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1 Differential Case Marking

It is a common feature of many case marking languages that some but not all
objects are case marked.1 However, it is usually not entirely random which
objects are marked and which aren’t. Rather, case marking only applies to
a morphologically or semantically well-defined class of NPs. Take Hebrew as
an example. In this language, definite objects carry an accusative morpheme
while indefinite objects are unmarked.

(1) a. Ha-seret her?a ?et-ha-milxama
the-movie showed ACC-the-war

b. Ha-seret her?a (*?et-)milxama
the-movie showed (*ACC-)war

(from Aissen 2000)

Similar patterns are found in many languages. Bossong (1985) calls this
phenomenon “Differential Object Marking” (DOM). A common pattern is
that all NPs from the top section of the definiteness hierarchy are case marked
while those from the bottom section are not.

∗This is the revised version of a paper I posted at ROA in September 2002. The
original version contained some flaws that are corrected now. Especially section 10 has
been completely rewritten.

1 Here and throughout the paper, I consider the morphological form of the subject of
an intransitive clause as unmarked, and case marking that deviates from it as marked.
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(2) personal pronoun > proper noun > definite full NP > indefinite spe-
cific NP > non-specific indefinite NP

Catalan, for instance, only marks personal pronouns as objects. In Pit-
jantjatjara (an Australian language), pronouns and proper nouns are case
marked when they are objects while other NPs aren’t. Hebrew draws the
line between definite and indefinite NPs and Turkish between specific and
non-specific ones.2

Likewise, the criterion for using or omitting a case morpheme for objects may
come from the animacy hierarchy.

(3) human > animate > inanimate

As with the definiteness hierarchy, there are languages which only mark ob-
jects from some upper segment of this scale. Finally, there are instances of
DOM where case marking is restricted to an upper segment of the product
of the two scales.3

Differential case marking also frequently occurs with subjects.4 In contradis-
tinction to DOM, DSM (“Differential Subject Marking”) means that only
instances of some lower segment of the definiteness/animacy hierarchy are
case marked. (The observation that the relevant scales for subjects and ob-
jects are inverses of each other is due to Silverstein 1976.)
DOM and DSM may co-occur within one language. This phenomenon is
usually called split ergativity. (This term covers both case marking systems
where the case marking segments for subjects and for objects are comple-
mentary and systems where they overlap.)
The person specification of NPs induces another hierarchy. Simplifying some-
what, it says that the local persons (1st and 2nd) outrank 3rd person.

(4) 1st/2nd person > 3rd person

These patterns underlie split ergative case marking in languages like Dyir-
bal where the choice between the nominative/accusative system and the
ergative/absolutive system is based on person. Table 1 (which is taken from
Aissen 1999) shows the basic case marking pattern for Dyirbal.

2 See Aissen (2000) for a more elaborate discussion, examples and references.
3 By this I mean the partial order over the Cartesian product of the domain of the two

scales, where 〈a1, b1〉 ≥ 〈a2, b2〉 iff a1 ≥ a2 and b1 ≥ b2.
4 Here and henceforth, I use the term “subject” to refer both to the single argument

of an intransitive verb and to the controller/agent argument of transitive verb. “Object”
refers to the non-subject argument of a simple transitive verb. While this terminology
expresses a bias towards accusative systems and against ergative systems, no real harm is
done by this in the context of this paper because it does not deal with intransitive clauses.
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Unmarked Marked
Local persons Subject Object
3rd person Object Subject (of transitive)
Case Nominative/Absolutive Accusative/Ergative

Tab. 1: Case marking system of Dyirbal

Briefly put, Dyirbal only marks non-harmonic arguments, i.e. local objects
and 3rd person subjects. It thus represents a combination of DOM with
DSM.
These patterns of “Differential Case Marking” (DCM) can be represented as
the result of aligning two scales—the scale of grammatical functions (subject
vs. object) with some scale which classifies NPs according to substantive
features like definiteness, egocentricity, or animacy (as proposed in Silverstein
1976). Ranking the grammatical functions according to prominence leads to
the binary scale

(5) Subj > Obj

Harmonic alignment of two scales means that items which assume compa-
rable positions in both scales are considered most harmonic. For alignment
of the scale above with the definiteness hierarchy this means that pronom-
inal subjects (+prominent/+prominent), as well as non-specific objects (-
prominent/-prominent) are maximally harmonic, while the combination of a
prominent position in one scale with a non-prominent position in the other
scale is disharmonic (like non-specific subjects or pronominal objects). More
precisely, harmonically aligning the hierarchy of syntactic roles with the def-
initeness hierarchy leads to two scales of feature combinations, one confined
to subjects, and the other to objects. The subject scale is isomorphic to the
definiteness hierarchy, while the ordering for objects is reversed.

(6) a. Subj/pronoun� Subj/name� Subj/def� Subj/spec� Subj/non-
spec

b. Obj/non-spec � Obj/spec � Obj/def � Obj/name � Obj/pro-
noun

In this way DCM can be represented as a uniform phenomenon—case mark-
ing is always restricted to upper segments of these scales. This pattern
becomes even more obvious if optional case marking is taken into account.
As Aissen points out, if case marking is optional for some feature combina-
tion, it is optional or obligatory for every feature combination that is lower
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in the same hierarchy, and it is optional or prohibited for every point higher
in the same hierarchy. Furthermore, if one looks at actual frequencies of case
marking patterns in corpora, all available evidence suggests that the relative
frequency of case marking always increases the farther down one gets in the
hierarchy (see Aissen & Bresnan 2002).
What is interesting from a typological perspective is that there are very few
attested cases of “inverse DCM”—languages that would restrict case marking
to lower segments of the above scales.5 The restriction to upper segments
appears to be a strong universal tendency.

