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Abstract

Optimality Theory catches on in linguistics, �rst in phonology, then in syn-
tax, and recently also at the semantics / pragmatics interface. In this paper
we point at some parallels between some principles employed in optimality
theoretic interpretation, and some notions from the well-established �eld of
Game Theory. Optimality theoretic interpretation can be de�ned as what we
call an \interpretation game", and optimality itself can be viewed as a solu-
tion concept for a game. More in particular, optimality can be characterized
in terms of the game-theoretical notion of a `Nash Equilibrium'.
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1 Introduction

If John says that OTS is possibly right, we can infer from this that he thinks
it is not obviously, or necessarily right. What kind of inference is this? Sup-
pose that from Possibly A we can infer semantically that it is possible that
A is false. By this assumption we can easily account for the above inference,
but we can no longer account for the fact that we might appropriately say
OTS is possibly right, if not necessarily. The latter example makes clear that
the above inference to the possibility that OTS is wrong cannot be conven-
tionally associated with all sentences in which the sentential clause OTS is

possibly right occurs. But how then should we account for the intuition that
we can conclude that OTS might be wrong from what John says? Following
Grice (1975), it has become a common pratice in the area of pragmatics to
distinguish what is said by the speaker's use of a sentence (the semantic

or truth-conditional meaning of a sentence), and what is meant by it on a
particular occasion. Thus conceived, pragmatics is concerned with the study
of what is meant by an utterance above its semantic, or truth-conditional,
content by taking into account the issue whether the utterance is appropri-
ate in its conversational context, i.e. with respect to the (common) beliefs
and intentions of the participants of the conversation. The main motivation
for this division of labour between semantics and pragmatics is to keep the
semantics as simple as possible; it allows us to determine the semantic con-
tent of a sentence in a compositional way based on its syntactic structure,
without making reference to the attitudes of speakers and hearers.

Following Gazdar (1979), the following general pipe-line architecture
of the semantics / pragmatics interface has emerged

1. what is said by a (declarative) sentence, its semantic content, is equated
with its truth-conditions

2. truth-conditional content can be determined in a rather simple way
compositionally without making reference to either what is (or could
be) pragmatically implicated by what is said, or the attitudes of the
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participants of the conversation
3. to determine what is pragmatically implicated we can, and have to,

make use of the truth-conditional content of the sentence; what is
potentially implicated might be overruled, or cancelled, if it con
icts
with what is semantically entailed, as in our above example OTS is

possibly right, if not necessarily.
Thus, according to Gazdar, the semantics / pragmatics interaction goes only
one way; although what is pragmatically presupposed or implicated might
depend on the semantic content of the sentence, semantics is autonomous

from pragmatics.

It seems clear to us that this strong Gazdarian picture of the interface must
be wrong for the following reason: not only what is pragmatically impli-
cated depends on the attitudes of the participants of the conversation, but
this might also the case for the truth-conditions that a sentence has. Prag-
matic notions like appropriateness and relevance are both used to determine
what is conversationally implicated and to determine what is asserted by
a sentence. It is clear that this dependence of what is said, or asserted, on
pragmatic notions undermines the goal to determine the truth-conditions of
sentences in a compositional way. Look, for instance, at a sentence like He
is tall. It is clear that this sentence is highly underspeci�ed or ambiguous; in
di�erent contexts the pronoun might refer to di�erent individuals. But the
sentence has also a more constant meaning; we might say that in all contexts
the pronoun refers to the most salient male individual in that context. A
Gazdarian might then propose to represent this contextual information in a
more or less objective way, without referring to the attitudes of the agents.
What is the most salient individual in a context? For some contexts we can
give rather objective criteria. For instance, it seems clear that when we ut-
ter the above sentence in the context where Bill is next to John has just
been uttered, the pronoun will refer to Bill, but when the foregoing sentence
would have been John is next to Bill, the pronoun would refer to John. The
objective criterium in this case is that the (individual denoted by the) sub-
ject of a preceding sentence is more salient than the (individual denoted by
the) object. But now consider the following discourse: Bill tickled John. He

squirmed. According to the above rule the pronoun should refer to Bill. It is
clear, however, that according to its most reasonable interpretation the pro-
noun does not refer to Bill, but to John. Why? Because we assume that it is
the tickled person who has reason to squirm; the assertion that it is Bill who
squirmed would be less relevant in this context than the assertion that John
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squirmed. We conclude that the speaker asserted that John tickled, i.e. the
constraint that the pronoun refers to the most salient person in its context
of interpretation is overruled by the constraint that demands that what is
said should be relevant in its context of interpretation. Whether one propo-
sition is more relevant than another depends crucially on the attitudes of the
participants of a conversation, which suggests that the relevant contextual
parameters cannot be given without making reference to the attitudes of the
speakers. But wait! Can we not still represent the relevant contextual pa-
rameter in the context of interpretation of the sentence in which the pronoun
occurs as an `objective' salient order, when we allow with Lewis (1979) for
a rule of accommodation of comparative salience? In principle we can, but
note that in this case it is the process of accommodation that is governed by
notions like appropriateness or relevance that cannot be described without
making reference to the attitudes of agents. Notice that according to this
variant the relevant contextual parameter that helps to determine what is
said (its truth conditions) by an utterance, the salience ordering, crucially
depends on the utterance itself; whether and how the salience order should
be accommodated depends on what would have been said by this utterance
according to the di�erent possible salience orderings. Observe also that in
this variant some constraints can be overruled by relevance, too; in this case
not that a pronoun should refer to the most salient individual in its context,
but rather that the salience order determined after the interpretation of the
�rst sentence of a discourse will function as the relevant salience order to
interpret the anaphoric pronouns of the following sentence.

The above example shows that we cannot systematically determine the
semantic content of a sentence in a compositional way based on its syntactic
structure, without making reference to the attitudes of speakers and hearers,
if we equate the semantic content of a sentence with its truth-conditions.
So what should we do? Give up compositionality, or give up the assumption
that what should be determined compositionally are the truth-conditions of
a sentence? The former, radical, option would result almost surely in giving
up the distinction between semantics and pragmatics, just like what was
proposed in the old days of generative semantics. According to the latter
option, there is still a role to play for compositional semantics. However, the
semantic content of a sentence is not fully determined and doesn't give rise
to clearcut truth-conditions, but is left rather underspeci�ed.

