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Abstract

In this paper we discusssomeformal propertiesof themodelof bidirectionalOptimality The-
ory thatwasdevelopedin Blutner 2000. We investigatethe conditionsunderwhich bidirec-
tional optimizationis a well-definednotion,andwe give a conceptuallysimplerreformulation
of Blutner’s definition. In thesecondartof the paperwe shav thatbidirectionaloptimization
canbe modeledby meanof finite statetechniquesTherewe rely heavily ontherelatedwork
of FrankandSattal998aboutunidirectionaloptimization.

1 Introduction

Optimality Theory (OT henceforth)has beenintroducedby Prince and Smolensk
1993 mainly asa modelfor generatre Phonology but in recentyearsthis approach
hasbeenappliedsuccessfullyto a rangeof syntacticphenomenaandit is currently
gainingpopularityin semanticandpragmaticsaaswell. It restson the old conception
that the mappingfrom onelevel of linguistic representatiorto anotherlevel should
be describedn termsof transformationgndfilters. Sucha distributeddescriptionis
frequentlymoreconciseandelegantthanaformulationsolelyin termsof transforma-
tions. The novel contribution of OT lies in the ideathat filters—or, synorymously
constraints—areanked andviolable. Soa certaintransformatiormay belicit evenif
it violatessomeconstraintsprovided all alternatve transformationseadto morese-
vereconstrainwiolations.Violation of higherrankedconstraint€ountsasmoresevere
thanviolationsof lower ranked constraints.

OT is attractve for working linguists mainly for two reasons.First, the ideasof
constraintrankingandof differentdegreesof severity of constraintviolationsarepart
of the linguistic folklore sincedecades.OT supplieda conciseand mathematically
cleanformalizationof theseconcepts.FurthermoreOT offersanintriguing perspec-
tive on languageypologyon the onehandandlanguageuniversalson the otherhand.
Many OT researcherasetheworking hypothesighatboththe underlyingtransforma-
tions andthe constraintsare universal,while languagediffer only accordingto the
rankingof the constraints.
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In the generatre tradition of syntax,phonologyandmorphology transformation
aretakento be mappingdrom underlyingabstractepresentationt® concretesurface
representationsOT researchergsuallyadoptthis perspecire too; competitiontakes
placebetweerdifferentpossiblerealizationof someunderlyingform. In otherwords,
OT usuallytakesthegeneratiorperspeciie. It is atheoryabouttheoptimalrealization
of agivenunderlyingform.

On a somavhat more abstractevel, the OT philosophycan be describedby the
ideathatonly the mosteconomicakandidate®f a givencandidatesetarelegitimate
linguistic objects;lesseconomicacompetitorsareblocked. Ranked constraintsene
to inducean orderingon the candidateshatmakesoptimizationpossible.Theideaof
optimizationhasa long history in semanticand pragmaticgo0, andit is suggestre
to integratethis traditioninto the OT framework. Somecautionhasto be exertedhere
though.Thegeneratiorperspectiethatis prevalentin phonologyandmorphologyhas
someplausibility whenappliedto semanticsHereit amountgo sayingthata certain
verbalizatiorof agivenmeaningthoughlicit, mightbeblockedby amoreeconomical
linguistic form expressinghe samemeaning.Sucheffectsdoin factoccur A casen
pointis thewell-known phenomenomwf “conceptualgrinding”, wherethe nameof an
animalkind is usedto referto meatof this animal:

(1) We hadchickenfor dinner

However, conceptuagrindingis only possiblef thereis nolexicalizedexpressiorfor
thekind of meatin question:

(2) a. ?We hadpig for dinner
b. We hadporkfor dinner

Arguably usingthelexicalizedexpressionpork is a moreeconomicalway to referto
meatfrom pigsthanusingthe nounpig in its shiftedmeaning.Thus(2b) blocks(2a).

On the other hand, thereis also a considerabldradition in semanticsand prag-
maticswhich assumedshat a certaininterpretationof a givenlinguistic form may be
blockedby amorecoherentlternatve interpretatiorof thesameform. In otherwords,
the candidatesetfor optimizationin semanticsnay alsobe determinedy the parsing
perspectie, wherewe comparelifferentinterpretation®f agivenform. A typical ex-
ampleis the behaior of presuppositiomccommodationConsiderthe following two
sentences:

(3) a. If Mary becomes politician, the presidentill resign
b. If Mary becomesnemberof [a club],, its; presidenwill resign

In both examples,the consequenodf the conditionalcontainsa definite NP andthus
a presuppositiortrigger. In (3a) the presuppositioririggeredis there is a president
andin (b) the club in questionhas a president If we assumethat both sentences
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areutteredout of theblue,thesepresuppositionmustbeaccommodatedn principle,
therearethreewaysto accommodatthis presuppositiom (a) (cf. Heim 1990,vander
Sandt1992),local,intermediateandglobalaccommodationThereis agreemenin the
literaturethat global accommodations preferred thuswe (correctly) predict(3a) to
beinterpretedas(4):

(4) Thereis apresidentandif Mary becomes politician, hewill resign

If globalaccommodatioms impossibleasin (3b) (whereit would leadto a configura-
tion wheretheantecedendf thepronounit is notaccessibléor the pronounanymore),
intermediateaccommodatiopopsup; (3b) comesoutas

(5) If Mary becomesnembetrof aclubthathasa presidentthis presidentvill resign

A conciseway to describehis patternis to assumehatthe grammargenerallyadmits
bothkindsof accommodatiorhut thatglobalaccommodatiors moreeconomicathan
intermediateone (which is in turn more economicakhanlocal accommodation)So
if a constructionstructurallyadmitsboth readings,global accommodatiorwins and
blocksall competingeadings.

So it seemdhat the mappingof linguistic forms to interpretationgequiresopti-
mizationbothin the parsingandin the generatiordirection. This insightis not new,
someform of bidirectionaloptimizationhasbeenassumedh the pragmaticgiterature
for quite sometime (seefor instanceHorn 1984 andLevinson1987). In a seriesof
recentpublications ReinhardBlutnerhasmadetheinterplaybetweergeneratioropti-
mizationandparsingoptimizationpreciseandintegratedit into the overall framewvork
of OT (Blutner1998,Blutner2000).

