. The delay assemblies produce inhibition by activating inhibitory interneurons.  

 

10. If tree-like structures capture important aspects of sentence structures, neural 

instantiations of sentence structures can always be transformed into tree-like structures. 

This is a direct consequence of having a neural instantiation of a sentence structure. It can 

be compared with the gradual transformation of one computer language into another. It is 

a matter of choice which of the intermediary structures are used to illustrate the 

transformation. A comparison of figures 7 and 7a shows that it is more useful to discuss 

the architecture in terms of the structures illustrated in figure 7 than those in figure 7a. 

Yet, both figures represent the same architecture, and can be transformed into one 

another.  

 

11. In linguistics, words are the terminal notes placed at the bottom of a sentence 

structure. Here, they are placed close to their structure assemblies.  

 

12. The structures in figures 11 (left) and 1 (bottom) are not the same. Figure 11 (left) 

represents a conjunctive encoding that results from direct associations between each of 

the word assemblies and the HC neuron. In figure 1 (bottom), a specific neural circuit 

will activate a ‘sentence’ neuron, when the word assemblies have been activated in the 

correct order. Circuits of this kind are much harder to develop than the conjunctive 

encoding in figure 11.  

 

13. Transitions from an attractor state into an associated attractor state have been 

observed in the cortex (Yakovlev et al., 1998).  

 

14. A difference could be found in clause-based closure principles (e.g., see Gibson 
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1998). For instance, a relative clause can be closed without closing a matrix clause, but a 

matrix clause cannot be closed without closing a relative clause.  

 

15. The connection structure illustrated in figure 19 was not specifically designed to 

operate as a pushdown stack. Instead, it was designed to satisfy two constraints. First, the 

constraint of combinatorial productivity, which entails that every A subassembly should 

be able to bind with every B subassembly (and vice versa). This constraint is satisfied 

with the matrix-like array of columns in the connection structure. Second, the uniqueness 

constraint, which entails that a given A subassembly can only bind with one B 

subassembly (and vice versa). This constraint is satisfied with the inhibition within the 

horizontal and vertical rows of columns. The resulting connection structure operates as a 

pushdown stack if the reverberating activity in the structure decays over time.  

 

16. The image of a purple cow is used in an advertisement campaign of a brand of milk 

chocolate bars, sold in a purple wrap.   

 

17. Perhaps we do not need to study the neural instantiation of cognition. In the view of 

‘classical’ cognitive psychology (e.g., Fodor & Pylyshyn 1988), implementation is 

irrelevant for the nature of a computational model of a cognitive process. A mathematical 

critique of this position can be found in Van der Velde (2001). Here, we point out that 

Fodor (2000) has argued that the computational theory of mind is incomplete, in fact only 

a fraction of the truth. If so, it makes even more sense to study how computational 

processes can be implemented in the brain. We know that the brain produces cognition (it 

is the only example we are certain of). So, if we have an idea of how computational 

processes could be matched onto brain processes, we could also get a clearer view of 

what could be missing in the computational account. 

 

18. An alternative would be to reformulate the aim of cognitive neuroscience. Or, what 

amounts to the same thing, to abandon cognitive neuroscience as described by Gazzaniga. 

We do not advocate such a position.   
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Appendix  

 

A1. The architecture for sentence structure 

The simulations presented in figure 8 are based on excitatory (E) and inhibitory (I) 

neuron populations (e.g., Wilson and Cowan 1972; Gerstner 2000). The activation of 

population i is modelled with the population rate Ai, defined as the fraction of neurons 

that fire in the time interval [t, t+dt] divided by dt. Ai is given by: 

)( jijji
i AwFA

dt
dA

Σ+−=ατ                                                   (1) 

τE (α=E) = 10 ms and τI  (α=I) = 5 ms are the time constants for the excitatory and 

inhibitory populations. The ijw  (or ijw → ) are the efficacies from population j onto 

population i ( ijw  is negative iff j is an inhibitory population). F(x) is given by: 
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( ) ( )( )θβ −−+
= xe

fxF
1

max                                                             (2) 

with maxf = 500 Hz, β = 1 and θ = 5.  