2 OT Formalization

Prince & Smolensky (1993) develop a simple method to translate harmony
scales into OT constraints: for each element x of a scale we have a constraint
*x (“Avoid x!”), and the ranking of these constraints is just the reversal of the
harmony scale. For the person/grammatical function interaction discussed
above, this looks schematically as follows (adapted from Bresnan et al. 2001):

(7) Prominence Harmonically OT constraint
scales aligned scales sub-hierarchies

Subj > Obj Subj/local � Subj/3rd *Subj/3rd � *Subj/local
local > 3rd Obj/3rd � Obj/local *Obj/local � *Obj/3rd

To translate harmony scales into OT, first every feature combination f is
compiled into a constraint saying “Avoid f !” For instance, the combination
“Subj/local” corresponds to the constraint “*Subj/local”, that is violated by
every local person subject. The ordering in the harmony scale is translated
into universal sub-hierarchies which are to be respected by any language
particular total constraint ranking. If, according to the harmony scale, local
person subjects are better than third person subjects, then being a third
person subject is (universally) worse than being a local person subject. This
is expressed by the constraint sub-hierarchy “*Subj/3rd � *Subj/local”.
Generally, the common pattern of DCM is that non-harmonic combinations
must be morphologically marked while harmonic combinations are unmarked.
To formalize this idea in OT, Aissen employs the formal operation of con-
straint conjunction from Smolensky (1995). If C1 and C2 are constraints,

5 Dixon (1994), p. 90 gives two examples: the Australian language Arrernte has an in-
verse split ergativity system for pronouns—only first person pronouns are marked as sub-
jects, while all other pronouns are unmarked as subjects but marked as objects. Nganasan
(from the Samoyedic group of the Uralic family) has inverse DOM, i.e. full nouns but not
pronouns are case marked as objects.
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C1&C2 is another constraint which is violated iff both C1 and C2 are vi-
olated. Crucially, C1&C2 may outrank other constraints Ci that in turn
outrank both C1 and C2. So the following constraint ranking is possible:

C1&C2 � C3 � C4 � C1 � C5 � C2

Furthermore, two general constraints play a role:

• “*∅” is violated if a morphological feature is not marked

• “*STRUC” is violated by any morphological marking

Each constraint resulting from harmonic alignment is conjoined with *∅, and
the ranking of the conjoined constraints is isomorphic to the ranking in-
duced by alignment. (Also the conjoined constraints outrank each of their
conjuncts.) The alignment of the person hierarchy with the scale of gram-
matical functions thus for instance leads to the following universal constraint
sub-hierarchies:

(8) *∅ & *Subj/3rd � *∅ & *Subj/local
*∅ & *Obj/local � *∅ & *Obj/3rd

Interpolating the constraint *STRUC at any point in any linearization of
these sub-hierarchies leads to a pattern where morphological marking indi-
cates non-harmony. The choice of the threshold for morphological marking
depends on the relative position of *STRUC. The Dyirbal pattern, for in-
stance, would follow from the following constraint ranking.

(9) *∅ & *Subj/3rd� *∅ & *Obj/local� *STRUC� *∅ & *Subj/local
� *∅ & *Obj/3rd

3 Statistical bias

In Zeevat & Jäger (2002) (ZJ henceforth) we attempt to come up with a
functional explanation for the DCM pattern that are analyzed by Aissen.
The basis for this approach is the observation that harmonic combinations of
substantive and formal features (like the combinations “subject+animate”
or “object+inanimate”) are common in actual language use, while dishar-
monic combinations (like “subject+inanimate” or “object+animate”) are
rather rare. This intuition has been confirmed by several corpus studies.
Table 2 displays the relative frequencies of feature combinations in the cor-
pus SAMTAL, a collection of everyday conversations in Swedish that was
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NP +def -def +pron -pron +anim -anim

Subj 3151 3098 53 2984 167 2948 203
Obj 3151 1830 1321 1512 1639 317 2834

χ2 1496 1681 4399
p < 0.01% yes yes yes

Tab. 2: Frequencies in the SAMTAL corpus of spoken Swedish

p(subj|+ def) = 62.9% p(subj| − def) = 3.9%
p(obj|+ def) = 37.1% p(obj| − def) = 96.1%

p(subj|+ pron) = 66.4% p(subj| − pron) = 9.2%
p(obj|+ pron) = 33.6% p(obj| − pron) = 90.8%

p(subj|+ anim) = 90.3% p(subj| − anim) = 6.7%
p(obj|+ anim) = 9.7% p(obj| − anim) = 93.3%

Tab. 3: Conditional probabilities

annotated by Oesten Dahl. (Only subjects and direct objects of transitive
clauses are considered,)
There are statistically significant correlations between grammatical function
and each of the substantive features definiteness, pronominalization and an-
imacy. The correlations all go in the same direction: harmonic combinations
are over-represented, while disharmonic combinations are under-represented.
If attention is restricted to simple transitive clauses, the chance that an arbi-
trarily picked NP is a subject is (of course) exactly 50%—exactly as high as
the chance that it is a direct object. However, if an NP is picked at random
and it turns out to be definite, the likelihood that it is a subject increases
to 62.9%. On the other hand, if it turns out to be indefinite, the probability
that it is a subject is as low as 3.9%. Analogous patterns obtain for all com-
binations:

This statistical bias has little to do with the grammar of the language at
hand. There is some minor influence because diathesis can be used to avoid
disharmonic combinations (see Aissen 1999 and Bresnan et al. 2001 for dis-
cussion), but since the passive is generally rare and there is no categorical
grammaticalized correlation between referentiality or animacy and diathesis
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in Swedish, the general pattern is hardly affected by this factor.6 So de-
spite the thin cross-linguistic evidence (though the same patterns have been
found in the Wall Street Journal Corpus by Henk Zeevat, in the CallHome
corpus of spoken Japanese by Fry 2001, and in the SUSANNE and CHRIS-
TINE corpora of written and spoken English by myself) I henceforth assume
the working hypothesis that these statistical biases are universal features of
language use.