It hasfrequentlybeenobsenredthata naive evaluationalgorithmfor an OT style
theoryis computationallyextremely costly evenif the candidatesetsinvolved arefi-
nite. One might addthatthe problemis even more severeif the candidatesetsare
infinite. Thenwe cannotbe surewhetherthe setof optimal candidatess recursve,
evenif all componentgtransformationsindconstraintsare. Theissueof theautomata
theoreticcomplexity of OT style theoriesis currentlya topic of actve researchand
severalinterestingresultshave beenreportedn theliterature. The mostintriguing one
is FrankandSattal998. Thereit is shovn thatundercertaingeneralkestrictions(uni-
directional)optimizationis a finite statetechnique.This meanghatthean OT-system
canbeimplementedasa finite statetransducerprovided the underlyingtransforma-
tion is arationalrelationandall constraintsareregular languagesin otherwords, if
all componentof an OT-systemarefinite stateobjects,the systemasa wholeis so
too.

Theplanfor the presengpaperis thefollowing. In the next sectionwe will have a
closerlook at Blutner’sformalizationof bidirectionalOT. Wewill proposeasimplified
but equivalentdefinition,andwe will investigatesomepropertiesof bidirectionalOT-
systems. Section3 briefly reviews the basicnotionsof finite stateautomataand it
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discusse$rankand Sattas construction.In section4 the compleity of bidirectional
OT will beconsideredAs mainresult,we shav thatananalogueof FrankandSattas
resultcan be obtainedfor bidirectionaloptimizationaswell. Section5 sumsup the
findingsandlists a coupleof openquestionfor futureresearch.

2 Bidirectional OT: Zvs. X

The notionsof parsingoptimizationand generationoptimization have ancestorsn
the literatureon formal pragmaticdrom the eighties. Thereseveralauthorsassumed
an interplay of the competingforcesof spealer economyand hearereconomy A
representatie of this line of thoughtarethe principles“Q” and“l” proposedn Horn
1984,p. 13:

Q-principle: Sayasmuchasyou can(givenl).
I-principle: Sayno morethanyou must(givenQ).

In Blutner 1998andBlutner 2000this ideais formalized.Following standardractise
in OT theories Blutnerassumeshatthereis a (very generaltndunderspecifiedjela-
tion GEN thatrelatesinputto output. In caseof the syntax-semanticsiterface, GEN

canbeidentifiedwith the compositionasemanticghatrelatessyntacticstructuresand
meaningsFurthermoreBlutnerassumesnorderingrelationon form-meaningpairs.
In OT theories,this orderingis inducedby a set of ranked constraints but this is

inessentiafor the notion of optimizationassuch. Solet usjust assumehat < is an
orderingon GEN. We adoptthe cornventionthat“a < 0" is to beunderstoodas“a is

moreeconomicathanb”.

Giventhis, BlutnerformalizesHorn’s principlesasfollows:!

Definition 1 (Blutner’s Bidirectional Optimality):
1. (f,m) satisfiesthe Q-principleiff (f,m) € GEN andthereis no other pair

(f', m) satisfyingthel-principle suchthat(f’', m) < (f, m).

2. (f,m) satisfiesthe I-principle iff (f,m) € GEN andthereis no other pair
(f,m') satisfyingthe Q-principlesuchthat(f,m’) < (f,m).

3. (f, m) is optimaliff it satisfiedboththe Q-principleandthel-principle.

In contrast,standard(unidirectional)OT boils down to a versionof the I-principle;
only differentoutputsfor agiveninputarecompared.

Definition 2 (Unidirectional Optimality): (f, m) is unidirectionallyoptimaliff
(f,m) € GEN andthereis no otherpair ( f, m') < (f, m).

1 We changenotationandterminologyslightly without touchingthe contentof the definition.
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Fig. 1: Z-Optimality

Seenin aproceduralvay, to checkwhethera givenform-meaningpair { f, m) is opti-
mal in Blutner’s senseyou have first to checkwhetherit satisfieghe I-principle and
thanwhetherit satisfiesthe Q-principle. To do the former, you have to testwhether
therearealternatves (f', m) < (f,m) thatsatisfythe I-principle. To this end,you
have to gothroughcompetitors f’, m’) < (f’, m) thatpossiblysatisfythe Q-principle
etc. The shapof this zigzagpattern(graphicallysketchedin figure 1) resembleghe
letter“Z”. Thereforel will call Blutner's notionof optimality Z-optimality.

Takenin isolation,this definition might seemcircular, sincethe Q-principleindi-
rectly occursin the definiensof this very principle, and likewise for the I-principle.
This is not a real problem, however, sincewe may safely assumethat the ordering
relation< is well-founded? We will seebelaw thatthis follows from thefactthat < is
inducedby a systemof ranked constraintsGiventhis, it follows from the GeneraRe-
cursionTheoremthatZ-optimality is well-defined.Recallthatthe GeneralRecursion
Theoremsays:

2 A relation R is well-foundediff thereareno infinite descending?-chains,i.e. thereis no infinite
sequences, ag, as, . .. With a; 1 Ra; for all ¢ € N,
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Theorem 1 (General Recursion Theorem): SupposeH is a two-placeoperation
andR alocally well-foundedrelation? Thenthe equation

Va[F(z) = H(z, F | {y|lyRx})]

hasexactly onesolutionfor F.

As animmediateconsequencaye get
Lemma 1: If < iswell-founded,z-optimalityis uniquelydefinedby Definition 1.

Proof: Let F' be the function that returnsthe pair of truth values(q, i) for a
giveninputz. ¢ = 1 iff z is aform-meaningpair ( f, m) thatsatisfieghe Q-principle,
and likewise for :. G is assumedo be the characteristidunction of the graph of
GEN, i.e.it returnsl iff its agumentis in GEN and0 otherwise.Giventhis, we can
reformulatethefirst two clausesf definition 1 asa fixed point equationfor F. (The
projectionfunctionsm, my returnthe first andthe secondelementrespectrely of an
orderedpair.)

F(z) = (min(G(z),1—maz{m(F(y))ly <z Am(y) = m2(z)}),

min(G(z), 1 — maz{m (F(y))ly <z Am(y) =m(z)}))
In the right handside of this equation,F is only appliedto predecessoref x with
respecto <, sowe mayreplaceF therewith F | {y|y < z}. Since< is well-founded
by assumptionit follows from the GeneralRecursionTheoremthatthereis a unique
solutionfor F'. Now we reproducehethird clauseof Definition 1 asx is z-optimaliff

F(z) = (1,1). 1

In thesequele will developa conceptuallysomavhatdifferentnotionof bidirec-
tional optimality, x-optimality, andwe will show thatundervery generalconditions,
x-optimality andz-optimality coincide.