We have only discussed pronouns above, but similar remarks can be,
and have been, made for the interpretation of other context-dependent con-
structions like modals (Kratzer, 1979), presuppositions (v.d. Sandt, 1992),
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quanti�er scope (Parikh, 1993), tenses (Asher & Lascarides, 1994), adjec-
tives (Blutner, 1998), and quanti�ed constructions (Hendriks & de Hoop,
to appear). For all those cases it has been proposed that what should be
determined compositionally should be left rather underspeci�ed, and that
to determine the actual truth-conditions of a sentence we have to rely on
constraints motivated by principles of rational communication as given, for
instance, by Grice's maxims of conversation. This results, obviously, in a
new formulation of the semantics / pragmatics interface.

2 Optimality Theoretic Interpretation

Recently, various phenomena on the semantics / pragmatics interface like
the ones discussed above have been given an optimality theoretic formulation
(Blutner, Hendriks and de Hoop, de Hoop and de Swart, J�ager, Zeevat). In
this section, and in section 4, we give a short overview of the various types
of analyses that have been proposed, and illustrate these by means of a few
examples.

2.1 One-Dimensional Optimality

According to the proposed application of Optimality Theoretic principles by
de Hoop & de Swart (to appear) and Hendriks & de Hoop (1999) to the the-
ory of interpretation, what compositional semantics gives us is a radically
underspeci�ed notion of meaning represented by a possibly in�nite set of
interpretations of a well-formed syntactic structure. In addition, optimality
theory gives us a ranked set of constraints which allow us to select the op-
timal interpretation associated with a particular syntactic structure. These
constraints should of course be as general as possible, and also the rankings
between those constraints should, if possibly, be valid for a wide range of
languages, based on general principles of rational communication.

In order to illustrate how things might work out in such a theory,
consider again the example which we discussed above with an anaphoric
pronoun. The example is of the form aRb. He is P, where in the �rst sentence
a and b are both names for male individuals. Discourses of this form are
potentially ambiguous, or underspeci�ed, because the pronoun might refer
back to either a or b. But we can say something more; on the basis of
empirical data we might observe that the pronoun will typically refer back
to the subject expression, i.e. a. We can state this observation explicitly
in a constraint. This constraint is very particular, but we might embed this
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particular constraint within a more general one, if we make use of the notion
of comparative salience. In whatever way we do this, the important point is
that the relevant constraint should not be too hard; in some circumstances
it might be overruled. In the above discussed discourse Bill tickled John.

He squirmed, for instance, it doesn't seem relevant or natural to state that
Bill squirmed after the �rst sentence. Because it seems reasonable, with
an eye upon the communicative aims, to assume that the constraint on
relevance or naturalness is more important than the constraint on salience,
the constraint that in our case demands that the pronoun should refer to
the subject expression of the previous sentence becomes overruled. Thus,
although pronouns `want' to refer back to the subject expression of the
previous sentence, this will only result in an optimal interpretation in case
the stronger constraint of relevance is also met.

Another example, discussed in Hendriks and de Hoop, is the following:

(1) Often when I talk to a doctori, the doctorfi;jg disagrees with himfi;jg.

In the interpretation of this example two constraints are at work:

(B) If two arguments of the same semantic relation are not marked as
being identical, interpret them as being distinct

(DOAP) Don't Overlook Anaphoric Possibilities

In example (1), the two constraints have con
icting e�ects. If (DOAP) is
fully satis�ed, that is, if both \the doctor" and \him" are interpreted as
anaphoric upon the \a doctor", then (B) is violated. And if (B) is satis�ed,
then at least either \the doctor" or \him" remains unresolved. Intuitively,
this seems the best solution, and Hendriks and de Hoop therefore uses this
example to show that constraint (B) is harder than (DOAP). The (DOAP)-
principle can be overruled in order to satisfy (B), and the `optimal' inter-
pretation is that either \the doctor" and not \him" is anaphoric upon the
antecedent \a doctor", or the pronoun and not the de�nite description is.

So far we have sketched an optimality theoretic formulation of only one of
the two types of pragmatic inferences which we discussed in the �rst section
of this paper. So how should we account for the case with which we began our
story: the scalar implicature from 3A to :2A? Our intuitive explanation for
this implicature was that the speaker did not think it is necessary that OTS
is right, because otherwise he would have said so, i.e. he would have used
another expression. It is not entirely clear how to account for this reasoning
in terms of the above sketched one-dimensional search for optimality where
the input is given by single syntactic structure, and no reference is made to
alternative expressions that the speaker might have used. Blutner (ms) has

6



recently argued that an account of scalar implicatures, requires us to take
into consideration what the speaker could have said, and proposed to go from
a one-dimensional, to a two-dimensional search for optimality. This two-
dimensional view was mainly motivated by a reduction of Grice's maxims
of conversation to two principles.

2.2 The Q- and I-Principles

In his seminal paper on Logic and Conversation, Grice (1975) tried to ac-
count for so-called pragmatic inferences by making use of four maxims of
conversation: the maxims of quality, quantity, relation, and manner. More
recently, some attempts have been made to reduce and explicate these max-
ims to some more principled rules of, or constraints on, rational behaviour
in communication. Valuable contributions in this direction have been made
especially by Atlas & Levinson (1981) and Horn (1984), who seek to reduce
the maxims of quantity, relation and manner to the following two principles;
the Q-principle, (implementing Grice's �rst maxim of quantity), which ad-
vises the speaker to say as much as he can to ful�ll his communicative goals,
and the I-principle (called R-principle by Horn (1984), and implementing
the rest of the Grician maxims except for quality), which advises the speaker
to say no more than he must to ful�ll his communicative goals. By means
of the I-principle we can explain, for instance, why in many contexts we
can use (short, and thus e�cient) pronouns to refer to individuals, instead
of long eternal de�nite descriptions, and it can also help to explain why in
many cases the conjunctive connective and gives rise to a temporal, or even
causal, interpretation, as in Billy cried, and was punished versus Billy was

punished, and cried. The Q-principle is responsible for the so-called scalar

implicatures, and makes essential reference to alternative expressions the
speaker could have used.