4 Bias and bidirectional optimization

Differential case marking amounts to a preference for case marking of dishar-
monic feature combinations over case marking of harmonic combinations.
Taking the statistical patterns of language use into account, this means that
there is a preference for case marking of rare combinations, while frequent
forms are more likely to be unmarked. This is a sensible strategy because it
minimizes the overall effort of the speaker while preserving the disambiguat-
ing effect of case marking.7 As pointed out in ZJ, Bidirectional Optimality
Theory in the sense of Blutner (2001) provides a good theoretical framework
to formalize this kind of pragmatic reasoning.
According to Bidirectional OT (which is founded in work on formal pragmat-
ics), a meaning-form pair is only optimal if it conforms to the preferences of
both speaker and hearer in an optimal way. Speaker preferences and hearer
preferences of course need not coincide. However, they do not contradict each
other either, for the simple reason that the speaker has preferences between
different ways to express a given meaning, while the hearer compares differ-
ent interpretations of a given form. Applied to case marking, it is plausible
to assume that the speaker has ceteris paribus a preference to avoid case
marking. The hearer, on the other hand, has a preference for faithful inter-
pretation (accusative NPs are preferredly interpreted as objects and ergative
NPs as subjects). Furthermore, ZJ claim that there is a hearer preference to
follow the statistical bias, i.e. to interpret definite or animate NPs as subjects
and indefinite or inanimate NPs as objects.
These preferences can easily be interpreted as OT constraints. The speaker
preference against case marking is just Aissen’s constraint *STRUC. Pref-

6 In other languages, the impact of the grammar on these quantities might be consid-
erable. To clearly separate the usage patterns from grammatical features of the language
studied, one has to look at the correlation between animacy/definiteness and semantic
roles. This has to be left for future research.

7 The resemblance to optimal coding in the sense of information theory is striking.
Shannon (1948) showed that an optimal coding must assign long codes to rare events and
short codes to frequent ones.
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erence for faithfulness interpretation of case morphemes can be covered by
a constraint FAITH (arguably there are different faithfulness constraints for
different morphemes, but for the purposes of ZJ as well as of the present
paper one big faithfulness constraint will do). Finally, ZJ assume a con-
straint BIAS that is fulfilled if an NP of a certain morphological category
is interpreted as having the grammatical function that is most probable for
this category.8

For FAITH to take any effect, it must be (universally) ranked higher than
BIAS. The relative ranking of *STRUC is actually inessential. For the sake of
illustration, we assume it to be ranked lowest. So the hierarchy of constraints
is

FAITH � BIAS � *STRUC

In contradistinction to standard OT, Bidirectional OT takes both hearer
preferences and speaker preferences into account. Hearer optimality means:
for a given form, choose the meaning that has the least severe constraint
violation pattern. For the constraint system at hand, this means: interpret
an NP according to its case marking, and in the absence of case marking,
follow the statistical bias. The speaker has to take this hearer strategy into
account to get his message across. Only if two competing forms are both
hearer optimal for a given meaning, the speaker is free to choose the preferred
one (which means in the present setup: the one without case marking).
This view on bidirectional optimization can be formalized in the following
way.9 I write 〈m1, f1〉 < 〈m2, f2〉 iff the meaning-form pair 〈m1, f1〉 is better
than 〈m2, f2〉 according to the constraints given above in the given ranking.
Following standard practice, I assume a generator relation GEN between
forms and meanings from which the optimal candidates are chosen. GEN
supplies the morphological inventory of a language as well as some general,
highly underspecified structural relation between forms and meanings.

Definition 1:

• A meaning-form pair 〈m, f〉 is hearer-optimal iff 〈m, f〉 ∈ GEN and
there is no alternative meaning m′ such that 〈m′, f〉 ∈ GEN and
〈m′, f〉 < 〈m, f〉.

8 The terminology I use here differs somewhat from ZJ but is more in line with the bulk
of the OT literature.

9 The notion of bidirectionality given in the definition differs from Blutner’s, which
treats speaker and hearer totally symmetrical. Also, I am again deviating somewhat from
the original formulation in ZJ in a way that makes no difference for their general point.
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• A meaning-form pair 〈m, f〉 is optimal iff it is hearer-optimal and
there is no alternative form f ′ such that 〈m, f ′〉 is hearer-optimal and
〈m, f ′〉 < 〈m, f〉.