Onasomavhatmetaphoricalevel, the Q-principleabove expressespealer econ-
omy. It says:for a givenmeaning,chosethe mosteconomicalerbalizationyou can
think of. Symmetrically the I-principle captureshearereconomy It advisesa hearer
to pick out the mosteconomicalicit interpretationfor a givenform. Now the main
objectve of the participantsof a corversationshouldbe successfutommunication,
oneshouldthink. Economyconsiderationganonly betakeninto accountf themain
objectveis granted.Thefollowing two definitionscapturethis intuition.

3 A relationis calledlocally well-foundediff it is well-foundedandit holdsfor eachz thatthe class
of R-predecessorsf z is a set(ratherthana properclass). Formally put, this meansthatvVz3y.y =
{#z|zRz}.
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1. A form-meaningpair (f, m) is spealer-optimaliff
(a) (f,m) € GEN,
(b) (f,m) is heareroptimal,and

(c) thereis no (f',m) € GEN thatis also heareroptimal andthatis more
economicathan(f, m).

2. A form-meaningpair ( f, m) is heareroptimaliff
(@) (f,m) € GEN,
(b) (f,m) is spealeroptimal,and
(c) thereis no (f,m’) € GEN thatis alsospealroptimal andthatis more
economicathan(f, m).

Accordingto thesedefinitions,spealer-optimality entailshearefoptimality andvice
versa.Thusthesetwo notionsof optimality coincideandwe mayidentify them. Thus
simplified versionsof the above definitionsrun asfollows:
1. A form-meaningoair (f, m) is optimaliff
(a) (f,m) € GEN,
(b) (f, m) is optimal,and

(c) thereisno(f’,m) € GEN thatis alsooptimalandthatis moreeconomical
than(f, m).

2. A form-meaningpair ( f, m) is optimaliff
(@) (f,m) € GEN,
(b) (f, m) is optimal,and

(c) thereisno(f, m') € GEN thatis alsooptimalandthatis moreeconomical
than(f, m).

Now thesedefinitionshave theform ¢ < ¥ A ¢ A x, which, accordingto elementary
propositionakeasoningis equivalentto ¢ — ¥ A x. Sowe canfurthersimplify to

1. A form-meaningoair (f, m) is optimalonly if

(@) (f,m) € GEN,

(b) thereisno (f’,m) € GEN thatis alsooptimalandthatis moreeconomical
than(f, m).

2. A form-meaningpair ( f, m) is optimalonly if
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(@) (f,m) € GEN,

(b) thereisno(f, m’') € GEN thatis alsooptimalandthatis moreeconomical
than(f, m).

Onemorestepof propositionakreasoningfrom (¢ — ¥) A (¢ — x)t0¢d — ¥ A X)
yields

e A form-meaningpair ( f,m) is optimalonly if

1. {f,m) € GEN,

2. thereisno (f’,m) € GEN thatis alsooptimalandthatis moreeconomical
than(f, m),

)
3. thereisno (f, m’) € GEN thatis alsooptimalandthatis moreeconomical
than(f, m).

This is not a gooddefinition yet sincetheremay be mary sub-relationof GEN that

obey this constraint. In particular the emptyrelationwould countasan optimality-

relation. Whatis still missingthereis the intuition thata givenform-meaningpair is

optimalif thereis noreasorto the contrary Sothe optimalform-meaningelationwe

areaftershouldbethelargestsubrelatiorof GEN thatobeystheabove constraint.This

amountgo turningtheimplicationinto a biconditional. For reasonghatwill become
obviousimmediately we call this notion of optimality x-optimality.

Definition 3 (X-Optimality): A form-meaningpair ( f, m) is x-optimaliff
1. (f,m) € GEN,
2. thereis nox-optimal (f’, m) suchthat(f’, m) < (f, m).

3. thereis nox-optimal ( f, m’) suchthat(f,m’) < (f,m).

Checkingwhethera form-meaningpair is x-optimal requiressimultaneouseval-
uationof form alternatvesand meaningalternatves of this pair (seefigure 2). This
structureresembleghe letter “X”"—this motivatesthe name. Underthe proviso that
< is well-founded x-optimality is alsowell-defined. Furthermorejf we additionally
assumex to betransitive, x-optimality coincideswith z-optimality.

Theorem 2: If “<” is transitive andwell-founded then
1. thereis auniquex-optimality relation

2. (f, m) is x-optimaliff it is z-optimal.
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Fig. 2: X-Optimality

Proof: The proofof partl is analogougo the proof of the correspondingroperty
of z-optimality. Herewe rewrite the definitionasthefixed point equation

F(z) = min(G(z),1 —max({F(y)ly <z A
(m1(y) = m(z) V me(y) = ma(x))}))

A candidater is x-optimaliff F'(x) = 1 accordingto the uniquesolutionfor F.

As for part 2, supposef, m) is x-optimal but not z-optimal. This meansthat it
eitherviolatesthe I-principle or the Q-principle. Supposet violatesthe I-principle.
Thenthereis anm’ with (f,m’) < (f, m) suchthat(f, m’) satisfiesghe Q-principle.
Since (f,m) is x-optimal, (f, m’) cannotbe x-optimal. Thusthereis eitheran x-
optimal (f,m") < (f,m’) or anx-optimal (f',m’) < (f,m’). Thefirst optionis
excludedsinceif it werethecasepy transitvity, (f,m”) < (f, m), thuscontradicting
theassumptiorthat ( f, m) is x-optimal. Sothereis anx-optimal (f',m’) < (f,m’) <
(f,m). Since(f, m') satisfiegshe Q-principle,(f’, m’) doesnot satisfythel-principle.
By repeatedapplicationof this agument,we can constructan infinite chain... <
(f",m"y < (f",m"y < (f,m') < (f, m), allmemberdeingx-optimalandviolating
the I-principle. This is excludedby the assumptiorthat” <” well-founded,so (f, m)
cannotviolatethel-principleif it is x-optimal. By asymmetricargumentwe conclude
thatit cannotviolatethe Q-principleeither soit is z-optimal.