Although both principles have the e�ect that the hearers can conclude
more from the utterance than what is explicitely said by it, the strenghenings
due to the I and Q principles typically go in opposite directions. As a result,
the two principles sometimes advise the speaker to do opposite things, and
thus we would expect that the hearers sometimes don't know what to make
of the utterance. For instance if you say John was able to solve the problem,
I can conclude by means of the I-principle that John actually solved the
problem, while the Q-principle gives rise to the opposite conclusion that
John actually did not solve the problem. (For otherwise you should have
said he did so.) Horn (1984), following Zipf (1949), gives an interesting
motivation for why the I and Q principles seem to give rise to opposite
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conclusions. He argues that the principles can be seen as representations of
rational goals of competing forces to minimize their e�orts: The I-principle
represents the speaker's goal to minimize the e�ort to communicate as much
as possible, while the Q-principle can be seen as representing the hearer's

goal to minimize his e�ort to understand.
Looking at both principles from a minimization point of view has

the e�ect that the I-principle and the Q-principle should be seen from two
di�erent perspectives; the I-principle from the speaker's perspective, and
the Q-principle from the hearer's perspective. For our purposes, however,
it turns out to be more useful to think of the two principles from a max-

imization point of view, which will turn the perspectives around. In that
case the I-principle represents the hearer's goal to maximize the relevance,
or informativity, of the given utterance, while the Q-principle can be seen
as maximizing the speaker's goal to be as informative as he can.

2.3 Two-Dimensional Optimality Theoretic Interpretation

Blutner (1998, ms) has recently given the I- and Q-principle a slightly dif-
ferent formulation such that the Gricean maxims can be seen as being part
of a two-dimensional optimality theoretic framework of disambiguation. The
I-principle is formulated very much like it was formulated above from a max-
imization point of view, and helps to select the most coherent, or relevant,
interpretation. This principle is very much in line with the one-direction view
on optimality theoretic interpretation as proposed by Hendriks & de Hoop
(to appear) and De Hoop & De Swart (1998), which, exclusively, adopts the
hearer's perspective on disambiguation. What is interesting is that Blutner
also implements the Q-principle within an Optimality Theoretical frame-
work, thereby also taking the speaker's perspective into account. Where the
I-principle compares di�erent possible interpretations for the same syntactic
expression, the Q-principle compares di�erent possible syntactic expressions
that the speaker could have used to communicate the same meaning. The
interesting feature of Blutner's formulation of the Q-principle within two-
dimensional OT is that although it compares alternative syntactic inputs to
one another, it still helps to select the optimal meaning among the various
possible outputs of the single actual syntactic input given, by acting as a
blocking mechanism. The strong version of Blutner's two-dimensional OT
can be formulated as follows (we here relate pairs (r;m) of possible rep-
resentations (r) and meanings (m), by means of an ordering relation `>',
`being more e�cient'):
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(2) Two-dimensional OT (Strong Version) a representation-meaning pair
(r;m) is optimal i� it satis�es both the Q- and the I-principle, where:
(Q) (r;m) satis�es the Q-principle i� there is no other pair (r0;m)

such that (r0;m) > (r;m)
(I) (r;m) satis�es the I-principle i� there is no other pair (r;m0)

such that (r;m0) > (r;m)

How does this blocking due to the Q-principle work? Consider the scalar
implicature again from Possibly A to Not necessarily A. If we represent the
meanings of the unambiguous sentences Possibly, but not necessarily, A and
Necessarily A by `3A^:2A' and `2A', respectively, we can say that Possibly
A is compatible with both 3A^:2A, and with 2A. Somewhat arti�cially,
perhaps, we might then even say that thus Possibly A can mean both. Intu-
itively, however, the speaker has normally the �rst meaning in mind by his
use of the sentence. How can we, as hearers, conclude this? Because we reason
as follows: Suppose the speaker wanted to communicate 2A. To communi-
cate this, he might have used both the `ambiguous' expression Possibly A,
and the unambiguous Necessarily A. Both expressions are equally complex,
but the speaker would realize that I, as a hearer, would have had no problem
to understand what was meant by Necessarily A, but would have had prob-
lems with the ambiguous Possibly A, i.e. Necessarily A is more e�cient to
communicate 2A then Possibly A. Thus, if he wanted to communicate 2A,
he wouldn't have used Possibly A. Therefore, so the hearer concludes, the
speaker didn't want to communicate 2A with his actual use of the expres-
sion, but only3A^:2A. In other words, one of the two possible meanings of
the ambiguous sentence Possibly A is blocked (by the Q-principle), because of
the existence of an alternative syntactic form that would express that mean-
ing in a more e�cient, or more optimal, way. The pair (`Possibly A';2A)
doesn't satisfy the Q-principle, because there is an alternative expression,
Necessarily A, such that (`Necessarily A';2A) > (`Possibly A';2A).

3 Game Theory and Strong Optimality

The ranking and judging of representations and meanings in optimality the-
oretic interpretation has a structure which resembles principles developed
in the well-investigated �eld of Game Theory. In this section we present a
game-theoretical formulation of Blutner's notion of optimality. (For an in-
depth introduction to game theory, cf., e.g., Osborne and Rubinstein 1994).
The �rst section presents an introduction to some of the basics of Game

9



Theory, in particular to that of a strategic game. In the next subsection we
present the notion of a `Nash Equilibrium', a renown solution concept in
Game Theory. In the third subsection we then show how optimality theo-
retic interpretation can be given a formulation in terms of an interpretation
game, and that Blutner's concept of optimality corresponds to precisely this
concept of a Nash Equilibrium.

3.1 A Formal De�nition of Games

In Game Theory, a `strategic game' is the formal rendering of a game which
can be played with a speci�c number of players, who can play various roles
in the game. In strategic games it is assumed that the players all make one
choice at the beginning of the game. The players (simultaneously) choose
a strategy, and then they play the game, each according to the strategy
chosen. Here it is assumed that the players do not know which choices the
other players make when they choose their own strategy. However, it is
assumed that they know what options are available to the other players,
and what are the outcomes of the game if they knew the actions chosen.

A strategic game is formalized as a triple hN; (Ai); (�i)i which consists
of a set of players N , and, for each player i 2 N , a non-empty set of possible
actions Ai, and a preference relation �i over the product �j2NAj of possible
actions of all players. The intuitive idea behind this de�nition can be put
as follows. Each player i can choose any action from his alternatives Ai.
If all the players have made their choice, we get what is called an `action
pro�le'. Intuitively, such a pro�le is one of the possible courses which a game
may take. If our players are 1; : : : ; n and if they choose actions a1; : : : ; an 2

�j2NAj then that's one possible `run' of the game.
It is assumed that players choose an action which has a preferred re-

sult. Preferences over results are given by the preference relations (�i) which
are taken to depend wholly and only on the particular actions which the play-
ers may choose. Thus, if the players 1; : : : ; n choose actions a� = a1; : : : ; an,
respectively, then the result may be better for one player i than when they
choose b� = b1; : : : ; bn. In that case, we �nd that a� �i b

�. Obviously, it may
be the case that a� �i b

� and a� �j b
� for two pro�les a� and b� and players

i and j. (This is the case, typically, when two players have competing or
con
icting interests.) In general it is assumed that preference relations are
re
exive, transitive and complete.