Now suppose the GEN relation for a given language supplies both an ac-
cusative and an ergative morpheme. How would, say, an inanimate object be
morphologically realized in an optimal way? To keep things simple, let us as-
sume that the interpretation of an NP within a clause is uniquely determined
by its grammatical function. (In a more elaborate system, grammatical func-
tions only mediate between surface realization and semantic roles, but I will
not go into that in the context of the present paper.) We get the following
tableau:

(10)
FAITH BIAS *STRUC

anim+∅ ☞ Subj
Obj ∗

anim+ERG Subj ∗
Obj ∗ ∗ ∗

anim+ACC Subj ∗ ∗
☞ Obj ∗ ∗

To figure out which meaning-form pairs are hearer optimal, we have to com-
pare the different meanings (subject vs. object) of the three potential morpho-
logical realizations: zero (i.e. identical to the subject marking in intransitive
clauses), ergative or accusative. It is easy to see that the association of both
zero marking and ergative marking with the subject role, and the association
of accusative marking with the object role are hearer optimal. Speaker opti-
mization chooses between the possible hearer-optimal realizations of a given
meaning. For the subject interpretation, there is a choice between zero mark-
ing and ergative marking. Since the latter violates *STRUC and the former
doesn’t, and they do not differ with respect to other constraints, zero mark-
ing is optimal for the subject interpretation. For the object interpretation,
there is only one hearer optimal realization—accusative marking—which is
thus trivially optimal.
For inanimate NPs, the pattern is reversed. Here subjects must be case
marked with the ergative morpheme, while objects are preferredly unmarked.
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(11)
FAITH BIAS *STRUC

inanim+∅ Subj ∗
☞ Obj

inanim+ERG ☞ Subj ∗ ∗
Obj ∗ ∗

inanim+ACC Subj ∗ ∗ ∗
Obj ∗

ZJ’s system thus predicts a split ergative system: case marking is restricted to
disharmonic feature combinations—animate objects and inanimate subjects—
while harmonic combinations are unmarked.
This mechanism only works though if the NP at hand is in fact ambiguous
between subject and object interpretation. If it is disambiguated by means
of external factors like word order, agreement, semantic plausibility etc. zero
marking will always win. Let us call such a case marking system pragmatic
DCM. However, the languages that were mentioned in the beginning require
case marking of disharmonic combinations regardless of the particular con-
textual setting. Restricting attention to (in)animacy, this would mean that
all animate objects and inanimate subjects must be case marked, no matter
whether case marking is necessary for disambiguation in a particular context.
I call such a system structural DCM henceforth. Bidirectional OT does not
give an immediate explanation for such a pattern.
ZJ suggest that structural DCM emerges out of pragmatic DCM as the result
of a grammaticalization process. If a language starts employing pragmatic
DCM, the next generation of language learners are faced with two ways
of making sense of the case marking pattern: pragmatic DCM or optional
structural DCM. If both hypotheses are entertained, the overall probability
for DCM increases (i.e. the probability for an animate subject to be zero-
marked, for an inanimate subject to be case marked etc.). This in turn makes
the hypothesis of structural DCM more plausible. After some generations of
partial reanalysis, DCM is fully grammaticalized, i.e. pragmatic DCM has
turned into structural DCM.
There are quite a few problems that are left open by the ZJ-approach. To
start with, the explanation of structural DCM rests on a fairly sketchy ac-
count of grammaticalization. Also it predicts that in languages that have
both ergative and accusative morphology at their disposal, a split ergative
system should emerge where the split points for DSM and DOM are iden-
tical (as in Dyirbal, see above). While this is the common pattern for split
ergativity, there are also languages where the segments for subject marking
and for object marking overlap. Dixon (1994), p. 86 mentions the example of
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Cashinawa (a language from Peru), where all pronouns have case marking in
object position, and all third person NPs are case marked in subject position.
In other words, third person pronouns occur in three forms: unmarked (as
subjects of intransitive clauses), ergative case and accusative case. According
to the ZJ-system, these pronouns should have a bias either towards a subject
or an object interpretation, and thus only the interpretation unsupported
by this bias should be marked (or, at any rate, this should have been the
situation in the pragmatic DCM language from which the structural pattern
of Cashinawa emerged). Also, the ZJ-system fails to explain the great cross-
linguistic diversity of DCM systems. If DCM is directly rooted in a statistical
bias which in turn has extra-linguistic sources, one would expect to find not
just the same pattern but also the same split across languages.
There is also a conceptual problem with ZJ’s approach. The constraint BIAS
makes direct reference to the statistics of language use. While it might be
plausible that grammatical rules and constraints are induced from frequen-
cies, it seems unlikely that the internalized grammar of a speaker contains
a counter that keeps track of the relative frequencies of feature associations,
say. In other words, frequencies may help to explain why and how a certain
grammar has been learned, but they are not part of this grammar.
In the remainder of this paper I will outline a theory that remedies the last
problem. While the explanation of pragmatic DCM in terms of bidirectional
optimization is preserved, the connection between the statistics of language
use and the competence grammar of the speakers of a language is established
via a learning algorithm, rather than feeding the statistical information di-
rectly into the grammar. This approach solves two puzzles: It explains why
the constraint sub-hierarchies that Aissen assumes to be universal are so
common without taking resort to UG, and it gives a formal account of the
diachronic shift from pragmatic to structural DCM. The cross-linguistic di-
versity of the possible split points for DCM is not further discussed in this
paper, but it is likely that this problem can be dealt with in this framework
as well.

5 Stochastic Optimality Theory

Aissen (2000) and Aissen & Bresnan (2002) point out that there is not just a
universal tendency towards DCM across languages, but that DCM can also
be used to describe statistical tendencies within one language that has, in
the traditional terminology, optional case marking. In colloquial Japanese,
for example, 70% of the inanimate subjects, but only 65% of the animate
subjects are case marked. Conversely, 54% of the animate, but only 47%
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of the inanimate objects are marked (these figures are taken from Aissen
& Bresnan 2002, who attribute them to Fry 2001). Structural DCM can
actually be seen as the extreme borderline case where these probabilities are
either 100% or 0%. Stochastic Optimality Theory (StOT henceforth) in the
sense of Boersma (1998) is a theoretical framework that is well-suited to
formalize this kind of intuition. As a stochastic grammar, a StOT-Grammar
does not just distinguish between grammatical and ungrammatical signs, but
it defines a probability distribution over some domain of potential signs (in
the context of OT: GEN). Ungrammaticality is thus the borderline case
where the grammar assigns the probability 0.
StOT deviates from standard OT in two ways:

• Constraint ranking on a continuous scale: Every constraint is
assigned a real number. This number does not only determine the
ranking of the constraints, but it is also a measure for the distance
between them.