As for the otherdirection, suppose(f, m) is z-optimal but not x-optimal. Then
thereis eitheranx-optimal (f', m) < (f,m) oranx-optimal {f,m’) < (f,m). Sup-
posethe formeris the case.Fromthe previous paragrapiwe know thatary x-optimal
candidatesatisfiesthe Q-principle, so (f’, m) satisfiesthe Q-principle sinceit is x-
optimal. Thisis excludedthoughsinceby assumption{ f, m) satisfieghe I-principle.
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By the samekind of reasoningyve alsoderive a contradictionif (f,m) is blocked by
some(f, m'). =

It remainsto be shovn that the orderingrelationthatis inducedby a systemof
rankedconstraintsn anOT stylesystemis in facttransitve andwell-founded.To this
end,wehaveto make precisevhatanOT stylesystemis. In thegeneraktasejt consists
of a relation GEN and a finite setof constraintsthat are linearly orderedby some
constraintranking? Constraintsnay beviolatedseveraltimes. Soa constrainishould
be construedasa function from GEN into the naturalnumbers.Thusan OT-system
assignsevery pairin GEN a finite sequenc®f naturalnumbers.The orderingof the
elementsof GEN thatis inducedby the OT-systemis accordingto the lexicographic
orderingof thesesequencesThis leadsto thefollowing definition:

Definition 4 (OT-System): 1. An OT-systemis a pair O = (GEN, C), where
GEN isarelation,andC = (¢4, ..., ¢,), p € Nisalinearly orderedsequencef
functionsfrom GEN to N.

2. Leta,b € GEN. a < biff thereisani with 1 < ¢ < p suchthatc;(a) < ¢;(b)
andforall j < i : ¢j(a) = ¢;(b).

Lemma 2: Let O beanOT-system.Then< is transitve andwell-founded.

Proof: We assignevery elementof GEN anordinalnumberby thefunction f that
is definedby

p
Fl@)=> (i —1) xw+ (=)
=1
It is easyto seethatz <o y iff f(z) < f(y). Sincetheorderingof theordinalnumbers
is transitive andwell-founded sois <. =

3 OT and finite state techniques: Frank and Satta’s result

In mostresearcipaperon OT, thecandidatesetsthataretakenunderconsideratiorare
finite andevenfairly small,andthe searchfor the optimal candidatés donemanually
by comparinghepatternof constrainwiolations. It hasfrequentlybeenobsenedthat
in realisticapplications candidatesetsmight be very large, which would renderthis

4 Someauthorsonly requirethe constraintgo be partially ordered.Sincea given candidates opti-
mal accordingto somepartial orderingiff it is optimal accordingto all total extensionsof this partial
ordering,theresultsobtainedn this sectioncaneasilybe extendedo this moregeneralketup.
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kind of naive bruteforcealgorithmcomputationallywery expensve. Evenworse,if the

candidatesetmay be infinite, thereis no guaranteehis kind of algorithmterminates.
Thusthe succes®f the OT researclprogramcrucially hingeson the issuewhether
therearecomputationallytractableevaluationalgorithms.

It is obviousthatthe compleity of thetaskof finding the optimalcandidategor a
given OT-systemheaily depend®n the compleities of GEN andof the constraints.
In the generalcase,thesewill provide a lower boundfor the compleity of the OT-
systemas a whole, both in termsof automatatheoreticcompleity andin termsof
resourcecompleity. The crucial questionis whetheran OT-systemasa whole may
have a highercompleity thanthe mostcomple of its componentsFurthermorethis
issuemay dependon the modeof evaluationthat we choose.For instance unidirec-
tional OT mightbelesscomplex thanbidirectionalOT.

While theseissuesarestill openin the generalcase the literaturecontainssome
promisingresultsaboutthe compleity of unidirectionalOT in casesvhereall com-
ponentof the OT-systemarefinite stateobjects. Theseinsightsare of greatpractical
importancein phonologyand morphology wherefinite statetechniquesare usually
sufficiently expressve. In syntaxandsemanticsthiskind of resultcannotbeemployed
immediatelysinceit is well-known thatmoreautomata-theoretigoweris neededere.
Neverthelesshefinite statecases interestingsinceit indicateghatthe OT mechanism
assuchis notall thatpowerful afterall.

In this sectionwe briefly review somebasicpropertiesof finite stateobjects,and
wewill discusghe mostimpressve pieceof work onthecompleity of OT, Frankand
Sattas 1998construction.Thiswill pavethegroundfor theextrapolationof Frankand
Sattas resultto the bidirectionalcasethatis to be presentedn the next section.

In the subsequendiscussiorof finite stateautomatafinite statetransducersegu-
lar languagesndrationalrelations,we make heary useof Rocheand Schabed997.
Theinterestedeaderis referredtherefor furtherinformationandreferences.

We assumehatthe readeris familiar with the basicconceptsof a finite stateau-
tomatonandaregularlanguageandgive the definition herefor reference.

Definition 5 (FSA): A finite-stateautomator4 is a 5-tuple (3, Q, i, F, E'), whereX
is afinite setcalledthe alphabet @ is afinite setof statesi € () is theinitial state
F C Qisthesetof final statesandE C @ x (X U {e}) x @ is thesetof edges

Following standardoractice,we use>* to referto the setof stringsover the alphabet
3., includingtheemptystring. Thelettere symbolizegshe emptystring.

Definition 6: TheextendedsetofedgasE C @ x X* x Q isthesmallestsetsuchthat
1.VgeQ,(geq €k

2. Vw € ¥* andVa € YU {e}, if (g1, w,q2) € E and (q2,a,q3) € E, then
(¢1, wa, q3) € E.
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A finite-stateautomaton4 definesthefollowing languagel.(A):
L(A) ={weX*3g e F: (i,w,q) c L}

If £ = L(A), wesaythatthe FSA A recagnizesthelanguagel. The classof regular
languagesis the classof languageshatarerecognizedy someFSA.

A finite statetransducelFST) is a FSA that producesan output. Every edgeof
theautomatons labeledwith aninput andan output,wherebothinput andoutputare
stringsover the input alphabetandthe outputalphabetespectiely. An FST doesnot
justrecognizestringsbut transformanputsstringsin outputstrings.