It may be clear, even from these introductory comments, that the
consequences of a particular choice of player i for action ai generally depend,
not only on this particular choice, but also on the choices which the other
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players make. Thus, if the players 1; : : : ; n choose the action pro�le a� =
a1; : : : ; an, respectively, then player ai may be happy about the result, but if
player i sticks to his choice ai, while the others 1; : : : ; i�1; i+1; : : : ; n happen
to choose b1; : : : ; bi�1; bi+1; : : : ; bn, the result may be less welcome for i, of
course. On the other hand, if we may assume that the other players 1; : : : ; i�
1; i+ 1; : : : ; in choose a1; : : : ; ai�1; ai+1; : : : ; an, respectively, then player i is
assumed to choose an action ai such that outcome or pro�le a� = a1; : : : ; an is
at least as good as any alternative pro�le a1; : : : ; ai�1; bi; ai+1; : : : ; an which
may result from an alternative choice of i for bi. A note on notation: if we
have a pro�le a� = a1; : : : ; an, then we use a��i to indicate the list of pro�le's
strategies of all players except i|i.e., a1; : : : ; ai�1; ai+1; : : : ; an|and we use
(a��i; bi) to indicate the pro�le which is like a� with the sole di�erence that
i chooses bi in stead of ai. Typically, of course, a

� = (a��i; ai).
In order to clarify these notions a bit more, consider the following

somewhat stylized example. A famous two player game is a `coordination
game' called `Bach or Strawinsky'.1 In this game two persons want to go
out. They can choose between the performance of a concert of Bach and
the performance of a concert of Strawinsky. One player (Bonnie) prefers to
go to Bach, the other (Clyde) prefers Strawinsky, but the main concern of
both players is to go out together. Formally, this corresponds to a game
hN; (Ai); (�i)i, where

(3) the set of players N = fb; cg consists of Bonnie and Clyde
(4) the set of possible actions of Bonnie and Clyde Ab = Ac = fB;Sg

consist of (a choice for) Bach and Strawinsky

The pro�les of this game are (B;B), (B;S), (S;B), and (S; S), where (x; y)
indicates the pro�le which obtains when Bonnie chooses x and Clyde chooses
y. Since Bonnie and Clyde de�nitely prefer to go out together, they both pre-
fer (B;B) and (S; S) over the two other ones (B;S) and (S;B). Since Bonnie
moreover prefers Bach, she also prefers (B;B) over (S; S) and (B;S) over
(S;B). Similarly, Clyde prefers (S; S) over (B;B), and (B;S) over (S;B).
The preferences of Bonnie and Clyde, �b and �c, can thus be summarized
as follows:

(5) (B;B) �b (S; S) �b (B;S) �b (S;B)
(6) (S; S) �c (B;B) �c (B;S) �c (S;B)

A convenient representation of two player games can be given in a two-
dimensional matrix, in which the various rows represent the possible actions

1. Originally known as `The Battle of the Sexes'.
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of player one (Bonnie) and the columns the possible actions of player two
(Clyde):

(7)
B S

B (3; 2) (1; 1)
S (0; 0) (2; 3)

In this matrix, we have �lled in payo� pairs (n;m) which indicate the relative
payo� of a speci�c action pro�le (x; y) for Bonnie and Clyde, respectively.
Thus, the pair (3; 2) indicates the relative payo� of Bonnie (3) and Clyde
(2) when Bonnie and Clyde both choose Bach. For Bonnie this constitutes
a better payo� then the one in which both choose Strawinsky, because in
that case we �nd a relative payo� pair (2; 3) where Bonnie's payo� (2) is less
than 3. For a similar reason, the last pro�le is better for Clyde, because he
prefers a joint choice for Strawinsky over a joint choice for Bach. However,
both of these pro�les are better than the two in which they do not go out
together, and in which they at best reach a payo� of only one.

3.2 Nash Equilibria as Solutions

One of the central notions in game theory is that of a solution concept. In
general, solution concepts are abstract and formal speci�cations of certain
optimality concepts. They relate to the reasonable choices which players may
make, given some notion of rationality and common knowledge. A very well
known solution concept is that of a `Nash Equilibrium'. A Nash Equilibrium
of a strategic game hN; (Ai); (�i)i is an action pro�le a

� 2 �j2NAj such that:

(8) 8i 2 N and ai 2 Ai: (a
�
�i; a

�
i ) �i (a

�
�i; ai)

Intuitively, this says the following. A Nash Equilibrium is a pro�le in which
each player's action is a best response to the choices of the other players
in that pro�le. For no player i is there any alternative ai for the action a�i
which he chooses in a�, by means of which she can get a better payo�, given
that all the other players choose as they choose in a�. A Nash Equilibrium
clearly need not give the best possible result which one player might prefer.
A player gets the best payo� relative to the choices of the other players in
the pro�le, and this really is an equilibrium because this holds for all players.

If we now return to the example which we discussed above we can
see that it has two Nash Equilibria, the ones in which both Bonnie and
Clyde choose Bach, and the one in which both choose Strawinsky. It is
expedient to see why these pro�les qualify as equilibria. The pro�le (B;B)
is a Nash Equilibrium because, given that Bonnie chooses Bach, the best
possible outcome for Clyde obtains when he chooses Bach as well (since
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(B;B) �c (B;S)), while given that Clyde chooses Bach, Bach is also the very
best choice for Bonnie (since (B;B) �b (S;B)). Something analogous holds
of the (S; S) equilibrium. In both pro�les, none of the two players has reason
to deviate from the choice he actually makes. Surely, when Bonnie considers
the Nash Equilibrium (S; S) she might reason as follows: \well, I better
choose Bach than Strawinsky, because given that choice, it is better for Clyde
to choose Bach as well, and I like (B;B) better than (S; S)" and therefore
choose Bach after all. However, this type of reasoning does not by itself
constitute a sound solution concept, because if Clyde also reasons this way ,
he will choose Strawinsky, and the outcome is (B;S), a pro�le which is worse,
for both Bonnie and Clyde, than the outcome of each of the two mentioned
equilibria. The nice point about the two Nash Equilibria in the Bach or
Strawinsky game is that the two equilibria are not absolutely optimal pro�les
for both players, but optimal pro�les relative to the other's choices. Both
equilibria are satisfying for both players in this sense, or `stable'.