• Stochastic evaluation: At each evaluation, the placement of a con-
straint is modified by adding a normally distributed noise value. The
ordering of the constraint after adding this noise value determines the
actual evaluation of the candidate set at hand.

So we have to distinguish between the value that the grammar assigns to
a constraint, and its actual ranking during the evaluation of a particular
candidate. To make this point clear, suppose we have some constraint C
which, according to the grammar, has the value 0.5.10 To evaluate whether
a particular linguistic item in a corpus violates this constraint, we have to
determine C’s actual value. It is obtained from its grammar value by adding
some amount z of unpredictable noise. z may be any real number, so the
actual value of C can be any number as well. However, z is likely to have a
small absolute value, so the actual value of C is likely to be in the vicinity of
0.5. Boersma assumes that z is distributed according to a normal distribution
with mean µ = 0 and standard deviation σ = 2.11 So the actual value of C
is also normally distributed, with mean 0.5 and standard deviation 2. This
distribution is depicted in figure 1.

10 Boersma (1998) and Boersma & Hayes (2001) prefer values around 100 while I find
values around 0 easier to work with. Since only the distance between constraint values
matters and not the values as such, this makes no real difference.

11 In the graph of a normal distribution (see figure 1), the mean corresponds to the
center where the value of the function is at its maximum, and the standard deviation is
the distance between the mean and the points on both sides where the shape of the curve
changes from concave to convex.
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Fig. 1: Normal distribution

It has the Gaussian bell shape that is familiar from many stochastic phenom-
ena. The probability that the value of C falls within a certain interval on
the x-axis is proportional to the area between the x-axis and the bell curve
over this interval. The entire area under the curve is 100%. So for instance
the probability that the value of C is less than 0.5 is exactly 50%. While
the curve never touches the x-axis in theory on either side, the probability
that C is ranked below −9 or over 10 is so small (about 10−6) that it can be
neglected.
An OT system consists of several constraints, and the addition of a noise
value is done for each constraint separately. Suppose the grammar assigns
the constraints C1 and C2 the mean values −0.5 and 0.5 respectively. The
corresponding function graph is depicted in figure 2.
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Fig. 2: Two constraints

Since the mean of C1 is higher than the mean of C2, most of the time C1
will end up having a higher value than C2. However, it is perfectly possible
that C2 receives an unusually high and C1 an unusually low value, so that
in the end C2 > C1.12 The probability for this is about 36%. In any event,

12 I use C1, C2 etc. both as names of constraints and as stochastic variables over the
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after adding the noise values, the actual values of the constraints define a
total ranking. This generalizes to systems with more than two constraints.
This total ordering of constraints is then used to evaluate candidates in the
standard OT fashion, i.e. the strongest constraint is used first as a decision
criterion, if there is a draw resort is taken to the second highest constraint
and so on. To take the example above, suppose there are two candidates,
and the first violates only C1 and the second only C2. In 64% of all cases, C1
> C2, and thus the first candidate will be selected as optimal. However, in
36% of all evaluation events, C2 > C1 and thus the second candidate wins.
The probability for C1 > C2 depends on the difference between their mean
values that are assigned by the grammar. Let us denote the mean values of C1
and C2 as c1 and c2 respectively. Then the probability that C1 outranks C2
is a monotonic function of the difference between their mean values, c1−c2.13

It is depicted in figure 3.

0

10

20

30

40

50

60

70

80

90

100

-10 -5 0 5 10

P(C1>C2)

Fig. 3: probability of C1>C2 as a function of c1−c2 in %

If c1 = c2, both have the same chance to outrank the other, and accordingly
P(C1>C2) = 50%. This corresponds to a scenario where there is free varia-
tion between the candidates favored by C1 and those favored by C2. If C1
is higher ranked than C2, there is a preference for the C1-candidates. If the
difference is 2, say, the probability that C1 outranks C2 is already 76%. A
difference of 5 units corresponds to a chance of 96% that C1 > C2. Candi-
dates that are favored by C2 are a rare exception in a language described
by such a grammar, but they are still possible. If the difference is larger

actual values of these constraints.
13 To be precise, the dependency is the distribution function of a normal distribution

with mean = 0 and standard deviation = 2
√

2; cf. Boersma (1998), p. 284.
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than 12 units, the probability that C2 outranks C1 is less than 10−5, which
means that it is impossible for all practical purposes. In such a grammar C1
always outranks C1, and candidates that fulfill C2 at the expense of violating
C1 can be regarded simply as ungrammatical (provided there are alternative
candidates fulfilling C1, that is). So the classical pattern of a categorical con-
straint ranking is the borderline case of the stochastic evaluation. It obtains
if the distances between the constraints are sufficiently large.