Definition 7 (FST): A Finite-StateTransduceis atuple(X;, >, Q, 4, F, E) suchthat

e X, is afinite alphabetpnamelytheinputalphabet

Y, is afinite alphabetpamelythe outputalphabet

Q) is afinite setof states

1 € ) istheinitial state

F C @ isthesetof final states

o I C (Q x X7 x5 xQisthesetof edges

The notion of an extendededgeof a FST is analogougo the correspondingoncept
for FSA.

Definition 8: Theextendedsetof edgesE C Q x =* x 3% x Q is thesmallessetsuch
that

1. Vg€ Q,{g,6,6,q € E

2. vUlvujl < ET andvv27w2 EAE; if <Q17U17U27(D> € E and<q27w17w27 q3> € E;
then(ql,vlwl,vgwg,qg,) € FE.

A finite-statetransducefl” definesthefollowing relationbetweer>; and>:;:
R(A) = {(v,w) € B} x B3|3q € F : (i,v,w,q) € B}

The classof relationsthatis definedby someFST is calledthe classof rational rela-
tions. A simpleFSTthatimplementsherationalrelation{(a", b"c¢*)|n € N} is given
in figure 3 for illustration.

The classesof regular languagesand of rational relationsare subjectto certain
closue properties (R; o R; is therelationcompositionof R; and Ry, i.e. {{v, w)|3x(
vRiz A xRow)}. RV is theinverseof therelation R, i.e. {(w,v)|vRw}. I is the
identity relationon L, i.e. { (v, v)|v € L}.)
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a/b

a/b g/c
N

N

Fig. 3: FSTimplementingtherationalrelation{{a™, b"c*)|n € N}

e Everyfinite languagas regular.

e If L, and L, areregular languagesthen Ly N Ly, L1 U Ly, L1 — Ly arealso
regularlanguages.

e If R; andR, arerationalrelationsthenR; URs, R; o R, andRY arealsorational
relations.

e If Ris arationalrelation,then Dom(R) and Rg(R) (thedomainandtherange
of R) areregularlanguages.

e If L, andL, areregularlanguagesthenL; x L, andl;, arerationalrelations.

Rocheand Schabed 997 do not mentionthe factthatthe CartesiarproductL; x L,
of two regularlanguaged.; and L, is a rationalrelation. The constructionis quite
simple.If L; andL, areregularlanguagesthereareFSA A, and A, thatrecognizel;
and L, respectrely. Now we mayturntheseFSA into FST by interpretingthe labels
of theedgesasinputsandassuming asoutputof evertransition.SeenasFST, A; and
A, definetherationalrelationsR; = L, x {¢} andR; = L, x {&} respectiely. Since
rationalrelationsare closedunderinversionandcomposition,L; x Ly = Ry o R} is
alsorational.

Notethattherationalrelationsarenot closedunderintersectiorandcomplement.

Frank and Sattausetheseclosurepropertiesto shown that for a significantclass
of OT-systemsunidirectionaloptimizationis a rationalrelationprovidedall building
blocks are rational. They restrictthe classof OT-systemsin two ways. First, OT
constraintsin general“‘count”, a given constraintmay be violated arbitrarily mary
times. It goeswithout sayingthat this cannotbe implementedby a FST. So Frank
and Sattarestrictattentionto binary constraintsj.e. constraintsc with the property
Rg(c) = {0,1}. OT-systemavhich arenotbinarybut have anupperlimit for thenum-
ber of constraintviolationsareimplicitly covered;a constraintc thatcanbe violated



14 GERHARD JAGER

atmostn timescanberepresentetdy n binary constraintf theform “Violate c less
thani times”for 1 < 7 < n. Therankingof thesenew constraintss inessentiafor the
inducedorderingrelation.

Second,we may distinguishconstraintshat evaluatesolely the outputand con-
straintsthat properly evaluatean input-outputpair. The formertype of constraintis
calledmarkednesgonstaintsin theliterature(seefor instanceKager1999),while the
latterarecoveredunderthetermfaithfulnessconstaint. Let us make this precise.We
usethe term “Output MarkednessConstraint’sincemarkednessonstraintmay also
evaluatesolelytheinput. Suchinput constrainthave no effect for unidirectionalOT,
but they becomamportantin the next sectionwhenwe discussidirectionality

Definition 9 ((Output) Markedness Constraint): Let O = (GEN, C) be an OT-
system.Constraint; is anoutputmarkednesgonstaint if f

(i,0) € GEN A (i, 0) € GEN — ¢;({(i,0)) = ¢;((7',0)))

Frankand Sattarestrictattentionto binary outputmarkednessonstraints.Obvi-
ously, thesecanberepresentedslanguage®vertheoutputalphabetThecentralpart
of their constructionis an operationcalled conditionalintersection(Karttunen1998
callsit lenientcompositiof thatcombinesarelationwith alanguage.

Definition 10 (Conditional Intersection): Let R bearelationandL C Rg(R). The
conditionalintersectionR T L of R with L is definedas

R T L= (R o) IL) U (IDom(R)—Dom(R olIr)© R)

By applyingthedefinitions,it is easyto seethat(z,y) € R 1 L iff xRy andeither
y € L orthereisnoz € L suchthatzRz. In otherwords,{y|(z,y) € R 1 L} isthe
setof ysthatarerelatedto =z by R, andthatareoptimal with respecto the constraint
L. Furthermorejt follows from the closurepropertiesgivenabovethat R T L is a
rationalrelationprovided R is rationaland L is aregularlanguage.

Unidirectionaloptimality cannow beimplementedn astraightforvardway, name-
ly by successiely conditionallyintersectinghe (binary markednessgonstraintof an
OT-systemwith GEN.

Theorem 3 (Frank and Satta): Let O = (GEN, C) with C = (¢4, ..., ¢,) bean
OT-systemsuchC solelyconsistof binaryoutputmarkednessonstraintsThen(i, o)
is unidirectionallyoptimaliff (i,0) € GEN T ¢;--- T ¢,.

Theproofof thistheorems obviousfrom thedefinitions.Crucially, it followsthatuni-
directionaloptimalityis arationalrelationprovidedGEN is rationalandall constraints
areregularlanguages.
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4 Extension to Bidirectionality

In this sectionwe will showv that Frankand Sattas constructioncan be extendedto
the bidirectionalcase. Again we restrictattentionto binary markednes<onstraints.
However, for bidirectionaloptimizationcompetitionbetweerdifferentinputsmay oc-
cur. Thusit makessenseo considerconstraintghat comparedifferentinputswhile
ignoringthe output.