In the de�nition of a Nash equilbrium, the only preferences that really
count are those between two action pro�les a� and b� if their only di�erence
lies in the choice of i, i.e., if a��i = b��i. Furthermore, non-strict preferences,
where both a� �i b

� and a� �i b
�, do not count either. (In a Nash Equi-

librium, players may have alternative options which are equally good, as
long as they are not strictly better.) For this reason, Nash Equilibria in two
player games can be visualized by drawing arrows between two pro�les on
the same row, or in the same column, with the following meaning: means
`player 2 strictly prefers the left pro�le,' ! means `player 2 strictly prefers
the right pro�le,' " means `player 1 strictly prefers the top pro�le,' and #
means `player 1 strictly prefers the bottom pro�le.' The Bach or Strawinsky
game then boils down to the following table:

(9)

B S
B �  

" #
S ! �

If in such a table no arrow leaves from a certain cell, then the corresponding
pro�le is a Nash Equilibrium, here indicated by �. This diagram clearly
shows the dependence of the two preferences of each player upon the possible
choices of the other. Player 1 (Bonnie) has " in case Clyde chooses Bach,
and # if Clyde chooses Strawinsky. Similarly, Clyde's preferences ( and!)
vary with the possible choices of Bonnie (Bach and Strawinsky, respectively).
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3.3 Interpretation Games

From these introductory remarks the reader may already feel some connec-
tion between the notion of a solution concept and that of optimality. Both
rely on a notion of `better then' and both acknowledge a form of non-perfect
optimality. Actually, we can formulate the optimality theoretic interpreta-
tion as an interpretation game.

An interpretation game is played between two players, an (abstract)
speaker (S) and an (abstract) hearer (H). On the one hand, the speaker
wants to communicate a certain meaning and she has to choose a suitable
formulation for it; on the other, the hearer gets confronted with a certain
formulation, and he has to assign it a suitable interpretation. Thus, the
speaker's possible actions are given by the set of possible representations,
the hearer's actions are given by the set of possible meanings, and the pro-
�les are pairs of representations and possible meanings. Optimality theoretic
preferences < next can be used to de�ne preference relations �S and �H

over these pairs, and given these preference relations, some pairs of repre-
sentation and meaning come out as optimal. Finally, when we evaluate for
optimality, we always look along one dimension at a time. An optimal pro-
�le is one for which no player has a strictly better optimal alternative, given
that the other dimension remains �xed.

By way of illustration, consider a very simple and stylized example.
Suppose that we have two names, `Bach' and `Strawinsky', or `b' and `s', for
short, and two possible referents, Bach (B) and Strawinsky (S). Suppose that
we also have two semantic constraints, according to which `b' preferrably
refers to B, and `s' to S. This game can be displayed as follows:

(10)

B S
`b' �  

" #
`s' ! �

Trivially, this interpretation game of the Bach or Strawinsky variety has two
Nash Equilibria, which also constitute two optimal interpretations (`b',B)
and (`s',S). For given that S wants to refer to B, he better uses `b' and given
that H hears `b', the interpretation better be B. Similarly, for the pro�le or
interpretation (`s',S). As trivial as the example may be, it certainly shows the
parallel in the type of reasoning involved in the determination of optimality
as an equilibrium.

Let us now turn to two more interesting examples reminiscent of one
we discussed above, viz., (1):
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(11) Bill loves himself.
(12) Bill loves him.

In a matrix, the interpretation of the two sentences can be rendered as
follows:

(13)

Lbb Lbx

`self' �  
"

`him' ! �

There are two possible representations, `self', which is short for (11) and
`him', short for (12). Assuming that these are evaluated in a context where
Bill is salient already, there are two possible interpretations: that Bill loves
himself (Lbb) and that Bill loves someone else (Lbx), a person which pre-
sumably is to be found in the context. The arrows indicate the preferences
resulting from principle (B) and (DOAP):

(B) If two arguments of the same semantic relation are not marked as
being identical, interpret them as being distinct

(DOAP) Don't Overlook Anaphoric Possibilities

Like we said, it is assumed that (B) is stronger than (DOAP). Given this,
the pro�le (`him',Lbb) is ruled out by (`self',Lbb) because it violates (B) and
there is a better alternative, and this is indicated by ". Similarly, and as  
indicates, (`self',Lbx) is ruled out by (`self',Lbb), because it violates (DOAP).
Finally, although, (`him',Lbx) violates DOAP, it is better than (`him',Lbb),
since the latter violates (B), which is judged a stronger constraint. As the pic-
tures shows, the matrix has two Nash Equilibria, (`self',Lbb) and (`him',Lbx),
preciesly the two representation meaning pairs argued for.2

Before we carry on, it is expedient to inspect some general properties of
interpretation games. It is easily seen that the following holds:

Observation 1 (Optimality Subsumes Nash)
� a pro�le is strongly optimal if and only if it is a Nash Equilibrium

Proof: Trivial. End of Proof. The next observation relies on the assumption
that the ordering relation > is well-founded, an assumption enforced by
J�ager's requirement that it is (cf. below):

2. We thank Reinhart Blutner for pointing out a 
aw in an earlier presentation we gave
of de Hoop's analysis.
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Observation 2 (No Nash, No Optimality)
� every interpretation game has a Nash Equilibrium

Proof: Given that > is well-founded there is at least one (r;m) such that
there is no (r0;m0) < (r;m); a forteriori, there is no (r0;m) or (r;m0) such
that (r0;m) >S (r;m) or (r;m0) >H (r;m), so (r;m) is a Nash Equilibrium.
End of Proof.

The last observation is of interest from the linguistic perspective. In
Game Theory, the absence of Nash Equilibria is not at all unusual, for in-
stance in the case of zero-sum games like `Heads or Tails', which can be
displayed as follows:

(14)

H T
H (0; 1) (1; 0)
T (1; 0) (0; 1)

or

H T
H  

# "
T !

Well-foundedness of > means that we are dealing with a particular type of
game, in which solutions are guaranteed to exist. It is easily acknowledged
that this makes sense: if an interpretation game were to have no solutions,
then communication would be quite a void enterprise indeed.

A couple of other more general observations can be made at this point.
Of course, an interpretation game would also be void if all pro�les were
Nash Equilibria. In that case any representation could be associated with
any interpretation. With an eye on the use of language in communication,
the ideal situation would obtain if the set of solutions is a one-to-one relation
between the set of possibe representations and the set of possible meanings.
Interesting mixed cases can be characterized as well. Ambiguity obtains in
situations in which the set of solutions is one-to-many; when the solutions
are many-to-one we have synonymy; and when certain possible meanings do
not occur in solutions we have expressive incompleteness.