The gating circuit in figure 3 (in the direction X to Y) is given by the following 

equations, derived from (1) and (2):  

( )outXYXE YwinputFX
dt
dX

out →
++−=τ                                   (3) 

                                 
( )xXiXXout

out
E iwXwFX

dt
dX

outxout →→ −+−=τ  

                                 
( )xiIiXx

x
I IwXwFi

dt
di

xxx →→ −+−=τ  

                                 
( )XtoYx

x
I controlFI

dt
dI

+−=τ  

 

The efficacies used were 
outXXw →  = 

xiXw →  = 0.20, 
outx Xiw →  = 

xx iIw →  = 1. XYout
w →  is 

variable, its value depends on where the gating circuit is employed in the network. It will 

be referred to as the efficacy of the gating circuit. The gating circuit can be activated by 

the input signal controlXtoY from an outside population, with activation f = 30 Hz and 

wcontrol = 1. The memory circuit in figure 3 was simulated as a gating circuit, with control 

signal 0 (‘off’) or f (‘on’), and 
outXXw →  = 0.2. The gating and memory circuit in the 

direction Y to X follows from the above equations by changing the labels X to Y, Y to X 

and x to y.  

We did not explicitly model delay activity. Instead, we assumed that a delay 

population will be activated if its input is above threshold θdelay. Time constant τdelay = τE 

in this case. With high input, activity will decay until it reaches a default θdefault. It will be 

deactivated if the total input is below a negative threshold θdeact (i.e., net inhibition). 

Memory activity will decay within approximately τE ms. We took θdeact = - 0.2, θdelay = 4, 

θdefault = 2.0 and τdelay = 10000 ms. We also used a parametrized version of the CPG, 

which reproduces observed behaviour of CPGs, but which allows for a simple treatment 

of them within our simulation.  
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A structure assembly consists of a central delay population (main assembly) and three 

external populations: an input population (word assembly), an agent population 

(subassembly) and a theme population (subassembly), as in figure 2. The external 

populations are connected to the main assembly by gating circuits, with efficacies εinput = 

0.05, and εagent = εtheme = 0.01. Each assembly consists of eleven populations, including 

eight constituents of the gating circuits. 

An assembly group consists of a number of assemblies which belong together and 

that share a central inhibitory population (figure 4). There are two assembly groups, one 

for the nouns (six assemblies) and one for the verbs (five assemblies). They are indicated 

by the Nx and Vi symbols in figure 8. The agent, theme and input population of each 

assembly feed the inhibitory population with efficacycompetition = 0.005. The inhibitory 

population acts on all main assemblies with a ‘competition parameter’, controlled by the 

CPG (‘on’ = 0.2, ‘off’ = 0). 

The six agent subassemblies of the noun assembly group are each connected with 

(memory) gating circuits with efficacy εagent = 0.008 to each of the five agent 

subassemblies of the verb assembly group. as shown in figures 4 and 5. Similarly for the 

theme subassemblies, with εtheme = 0.015.  

In all, the simulated model consisted of 624 populations. Integration of the system of 

equations (3) evolved simultaneously for the entire model, using fourth-order Runge-

Kutta integration with an integration time step h = 0.01 ms. 

 

A2. The local interaction circuit 

The equations for the populations A, B and I in the local interaction circuit in figure 24 

are: 

                  
( ) ( ) bgffIAIAAAA

A
s IIIFJIFJI

dt
dI

++−+−= →→τ  

                  
( ) ( ) ( ) bgABAIBIBBBB

B
s IIFJIFJIFJI

dt
dI

++−+−= →→→τ  

( ) ( ) bgfbAIAIIII
I

s IInmmIFJIFJI
dt
dI

++−++−−= →→ )(τ  
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Here, Ix is input current in population x and τs is the synaptic time constant (5ms). 

The efficacies Jx are: JA→A = 0.01, JA→B = 0.07, JA→I =0.3, JB→B = 0.01, JI→I = 0.01 and 

JI→A = 0.01, JI→B = 0.1. The background activity to all populations is 3,4 Hz (Ibg = 0.01). 

The stimulus is given by a feedforward input activity Iff = 25 Hz to population A. 

Feedback is given by the cue-related activity Ifb = 25 Hz to population I, divided in the 

fractions match n and nonmatch nm (with n + nm = 1) as determined on the basis of 

figure 23 (interaction).  

 

 