Definition 11 (Input Markedness Constraint): Let O = (GEN, C) bean OT-sys-
tem. Constraint; is aninputmarkednessonstaint iff

(i,0) € GEN A (1,0') € GEN — ¢;((1,0)) = ¢;({(1,0)))

If we wantto conditionally intersectGEN with a binary input markednesscon-
straint,we needa mirror imageof FrankandSattas conditionalintersection.Thuswe
definebackward conditionalintersectioras

R|L=(IoR)U(Rolgyr) Rrea, o))

Furthermorefor reasonghatwill becomeclearlater, in bidirectionaloptimality it
is not sufficient to considerthe bestoutputsfor a giveninput, but we have to look for
the bestinput-outputpairsin a globalway. Thuswe definebidirectionalconditional
intersectionn thefollowing way:

Definition 12 (Bidirectional Conditional Intersection):
Let O = (GEN, C) beanOT-systemandc; beabinarymarkednesonstraint.

R o Lpg(({eyx Ry(R))1es) _

if ¢; Is anoutputmarkednesgonstraint
Rt =

Ipom((Dom(Ryx fe}) i) © B

else

Letuslook atthisconstructionn detail. Suppose; is anoutputmarkednesgonstraint.
{e} x Rg(R) is arelationthat relatesthe emptystring to ary possibleoutputof R.
Conditionallyintersectinghis relationwith ¢; leadsto arelationthatrelatesheempty
string to thosepossibleoutputsof R that are optimal with respectto ¢;. Soif ¢; is
fulfilled by someoutputof R, thisrelationisjust{e} x (Rg(R) N ¢;). If nooutputof
R obgys ¢;, therelationis just {e} x Rg(R). In eitherway, Rg(({e} x Rg(R)) T ¢;)
is the setof outputsof R thatareoptimal with respecto ¢;. Sincec; only evaluates
outputs,R 1} ¢; is thusthe setof (i,0) € R thatareoptimalwith respecto ¢;. The
sameholdsceterisparibusif ¢; is aninputmarkednesgonstraint.

Like FrankandSattas operationpidirectionalconditionalintersectioronly makes
useof finite statetechniquesit follows directly from the closurepropertiesof regular
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languagesindrationalrelationsthat R 1) ¢; is arationalrelationprovided R is rational
andc; is aregularlanguage.

Note that a certaininput-outputpair may be evaluatedas sub-optimalaccording
to this constructionevenif it neithershareghe input componennor the outputcom-
ponentwith any bettercandidate.Sowhile Frankand Sattas conditionalintersection
operatepointwisefor eachinput, bidirectionalconditionalintersections global.

Lemma 3: Let O = (GEN, C) be an OT-system(with binary markedneson-
straintsonly), whereC' = (cy, ..., ¢,). Then

(1,0 € GEN ftc1--- ¢
iff (i,0) € GEN, andtherearenoi, o’ with (i, o) € GEN and(7, ') < (i, 0).

Proof: We extendthe notion of an OT-systemto the degeneratecasethatp = 0,
i.e.thereareno constraintsin this case < is theemptyrelation. Giventhis, we prove
the lemmaby inductionover p, the numberof constraints.For the basecasep = 0,
the proof is immediate. So let us assumehat the lemmais true for all OT-systems
with atmostn — 1 constraintsandlet O beanOT-systemwith » constraintsSuppose
(i,0) € GEN 1} ¢1--- 1} ¢,. It isimmediatefrom the definitionthatR ft L C R,
thus(i,0) € GEN. Now supposehereis an (i, o'y € GEN with (7,0') < (i, 0).
Thentheremustbeanm < n suchthat (7', o’) obeys and (i, o) violatesc,,. Clearly,
(i,0),(i',0y € GEN {t ¢1--- ft ¢,—1. Thusby induction hypothesis thesetwo
candidatedave the samepatternof constraintviolationswith respectto ¢; - - - ¢,, 1.
Hencem = n.

Let us assumehatc, is a outputmarkednessconstraint. Accordingto the defi-
nition of bidirectionalconditionalintersection eithero obeys ¢, or thereisnoo; €
Rg(GEN 1} ¢1-- - ¢,—1) thatobeysc,. Thuso ando’ eitherboth obey or bothvio-
latec;. Hence(#, o) &£ (i, o), contraassumptionThe sameargumentappliedceteris
paribusif ¢, is aninput markednesonstraint. o

For simplicity, wewill usethenotationR® asshorthandor R 1} ¢; - - - 1} ¢,, (Where
C = a,...,cp). Intuitively, this operationpicks out the globally optimal setof input-
outputpairsfrom GEN. Notethat R¢ is arationalrelationif R is rationalandall
constraintsn C' areregularlanguages.

R® implicitly partitions R into three mutually exclusive subrelations. Thereis
RC itself—thesetof input-outputpairsthatdon't have betteralternatveswhatsoeer.
Thesepairsare certainly optimal. Secondthereis the setof input-outputpairsthat
shareonecomponentvith someelemenbf RC. Thesepairsareblockedby R¢ (where
blockingis understoodn the senseof x-optimality).

Finally, thereis the setof pairsthat shareneithercomponentvith an elementof
RC. R® providesno informationwhetherthe elementsf the third setareoptimal or
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blocked. So we repeatoptimizationby applying the operation(-)¢ to the third set.
This procedures repeatedintil thethird setis empty
Thisideais formalizedby the subsequendefinition.

Definition 13: Let O = (GEN, C) beanQOT-system.

Xo = 0
Xor1 = Xo U (Ipom(GEN)—Dom(x.) © GEN o IRg(GEN)ng(Xa))C
(o asuccessoordinal)

Xs = |J X. (8 alimit ordinal)

a<f
X = UXQ

For every successoordinal o, X, 1 addsthoseinput-outputpairsto X, thatarenei-
ther elementsof X, nor blocked by an elementof X, andthatare minimal in this
respect.

X coincideswith the setof x-optimalinput-outputpairs.

Lemma 4: Let O = (GEN, C) be an OT-system. Then (i,0) € X iff (i,0) is x-
optimal.

Proof: First somenotation: We write a ~ b iff m;(a) = m;(b) for i € {1,2}, and
aC biff a >~ banda < b.