4 Games and Weak Optimality

We have seen above that Blutner's strong version of two-dimensional OT can
be neatly formulated using the game-theoretical concept of a Nash Equilib-
rium. However, Blutner (1998), and subsequently J�ager (1999) and Zeevat
(1999), have employed a `weak' notion of optimality which is more subtle
than the one we discussed in section 2. In this section we discuss this re�ne-
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ment, and show that it also can be given a very intuitive Game Theoretical
formulation.3

4.1 Blutner / J�ager Optimality

In his (1998) paper, Blutner argues that the strong notion of optimality
presented in section 2 is not entirely satisfactory. This notion does not enable
us to account for Horn's (1984) division of pragmatic labour, the intuitition
that unmarked forms tend to be used for unmarked situations and marked
forms for marked situations.

To account for cases where Horn's division of pragmatic labour is rel-
evant, Blutner (1998) then proposes a weak version of two-dimensional OT,
according to which the two dimensions of optimization are mutually related:

(15) Two-dimensional OT (Weak Version) a representation-meaning pair
(r;m) is super-optimal i� it satis�es both the Q- and the I-principle,
where:
(Q) (r;m) satis�es the Q-principle i� there is no other pair (r0;m)

which satis�es the I-principle such that (r0;m) > (r;m)
(I) (r;m) satis�es the I-principle i� there is no other pair (r;m0)

which satis�es the Q-principle such that (r;m0) > (r;m)

A possibly more transparant formulation of super-optimality has been pro-
posed by J�ager (ms):

(16) a representation-meaning pair (r;m) is optimal i�:
(Q) there is no other optimal pair (r0;m): (r0;m) > (r;m)
(I) there is no other optimal pair (r;m0): (r;m0) > (r;m)

Under the assumption that > is transitive and well-founded, J�ager observes

(17) a representation-meaning pair is optimal in the J�ager sense if and only
if it is super-optimal in the Blutner sense

J�ager's assumptions about > can be argued to be pretty harmless. Transi-
tivity, of course, is a very natural property of the `better than' relation >

and as we will see later, well-foundedness is natural, too.

The important di�erence beteen the weak and strong notions of optimality
is that the weak one accepts (super)-optimal representation-meanings pairs
that would not be optimal according to the strong version. It typically allows

3. Without being able to go into any details, it can be observed that the Game Theoretical
formulation of Blutner and J�ager's weak optimality is very close in spirit to von Neumann
and Morgenstern (1944)'s notion of a `Stable Set' in coalitional games, cf., e.g., Osborne
and Rubinstein (1994: p. 278� ).
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marked expressions to have an optimal interpretation, although both the
expression and the cases they describe have a more e�cient, or more typical,
counterpart. Consider, for instance, the following minimal pair discussed by
Horn (1984):

(18) Lee stopped the car.
(19) Lee made the car stop.

The use of unmarked lexical causative stopped in (18) has intuitively the
result that the sentence will be about an event where the car stopped in
the stereotypical way, i.e. where the driver of the car stepped on the brake
pedal. This by itself can be explained by means of the strong version of
two-dimensional OT, and corresponds to a Nash-Equilibrium; unmarked is
preferred to marked, and stereotypical ways of stopping cars are easier to
understand than alternative unusual methods. But the strong version cannot
explain why also the marked form, (19), has an interpretation; the interpre-
tation where the car was stopped in an unusual way (pulling the emergency
brake, telekinesis, etc.). It is easy to see, however, that the weak version
of two-dimensional OT can explain why (19) gets this interpretation. The
marked form gets the atypical interpretation, because this form-meaning
pair is optimal: (i) the alternative sentence (18) doesn't get this atypical
interpretation, and (ii) we prefer to refer to the typical situation by using
(18) instead of (19).

For another example where, because of the division of pragmatic labour,
the more specialized, or more complex, form of two in principle co-extensive
expressions will be associated with the less preferred reading, look at the
two following sentences discussed by Levinson (1987):

(20) Hei wants PROi;j to win.
(21) Hei wants himi;j to win.

Although a full pronoun like \him" could in principle refer to the same object
as the null PRO, the selection of the full pronoun over its empty counterpart
in fact signals the absence of the coreferential reading. On the assumption
that coreferentiallity is the preferred, or typical, option, strong optimality
can explain why (20) gets the coreferential reading. But we need weak op-
timality to explain why also (21) gets a reading, namely the less preferred
non-coreferential one. The reason is, again, that the preferred coreferential
reading is blocked due to the existence of the less lexicalized expression (20)
that could have been used.

Before we turn to the game-theoretical formulation of the Blutner / J�ager
notion of (weak) optimality, it is expedient to present J�ager's algorithm for
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computing optimal representation-meaning pairs. The algorithm computes
which pairs are optimal and which are blocked, in a recursive manner. It
starts of with empty sets opt and blo of optimal and blocked pairs and
terminates when all pairs are either in opt or blo. It is convenient to in-
dicate the pairs which have not yet been classi�ed as pairs which are still
in the game: gam = opt [ blo. (Thus, at the start of the algorithm, all
pairs are in the game; in the end gam is empty.) The algorithm is de�ned
as follows:

(22) opt = ;; blo = ;;

while gam 6= ;:
opt = opt [ f(r;m) 62 blo j :9(r0;m0) 2 gam: (r0;m0) > (r;m)g;
blo = blo [ f(r;m) 62 opt j 9(r0;m) or (r;m0) 2 optg;

return opt;

By means of this procedure, �rst all the strongly optimal representation-
meaning pairs are selected as opt; then those pairs are selected as blocked
for which there is an optimal alternative along the Q- or I-dimension; then
those for which there is no better alternative in the game are selected as
opt, etc. When all pairs are, thus, categorized, the algorithm returns the
set of J�ager optimal (i.e., Blutner super-optimal) pairs as output. In what
follows, these are called BJ-optimal.

4.2 A Game-Theoretical De�nition of BJ-Optimality

We have seen that the notion of strong optimality corresponds to that of a
Nash Equilibrium. Now, although weak or BJ-optimality and Nash are also
closely related, they are not the same, of course. BJ-optimality is a weaker
(or softer) notion so that the set of Nash Equilibria of an interpretation
game is or can be a proper subset of the optimal solutions. For instance, for
some representation meaning pairs (r;m) there may be `better' alternatives
(r0;m) or (r;m0), which however do not qualify as optimal, if there are yet
other alternatives (r0;m0) which are.