6 The Gradual Learning Algorithm

StOT is equipped with a learning algorithm that extracts a constraint rank-
ing from a representative sample of a language—Boersma’s Gradual Learning
Algorithm (GLA; see Boersma 1998; Boersma & Hayes 2001). A note of cau-
tion is in order here: the algorithm only learns a constraint ranking. Both
GEN and the inventory of constraints have to be known in advance. Fur-
thermore, the algorithm requires as input an analyzed corpus, i.e. a set of
input-output pairs. (These are pairs of phonological and phonetic represen-
tations in the realm of phonology where this system was originally developed.
In the present context this amounts to meaning-form pairs.) At every stage
of the learning process, the algorithm has its own hypothetical StOT gram-
mar. When it is confronted with an observation, it generates an output for
the observed input according to its current grammar and compares it to the
observed output. If the two outputs coincide, the observation is taken as
confirmation of the hypothetical grammar and no action is taken. If there is
a mismatch though, the constraints of the learner’s grammar are re-ranked
in such a way that the observed output becomes more likely and the output
that the learner produced on the basis of its hypothetical grammar becomes
less likely. This process is repeated until further observations do not lead to
significant changes of the learner’s grammar anymore. If the training corpus
is a (sufficiently large) representative sample of a language that was generated
by a StOT-grammar G (which is based on the same GEN and constraint set
that the learner assumes), the grammar to which the algorithm converges
describes a language that assigns the same probabilities to all candidates
as G. So the learned grammar reproduces the statistical patterns from the
training corpus, not just the categorical distinctions between grammatical
and ungrammatical. Note that the algorithm is error-driven—the learner
revises his hypothesized grammar only if there is a discrepancy between the
observations and her own preferences.
Schematically, the algorithm goes through six different stages during the
learning process:
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• Initial state All constraint values are set to 0.

• Step 1: A datum The algorithm is presented with a learning datum—
a fully specified input-output pair 〈i, o〉.

• Step 2: Generation

◦ For each constraint, a noise value is drawn from a normal distri-
bution and added to its current ranking. This yields the selection
point.

◦ Constraints are ranked by descending order of the selection points.
This yields a linear order of the constraints.

◦ Based on this constraint ranking, the grammar generates an out-
put o′ for the input i.

• Step 3: Comparison If o = o′, nothing happens. Otherwise, the
algorithm compares the constraint violations of the learning datum
〈i, o〉 with the self-generated pair 〈i, o′〉.

• Step 4: Adjustment

◦ All constraints that favor 〈i, o〉 over 〈i, o′〉 are increased by some
small predefined numerical amount (“plasticity”).

◦ All constraints that favor 〈i, o′〉 over 〈i, o〉 are decreased by the
plasticity value.

• Final state Steps 1 – 4 are repeated until the constraint values sta-
bilize.

There are several numerical parameters involved that influence the behavior
of the GLA to a certain degree. I assume here that all constraints start with
the initial value 0 (Boersma & Hayes 2001 use 100 here). The concrete value
is totally inessential. The plasticity value is crucial for the impact of a single
observation and thus for the speed of learning. A high plasticity accelerates
learning at the expense of allowing a single observation to have a high impact.
Conversely, a low plasticity makes the algorithm slower but more robust.14

In the context of the present paper, I will use a plasticity of 0.01.

14 Boersma (1998) assumes that the plasticity value decreases over time. This is in fact
essential to ensure that the algorithm converges. Keeping the plasticity constant lets the
algorithm oscillate around the grammar to be learned without getting closer. For all
practical purposes, a small constant value for plasticity is good enough though.
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7 GLA and grammaticalization

Cable (2002) makes an ingenious proposal regarding how the GLA can be
used to explain the shift from pragmatic to structural DCM—a problem that
was largely left open by ZJ. Suppose a language has reached a stage where
pragmatic DCM is mandatory, while there is no structural DCM (yet). Let us
also assume, for the sake of the argument, that the relative frequencies are as
in the SAMTAL corpus (see figure 2), and that on the average one out of two
NPs is unambiguous with respect to its grammatical role (for instance due
to word order). We restrict attention to the contrast +/−animacy. (Cable’s
example is the contrast between local persons and third person, which makes
no difference to the argument.) In this language, there is never case mark-
ing on animate subjects or inanimate objects because such NPs are either
unambiguous to start with, or if they are ambiguous, BIAS assigns them
the correct interpretation. Disharmonic combinations (inanimate subjects
and animate objects) are marked whenever they are otherwise ambiguous,
i.e. in 50% of all cases by assumption. Now suppose this language is fed
into the GLA based on a GEN that supplies both ergative and accusative
morphology. The constraints to be ranked are Aissen’s: *Subj/anim&*∅,
*Subj/inanim&*∅, *Obj/anim&*∅, *Obj/inanim&*∅, and *STRUC. Since in
the language under discussion 50% of all inanimate subjects are case marked,
the GLA converges to a ranking where *Subj/inanim&*∅ and *STRUC have
the same rank (and thus their two possible rankings with respect to each
other are equally likely, leading to a 50% preference in favor and a 50% pref-
erence against ergative marking of inanimate subjects). The same applies
to animate objects. Animate subjects and inanimate objects are never case
marked, so the constraints *Subj/anim&*∅ and *Obj/inanim&*∅ end up be-
ing ranked well below *STRUC so that it is virtually impossible for them to
outrank *STRUC. A ranking with these properties would be

(12) a. *STRUC=*Subj/inanim&*∅=*Obj/anim&*∅ = 5

b. *Subj/anim&*∅=*Obj/inanim&*∅ = -5

The next generation uses this grammar but also employs pragmatic DCM
for disambiguation. Hence it will also never use case marking for harmonic
combinations—neither the grammar nor pragmatics gives a reason to do so.
Now the grammar requires that 50% of all disharmonic NPs are case marked,
but the correlation between case marking and ambiguity is lost. On the aver-
age half of the ambiguous and half of the unambiguous disharmonic NPs are
marked for grammatical reasons. If a disharmonic NP is per se ambiguous
and happens to be unmarked by the grammar, the pragmatic DCM strat-
egy requires it to be marked nevertheless. Hence in the end this generation
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will use case marking for 75% of all disharmonic NPs. The next generation
will thus learn a grammar where *Subj/inanim&*∅ and *Obj/anim&*∅ are
placed 2 units higher then *STRUC to mimic this 75/25 proportion, while
*Subj/anim&*∅=*Obj/inanim&*∅ are again way below *STRUC. The gram-
mar that is learned by this generation looks like:

(13) a. *Subj/inanim&*∅=*Obj/anim&*∅ = 7

b. *STRUC = 5

c. *Subj/anim&*∅=*Obj/inanim&*∅ = -5

By the same kind of reasoning, in the next generation this ratio will rise to
87.5% and so on. After 10 generations 99.9% of all disharmonic NPs but still
none of the harmonic NPs are case marked. In other words, pragmatic DCM
has turned into structural DCM.

8 Learning and bidirectionality

Cable’s approach solves one big problem that ZJ leave open: it describes
a precise mechanism of grammaticalization of DCM, the shift from prag-
matic towards structural DCM. The other big problem is still open: the
whole mechanism is driven by pragmatic DCM which in turn is based on
the constraint BIAS and thus mixes grammar with statistical tendencies.
Also, Cable’s mechanism in a sense assumes that the learner is pragmati-
cally ignorant—it is confronted with pragmatic DCM and mistakenly ana-
lyzes it as optional structural DCM. After completion of learning, however,
the next generation re-invents pragmatic DCM on top of the acquired struc-
tural DCM. So the learner uses a different type of grammar than the adult
speaker.
These shortcomings can be overcome by extending bidirectional optimization
to the learning process. Assume that the training corpus is drawn from a
language that was generated by a StOT-grammar based on bidirectional
optimization in the sense of definition 1. (As argued in the discussion of ZJ
above, this has the advantage that pragmatic DCM is integrated into the OT
machinery.) Accordingly, the same bidirectional notion of optimality should
be used by the learning algorithm in the second step (generation). Recall
that the learner takes the observed input and generates an output for that
input on the basis on her current hypothesized grammar. This output has to
be optimal on the basis of the hypothesized grammar, and in the bidirectional
version of the GLA, “optimal” means “bidirectionally optimal”.
There is a minor problem with this adjustment though. For the generation
step of the GLA to succeed, it has to be guaranteed that there is some
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optimal output for each observed input. This is always the case according
to standard (unidirectional) optimization, but it need not be the case if one
uses bidirectional optimization in the sense defined above.15 To remedy this,
the definition of bidirectional optimality has to be modified somewhat. In
its present form, a form is optimal for a given meaning if it is the best option
among the hearer-optimal forms for this meaning. We have to add the clause
that the optimal form should be the best hearer-optimal form if there is any.
If no possible form for a given meaning is hearer optimal for this form, we
ignore the requirement of hearer optimality. Formally this reads as

Definition 2:

• A meaning-form pair 〈m, f〉 is hearer-optimal iff 〈m, f〉 ∈ GEN and
there is no alternative meaning m′ such that 〈m′, f〉 ∈ GEN and
〈m′, f〉 < 〈m, f〉.

• A meaning-form pair 〈m, f〉 is optimal iff either it is hearer-optimal
and there is no alternative form f ′ such that 〈m, f ′〉 is hearer-optimal
and 〈m, f ′〉 < 〈m, f〉, or there is no hearer-optimal 〈m, f ′〉, and there
is no 〈m, f ′〉 ∈ GEN such that 〈m, f ′〉 < 〈m, f〉.

You can think of the requirement of hearer-optimality as another constraint
that outranks all other constraints. If it is possible to fulfill it, the optimal
candidate must do so, but if it cannot be fulfilled it is simply ignored.16

Using this notion of optimality together with the GLA, learning involves in-
terpretation as well as generation. This idea of bidirectional learning can be
pushed even further by assuming that the learner assumes the hearer per-
spective and the speaker perspective simultaneously. In Boersma’s version
of the GLA, the learner observes a datum 〈m, f〉, generates a pair 〈m, f ′〉
which is optimal according to her own grammar, and then compares f with
f ′. Bidirectional learning means that the learner also interprets f according

15 To take a simple example, suppose there are two inputs, i1 and i2 and one output, o.
GEN relates both inputs to the single output. There is only one constraint that is fulfilled
by 〈i1, o〉 but violated by 〈i2, o〉. Hence 〈i1, o〉 < 〈i2, o〉, and so 〈i1, o〉 is hearer-optimal
while 〈i2, o〉 is not. There is no hearer-optimal, and thus no optimal, output for i2.

16 The idea to implement bidirectional optimality by using hearer-optimality as a con-
straint within a speaker oriented evaluation mechanism is inspired by Beaver (2000). There
a version of hearer-optimality is a regular constraint that can even be outranked by other
constraints. I’m a bit more conservative here by treating bidirectionality as a part of the
evaluation component; so it can never be outranked, and it is not subject to stochastic
perturbation.
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to her own grammar and compares the result with the observation.17 For-
mally, the learner generates a pair 〈m′, f〉 which is optimal according to her
own grammar, and compares m with m′. The next steps—comparison and
adjustment—are applied both to m/m′ and f/f ′. So the bidirectional version
of the GLA—call it “Bidirectional Gradual Learning Algorithm” (BiGLA)—
is as follows:

• Initial state All constraint values are set to 0.

• Step 1: A datum The algorithm is presented with a learning datum—
a fully specified input-output pair 〈m, f〉.