We will male useof the obsenationthat Dom(X, — Xs5) N Dom(Xs) = @ for
arbitraryordinalsy, é, andlikewise Rg(X,, — Xs) N Rg(Xs) = 0. If v < 4, thisfollows
from thefactthaty < 6 — X, C X;s. Now suppose < v. If 6 +1 = «, theclaim
follows directly from the definitionof Xs.,. Thussupposey = ¢ + 1 for ¢ > 6, and
supposeDom(X, — X5) N Dom(Xs) = 0. Now obsenethat Dom(X 1 — X5) =
Dom(X¢y1 — X¢) U Dom(X, — Xs). FurthermoreDom( X1 — X¢) N Dom(X,) =
0, and Dom(Xs) € Dom(X;). Thus Dom(X.1 — X¢) N Dom(Xs) = @, which
entailsthat Dom(X .1 — Xs5) N Dom(Xs) = 0. Now supposey is a limit ordinal.
ThenX, = ., X¢. ThusDom(X,) = .., Dom(X¢), and Dom(X, — X5) =
UC<’Y DO?TL(XC — Xg) HenCGDOﬂ”L()(,y — Xg) NXs= @

We defineanoperationB in thefollowing way:

B, = {{i,o) € GEN|i € Dom(X,) Vo € Rg(X,)} — Xa

Next we shaw that for ary (i,0) € GEN thereis an ordinal o suchthat (i, 0) €
X, U B,. Firstobserethatthe operationX hasanupperlimit, i.e.thereis anordinal
B suchthat X = Xj3. Otherwisewe could definean operationfrom GEN onto the
classof ordinals. This is impossiblesince GEN is a set. Now it follows from the
definition of X that Ipm(GEN)-Dom(xs) © GEN o IgyGEN)—Rg(x,) = 0. Thusfor
every (i,0) € GEN, eitheri € Dom(Xg) oro € Rg(Xj).
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Next we prove that X, N B, = @ for arbitrarya. By filling in the definitions, it
comesdown to thetrivial proofthata subsebf X, — X, is empty

Finally we demonstrate¢hat B,, is weakly monotonicin «. Suppos€(i, o) € B,,
anda < . SinceX,, C Xg, (i,0) € {(i,0) € GEN|i € Dom(Xg) V o € Rg(X3)}.
Since(i,0) € B,, it sharesa componentvith someelementof X,,. From the ob-
senation mentionedin the beginning of the proof it follows that (i, 0) ¢ Xz — X,.
Furthermorgi, o) ¢ X, by assumptionthus(i, o) ¢ Xz, hence(i, o) € Bg.

Now reconsidethe definitionfor X,,. Dueto lemma3, the clausefor successor
ordinalsis equivalentto

Xot1 = XoU{a € GEN|mi(a) € Dom(X,) Ame(a) € Rg(Xa)
AVYb < a(m1(b) € Dom(X,) V m2(b) € Rg(Xa))}

Accordingto thedefinitionof B,, this canberewritten as

Xon1 = XoU{a € GEN|mi(a) € Dom(X,) A m(a) € Rg(X,)
AV < a(b € X, U B,)}

Applying thedefinitionof B, onceagain,we obtain
Xoy1 = X,U{aeGEN—-X,— B,|vb<a(be X,UB,)}
By simpleset-theoreticeasoningthis is equivalentto
Xoi1 = XoU{a€GEN—B,|Vb<a(be X,UB,)}
Likewise,we canrewrite the definitionof B,,. Firstnotethat
By =1
simply by filling in thedefinition. Furthermoreywe cansimplify thedefinitionto
B, = {a€ GEN—X,|3b~a:be X,}

Let OPT bethesetof x-optimal elementsof GEN. Next we shawv that X, C OPT
andB, N OPT = { for all ordinalsa by inductionover «.. For a = 0 thisis obvious.
Solet usassumdhat « is a successoordinalandthe claim holdsfor a — 1. Let us
furthermoreassumehatae € X, — X,_1. Thismeanghate ¢ GEN — B,_1, and
Vb <a:bée X, 1UBy 1. Supposé C a. Thenb < a andthereforeh € X, 1UB, 1.
Supposé € X, ;. By assumptiong ¢ X, 1, anda ~ b. Thusa € B, 1, but this
is a contradictionto the assumptions.Henceb € B, ;. By inductionhypothesis,
b ¢ OPT. Sowe concludethata € OPT.

Now suppose: € B, — B, 1. Thenthereisab ~ a withb € X, andb ¢ X, ;.
Thusfor all ¢ < b it holdsthate € X, U B, 1. Thereforea £ b.

It follows directly from the definition of < in termsof OT-systemghat < is total
inthesensahatz < y,y < x orx = y for all x,y, wherex = y iff for all z: z < z iff
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z<yandz < ziff y < z. Soif a £ b, eithera = b orb < a. Supposer = b. Since
be X,— X, 1,1t holdsthatforallc < b:ce X, 1 U B, 1. Now supposel < a.
Sincea = b,d < b. Thusd € X, 1 U B, 1. Thereforea € X,. Thisis impossible
thoughsince X, and B,, aredisjoint. Thusb < a. As wasarguedabove,if b € X,
b€ OPT. Hencea ¢ OPT.

Now let usassumeahat« is alimit ordinal. If a € X, a € Xz for someg < a.
Hencea € OPT by induction hypothesis. So supposehata € B,. Thena €
GEN — X, andthereisab ~ a with b € X,. Thenalsob € Xz for someg < a.
SinceXs C X,, a € GEN — Xj3. Thusa € Bg, andthencea ¢ OPT by induction
hypothesis. o

So the operationX,, providesa cumulative definition of the notion of x-optimality.
Mostimportantlyfor the presenpurposesthe stepfrom X, to X, .; makesuseonly
of finite statetechniquesin otherwords,if X, andGEN arerationalrelations,andall
constraintsn C' arebinary markednessonstraintdhatcanberepresentedy regular
languages X, 1 is alsoa rational relation. This follows directly from the closure
propertiesof rationalrelationsandregularlanguagesX, = @ by definition,andsince
) = @ x 0 and@ is afinite languageit is a regularlanguagean hencealsoa rational
relation. Soit follows by completeinductionthat X, is a rational relation for ary
finite n provided GEN is rationalandall constraintanvolvedareregularlanguages.
Soto show that X is alsorationalundertheseconditions,it sufficesto demonstrate
that X = X, for somefinite n.