A nice illustration can be given by means of a reanalysis of de Hoop's
case of `self' versus `him', which is suggested to us by Reinhard Blutner.
According to this analysis, there are two constraints at work, an expressive
constraint `referential economy' (RE) and an interpretive constraint `local
antecedent':

(RE) a re
exive element is preferable to a pronoun
(LA) a syntactic domain must contain a pronoun's antecedent
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The e�ect of these constraints can be modeled by means of the following
matrix for the corresponding interpretation game:

(23)

Lbb Lbx

`self' �  
" "

`him'  

where `self' is again short for the sentence `Bill loves himself' and `him' for
`Bill loves him'. In this case there is a clear preference for using sentence `self'
(the two "'s), and a preference for interpreting `self' and `him' as Bill (the two
 's). As can be seen from the diagram, this game has only one Nash Equilib-
rium: (`self',Lbb), the only pro�le from which no arrow leaves. However, there
is also a BJ-optimal pro�le (`him',Lbx) which is not a Nash Equilibrium. For,
although there are better alternatives (`him',Lbb), and (`self',Lbx), these are
themselves both overruled by the alternative (`self',Lbb). In other words, al-
though, (`him',Lbb) �H (`him',Lbx), and (`self',Lbx) �S (`him',Lbx), these
preference do not count because the preferred alternatives are each blocked
by the Nash / optimal (`self',Lbb), since (`self',Lbb) �S (`him',Lbb) and
(`self',Lbb) �H (`self',Lbx).

In the representation of an interpretation game we can visualize this
kind of blocking by removing arrows. That is, if a pro�le points to a Nash
Equilibrium, then all pointers to that pro�le can be removed. If we, thus,
remove the arrows pointing to pro�les which point to the equilibrium � in
the example above, then we get the following, derived game:

(24)

Lbb Lbx

`self' �  
"

`him' �

In the resulting interpretation game we �nd two Nash Equilibria, corre-
sponding to the two BJ-optimal solutions in the original game. This result
can be generalized for more involved games with more than two representa-
tions and meanings. In such more involved games, the removal of preferences
may yield games with new equilibria, and these in their turn may block yet
other alternatives. Thus, if we successively keep on removing preferences for
blocked pro�les, then we collect more and more possible solutions, and if
this process reaches a �xed point, then all the resulting Nash Equilibria of
the �xed point correspond to the BJ-optimal pairs in the original game. As
a matter of fact, such a procedure is the Interpretation Game Theoretical
counterpart of J�ager's algorithm.
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Formally, this procedure can be speci�ed as follows. Let I0 be an
interpretation game hN; (AS ; AH); (>S;0; >H;0)i. Then we de�ne the game
In+1|which is the game In with updated preferences|as follows:

(25) In+1 = hN; (AS ; AH); (>S;n+1; >H;n+1)i with
1. >S;n+1= >S;n n f(y; z) j 9x 2 NEIn : x >H;n yg and
2. >H;n+1= >S;n n f(y; z) j 9x 2 NEIn : x >S;n yg

(In this de�nition NEIn indicates the set of Nash Equilibria of game In.) If
we now construct a sequence of interpretation games I0; : : : ; In; : : : and if
we �nd that In+1 = In, then:

Observation 3 (BJ-Solutions are Nash in Updated Games)
� the BJ-optimal solutions of I0 are the Nash Equilibria of In

This fact can be proved by comparing the update of preferences with J�ager's
algorithm for computing optimal solutions. J�ager's procedure involves the
iterated generation of optimal and blocked pro�les. In the �rst run of this
procedure pro�les are accepted as optimal which are Nash Equilibria in I0

4

and next those are blocked which have an optimal alternative. It is relatively
easily seen that:

1. updates of preferences preserve Nash Equilibria
2. if an update produces a new Nash Equilibrium, then the same pro�le

was optimal at earlier stages
3. if we reach a �xed point In, then all pro�les either are a Nash Equi-

librium (have no arrow leaving that pro�le), or are blocked (point at
a Nash Equilibrium)

Here we witness one merit of viewing optimality theoretic interpretation in
terms of (interpretation) games: BJ-optimal solutions can be characterized
by means of the independently motivated and well-studied notion of a Nash
Equilibrium.5

4. Since the procedure starts with empty sets of blocked and optimal pro�les, the selected
optimals (r;m) are those for which there is no preferred alternative (r0;m0); of course it
may be that there is such an alternative for a Nash Equilibrium, in case r

0 6= r and
m

0 6= m. However, if (r;m) really is a Nash Equilibrium, then it will never get blocked,
and as soon as (r0;m0) is quali�ed as either optimal or blocked at some stage, then (r;m)
gets accepted as optimal at the next stage. Wellfoundedness of J�ager's > guarantees this
e�ect.
5. As we remarked earlier, the Game Theoretical formulation of BJ-optimality is very
close in spirit to that of a Stable Set in a coalitional game. Stable Sets are minimal sets of
outcomes for which there are no other preferrable stable outcomes. Although the concept
is framed in terms of outcomes of coalitional games, the idea is clearly similar.
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The update procedure de�ned above can be illustrated by means of
a somewhat arti�cial but illuminating example. Suppose the possible rep-
resentations are linearly ordered, so that we can number them: r0; r1; : : :,
and that the possible meanings are linearly ordered, too: m0;m1; : : :. In this
game I0 there is one Nash Equilibrium, which is (r0;m0). If we update the
preferences in this game, then all H's preferences for (r1;m0); (r2;m0); : : :
are removed, because (r0;m0) is a better Nash Equilibrium for S, and S's
preferences for (r0;m1); (r0;m2); : : : are removed because (r0;m0) is a bet-
ter Nash Equilibrium for H. Thus, in I1, pro�le (r1;m1) comes out as Nash
Equilibrium as well, because the preferences for (r1;m0) and (r0;m1) have
been removed. But then we can update again, and remove all H's prefer-
ences for (r2;m1); (r3;m1); : : : and S's preferences for (r1;m2); (r1;m3); : : :.
Thus, in I2, pro�le (r2;m2) comes out as Nash Equilibrium as well. In short,
we will �nd that in game In we have Nash Equilibria (ri;mi) for all i � n,
so that we construct the diagonal as the solution of I0.