Lemma5: Let O = (GEN, C) bean OT-systemwith C' = ¢, ..., ¢,, whereall ¢;
arebinarymarkednesgonstraintsThenX = Xo,.

Proof: We definethedegreeof somea € GEN as

da) = [Jd®)b<a}+1

Againit follows from the recursiontheoremthatthis is a valid definition. Intuitively,
the ranked constraintsof an OT-systempartition GEN into linearly ranked equva-
lenceclasseqwheretwo candidatesre equialentif they have the samepatternsof
constraintviolations),andd(a) measureshe rank of the equivalenceclassof a. Put
moreformally, a = b directly entailsd(a) = d(b), andif « andb have the samepattern
of constraintviolations,a = b. Thusin this cased(a) = d(b). If C consistsof p
constraintstherearefinitely mary, namelyat most2? possiblepatternsof constraint
violations. Thusd(a) < 2* for arbitrarya.

Next we prove thatfor ary ordinal @, d(a) > aif a € X, 1 U By1 — X U B,
Theproof methodis transfiniteinductionoverthe ordinals. Theclaim obviously holds
for « = 0. Sosupposex > 0, andtheclaim holdsof all 8 < «, anda € X,.1 U By11
anda ¢ X, U B,. Thenthereisnob ~ a with b € X,,. Suppose: € X, .1. Thenfor
all b < a it holdsthatb € X, U B,,. Now eithera = 0, or «v is asuccessoordinaland
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thereisab < a with b € X, U B, — (X, 1 U B, 1), sinceotherwiseit would hold
thate € Xz U Bg for someg with 8+ 1 < . If a = 0, trivially d(b) > «. If thereis
ab<awithbe X,UB, — (Xo-1U By 1),d(b) > a— 1 byinductionhypothesis.
Furthermorel(a) > d(b) sincea > b, sod(a) > a.

Now supposea: € B, .. Thenthereisab ~ a with b € X,,. Fromthe preceding
paragraptwe know thatin this cased(b) > «. Furthermorep is minimalin X, ; U
B, 1 with respecto <. Thusb < a, andtherefored(a) > d(b) > a.

Let a be the maximalordinal suchthatthereis ana € GEN withae € X, U
B,i1 — (X, UB,). SinceGEN is aset,suchanordinalmustexist. ThenX = X, .,
andtherearea € GEN with d(a) > « dueto the obseration madeabove. Since
d(a) < 2P, +1 < 2P,

_|

This leadsusdirectly to the mainresultof this section.

Theorem 4: Let O = (GEN, C) bean OT-systemwith C' = (¢4, ..., ¢,), whereall
¢; arebinarymarkednesgonstraintsFurthermorelet GEN bearationalrelationand
letall ¢; beregularlanguagesThenthesetof x-optimalelementof GEN is arational
relation.

Proof: Immediatelyfrom the lemmas4, 5, andthe closureconditionsof regular
languagesindrationalrelations. o

Note that the proof is constructve. Soif the componentof an OT-systemwith the
describegropertiesaregivenasfinite stateautomatathe proof providesanalgorithm
for constructinga finite statetransducethatimplementsbidirectionalOT of this OT-
system.

5 Conclusion and open ends

In this paper we investigatedsomemeta-theoretipropertiesof the modelof bidirec-
tional Optimality Theorythatwasdevelopedin Blutner2000. We obtainedthreemain
results:

1. We developeda conceptuallysimpler definition of bidirectionality (definition
3 on page8) and proved its equivalencewith Blutner’s definition undervery
generakonditions.

2. For a substantiatlassof OT-systemgthosewhereonly non-countingmarked-
nessconstraintsareinvolved), we gave a cumulatve definition of bidirectional
optimality thatis moreconstructve thanthe previousdefinitions.
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Fig. 4: Closureconditionsneededor x-optimality

3. Inspiredby FrankandSattal998,we shavedthatfor thementionedtlassof OT-
systemstherelationof bidirectionaloptimality betweennputandoutputcanbe
modeledby a finite statetransduceprovided the generatoandthe constraints
canbemodeledby suchmeans.

While modelingof optimizationwith finite statetechniquess of practicalimpor-
tancein computationaphonology thereareno obviousapplicationsof suchmethods
in syntax,semantice&ndpragmatics SincebidirectionalOT is usedmainlyin thesear
easof linguistics,theinvestigationghatweredescribedn thelastchapterareof avery
theoreticainterestonly. Thetechniqueshatweredevelopedtherecanbeextrapolated
to moreinterestingclasse®f languagesndrelationsthough.

In the proof of theorem4, we ignoredthe specificpropertiesof regularlanguages
andrationalrelationsbut we only usedtheir closureproperties As animmediatecon-
sequencehidirectionaloptimizationstayswithin reachof ary classof languages/rela-
tions that has this property—preided the OT-systemin questiononly has binary
markednessconstraints. Note thoughthat the restrictionto markednessconstraints
is only neededn the definitionof R 1} ¢, soif we canredefinethis operationin a
way thatmakesno recurseto this property we may generalizehe closureconditions
somavhat. Thereis a straightforvard way to do so provided the classof relationsin
questionis alsoclosedunderintersection Giventhis, we may definethe bidirectional
conditionalintersectiorof two relationsin thefollowing way:

RS =(RNS)U(RolIryr) Rg(Dom(RNS)x Rg(R)))

Both binary markednessonstraintsandbinary faithfulnessconstraintscanbe repre-
sentedasrelations. Thusif both the generatorand all constraintsare elementsof a
given classof relationswith the appropriateclosureproperties x-optimality in this
systemis within this classtoo. Theseclosureconditionsaresummarizedn figure4.
So future researcrshouldidentify interestingand linguistically useful classeof
relations/languagethat obey theseclosureconditions. It is not very surprisingthat
bidirectionalOT is semi-decidablesincethe classof recursvely enumerablesetshas
thementionecclosureproperties However, moreinterestingclassedik e therecursve
setsor the contet freelanguagedgail to obey the necessarglosureconditions.
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Lastbut notleast,our constructve redefinitionof bidirectionaloptimality restson
the assumptionghat all constraintsare binary To work with countingconstraints,
we will needa more elaboratedefinition of R {} S. As anadditionalcomplication,
thereis no guarantearnymorethat X = X,, for somefinite » in the generalcase.So
it remainsto be seenwhata constructve reformulationof bidirectionaloptimization
with countingconstraintdookslike.
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