The last example also constitutes inspiration for the following propo-
sition:

Observation 4 (Linearizing Unambiguous Interpretation Games)
� if the set of solutions of an interpretation game is a one-to-one rela-
tion between representations and meanings, then the preferences in
the game can be equivalently stated by means of a linear order of
representations and meanings

Proof. If the solutions constitute such a one-to-one relation, and if we order
the solutions, then we can identify the i-st representation ri with the repre-
sentation in the i-st solution, and the i-st meaning with the meaning in the
i-st solution; then we can take H's preferences to be de�ned by precedence
in the sequence of meanings, and S's preferences by precedence in the se-
quence of representations, and the resulting set of solutions is the diagonal,
the set of solutions we started out with. End of Proof.

4.3 On Two � Two Interpretation Games

In this section we give a systematic study of two � two interpretation games,
that is games with four pro�les. If we, thus, restrict our attention, we can in
principle distinguish seven possible types: one in which there is no solution,
one in which there is one solution, one in which there are four, one in which
there are three, and three in which there are two:
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(26)
� � �

� �
� �
�

� � �
�

�
�

(All other types are logical permutations of these types of games.) As we
already observed above the �rst case is excluded by J�ager's well-foundedness
of > and the second two are void. A three-solutions game is in a sense a com-
bination of the �rst two two-solutions games. The �rst two-solutions game
models ambiguity, the second synonymy and (expressive) incompleteness,
and the last is the (ideal) diagonal type.

It is interesting to note that the last type of interpretation can again
be obtained in a variety of ways. All of the following matrices have the
diagonal as a solution:

(27)
�  
" #
! �

�  
" "
! �

�  
" "
 �

(Besides, any matrices which is a mirror of these matrices along one of the
two diagonals, yields the same result as well.) In all matrices (and their
mirror-images) except (the mirror-images of the) �rst one, one solution is
not Nash, that is, in these cases the BJ-optimality of that pro�le is obtained
by blocked preferences. This is interesting, because it shows that one and the
same result can be obtained by a variety of preferences. However, this does
not mean that any statement of preferences, which gives the right results, is
equally good. In order to appreciate this point, consider the pair of examples
discussed in Hendriks and de Hoop (to appear), under the analysis suggested
by Blutner:

(1) Often when I talk to a doctori, the doctorfi;jg disagrees with himfi;jg.
(28) Often when I talk to a doctori, the doctorfi;jg disagrees with himselffi;jg.

A BJ-optimal interpretation of example (1) is one in which the indices on
the noun phrases \the doctor" and \him" are di�erent, so that either \the
doctor" or \him" is interpreted as anaphoric upon \a doctor", not both. An
optimal interpretation of example (28) is one in which both \the doctor"
and \himself" are interpreted as anaphoric upon \a doctor". These results
can be obtained by the joint e�ect of the two constraints (RE) and (LA)
which we repeat here for convenience:

(RE) a re
exive element is preferable to a pronoun
(LA) a syntactic domain must contain a pronoun's antecedent

The relevant preferences are displayed in the following diagram:
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(29)

(i; i) fi; jg
`the doctor{self' �  

" "
`the doctor{him'  �

This is a diagram of the third diagonal type, in which (`the doctor{him',fi; jg)
is a BJ-optimal solution because the (LA)-preference for (`the doctor{him',(i; i))
is blocked by the (RE)-preference of (`the doctor{self',(i; i)) over this al-
ternative, and because the (RE)-preference for (`the doctor{self',fi; jg) is
blocked by the (LA)-preference of (`the doctor{self',(i; i)) over this alterna-
tive. However, as we argued, we could have obtained the very same result if
the preferences were spelled out, alternatively, as indicated by the following
diagram:

(30)

(i; i) fi; jg
`the doctor{self' � !

# #
`the doctor{him' ! �

In this diagram, we have encoded the e�ect of the converse of the princi-
ples (RE) and (LA), and we have obtained a mirror iamge of the original
matrix. This time the solution (`the doctor{him',fi; jg) is optimal (Nash),
and the interpretation of (`the doctor{self',(i; i)) turns out BJ-optimal, but
the resulting BJ-optimal pairs are the same. Does this mean that we can
get away with using the converses of any two or more principles? Certainly
not. This can be appreciated when we look at a more general case, where
we take more possibilities ((j; j), and fj; kg) into account:

(31)

(i; i) fi; jg (j; j) fj; kg
`the doctor{self' �    

" " " "
`the doctor{him'  �   

With the principles (RE) and (LA) we get the right solutions (`the doctor{
self',(i; i)) and (`the doctor{him',fi; jg). If, instead, we had adopted their
counterintuitive converses, the solutions would have been, incorrectly, (`the
doctor{self',(j; j)) and (`the doctor{him',fj; kg). This exercise thus shows
that not any way of getting certain interpretation results is �ne. It also
shows that one should be careful with the notion of (BJ-)optimality, or that
of a solution in interpretation games. Optimal pro�les can get blocked if
more options get considered (and if more constraints are involved).
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5 Prospects and Conclusions

In this paper we have pointed out some parallelisms between some notions
studied in Optimality Theory and in Game Theory. Optimality theoretic
interpretation can be modeled in terms of an interpretation game, and both
Blutner's notion of (strong) optimality, as well as the Blutner / J�ager notion
of (weak) optimality, can be de�ned as a Nash Equilibrium of the interpre-
tation game, or of an update of it.

We have restricted ourselves, here, in two respects. Of the various
types of games studied in Game Theory we have studied only one, and
we have concentrated upon only one type of solution concept. The natural
question that arises is if optimality theoretic interpretation would not gain
if we employed other kinds of games (extensive, in stead of strategic, games;
games with imperfect, rather than complete, information) and other solution
concepts.6 In this respect we must mention Parikh (1991), who applies Game
Theory to an analysis of the process of disambiguation, and who employs
extensive cooperative game with partial information. It remains an open
question how Parikh's approach relates to the one discussed in this paper.

Another restriction is that we have concentrated mainly on the formal

parallelism between optimality games. However, the parallel with the work
of Parikh, and the intuitions behind the Q- and I-principles, suggest that
the parallelism goes deeper. Optimality crucially involves both the speaker
and the hearer, conceived of as rational agents with possibly opposing prefer-
ences. An optimal interpretation of a sentence can thus be seen as the result
of (hypothetical) negotiation between two players who, with their particular
beliefs and desires, engage in a communication game. Here lies an interesting
parallel with the approach advocated in Merin (1997). Merin construes ver-
bal interaction as a game in which speaker and hearer have strictly opposing
preferences. It would be interesting to see if this can be given an optimality
style formulation. After all, also in strictly competitive games, the players'
strategies are guided by the intended optimization of the results.
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