• Step 2: Generation

◦ For each constraint, a noise value is drawn from a normal distri-
bution and added to its current ranking. This yields the selection
point.

◦ Constraints are ranked by descending order of the selection points.
This yields a linear order of the constraints.

◦ Based on this constraint ranking, the grammar generates two
pairs 〈m, f ′〉 and 〈m′, f〉 that are both bidirectionally optimal.

• Step 3.1: Comparison of forms If f = f ′, nothing happens. Oth-
erwise, the algorithm compares the constraint violations of the learn-
ing datum 〈m, f〉 with the self-generated pair 〈m, f ′〉.

• Step 3.2: Comparison of meanings If m = m′, nothing happens.
Otherwise, the algorithm compares the constraint violations of the
learning datum 〈m, f〉 with the self-generated pair 〈m′, f〉.

• Step 4: Adjustment

◦ All constraints that favor 〈m, f〉 over 〈m, f ′〉 are increased by
the plasticity value.

◦ All constraints that favor 〈m, f ′〉 over 〈m, f〉 are decreased by
the plasticity value.

◦ All constraints that favor 〈m, f〉 over 〈m′, f〉 are increased by
the plasticity value.

17 In chapter 15 of Boersma (1998), Boersma also considers a purely hearer-oriented
version of GLA. There the learner only compares competing interpretations for the ob-
served form. The idea of bidirectional learning, i.e. of simultaneous speaker-oriented and
hearer-oriented learning is to my knowledge new though.

20



◦ All constraints that favor 〈m′, f〉 over 〈m, f〉 are decreased by
the plasticity value.

• Final state Steps 1 – 4 are repeated until the constraint values sta-
bilize.

9 BiGLA and DCM

In this section I will argue that the BiGLA combines the advantages of the
ZJ-approach to pragmatic DCM and of Cable’s theory of grammaticalization.
To see this point, let us do a thought experiment. Suppose the BiGLA is
confronted with a language that

• has the same frequency distribution of the possible combinations of
subject vs. object with animate vs. inanimate as the spoken Swedish
from the SAMTAL corpus,

• always respects FAITH, and

• uses case marking in exactly 50% of all cases, but in a way that is
totally uncorrelated to animacy. For each clause type, in 25% of all
cases no case marking is used, in 25% the subject is ergative marked
and the object is unmarked, in 25% the subject is unmarked and the
object accusative marked, and in 25% both NPs are case marked.

We only consider simple transitive clauses, and we assume that this toy
language has no other means for disambiguation besides case marking. So a
learning datum will always be a combination of two NPs with a transitive
verb. (I also assume that there are no verb specific preferences for certain
readings of morphological markings.) Let us call the first NP “NP1” and the
second one “NP2”.
To see how BiGLA reacts to this language, we have to specify GEN and a
set of constraints. Strictly speaking, animacy plays a double function in this
experiment: it is of course an aspect of the meaning of an NP, but I also
assume that this specification for +anim or −anim can be read off directly
from the form of an NP. So +anim and −anim are treated as formal features,
and GEN only relates animate meanings to +anim forms and inanimate
meanings to −anim forms. There are thus eight possible semantic clause
types to be distinguished because NP1 can be subject and NP2 object or
vice versa, and both subject and object can be either animate or inanimate.
Let us assume that GEN supplies both ergative and accusative morphology,
which are both optional. The linking of case morphemes to grammatical
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functions is governed by the FAITH constraint, so GEN imposes no restric-
tions in this respect. GEN thus admits nine types of morphological marking
within a clause: both NP1 and NP2 can be ergative marked, accusative
marked or unmarked. This gives nine different form patterns. If +/−anim
is taken into account, we get 36 different forms in total. However, GEN
is organized in such a way that the animacy specification of the forms is
completely determined by the meaning. So we end up with altogether 72
meaning-form combinations that are consistent with this GEN.
As mentioned above, we extract the frequencies of the possible meanings
from the SAMTAL corpus. The absolute numbers are given in table 4.

subj/anim subj/inanim

obj/anim 300 17
obj/inanim 2648 186

Tab. 4: Frequencies of clause types in SAMTAL

Not surprisingly, the combination where both subject and object are har-
monic is by far the most frequent pattern, and the combination of two dishar-
monic NPs is very rare.
Table 5 gives a frequency distribution (in per cent of all clauses in the cor-
pus) over this GEN which respects the relative frequencies of the different
meanings from SAMTAL and treats the linking of NP1 or NP2 to the sub-
ject role as equally likely. The notation “case1-case2” indicates that NP1 is
marked with case1 and NP2 with case2 (E, A and Z abbreviate “ergative”,
“accusative” and “zero” respectively). Likewise, the notation “su/a-ob/i”
means that NP1 is interpreted as animate subject and NP2 as inanimate
object etc.
As for the constraint inventory, I basically assume the system from Aissen
(2000) (restricted to the animate/inanimate contrast). This means we have
four marking constraints. Using the same notation as in the table above,
we can write them as *(su/a/z), *(su/i/z), *(ob/a/z), and *(ob/i/z). They
all enforce case marking. They are counteracted by *STRUC which is vio-
lated by a clause as often as there are case morphemes present in a clause.
(The evaluation of the constraints is done per clause, not just per NP.) The
constraint FAITH takes care of the linking between case morphemes and
grammatical roles. It is violated always if an ergative marked NP is inter-
preted as an object or an accusative NP as a subject. Finally I assume that
the grammar does distinguish between interpreting NP1 or NP2 as a subject.
In real languages there are many constraints involved here (pertaining to syn-
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E-E E-A E-Z A-E A-A A-Z Z-E Z-A Z-Z
su/a-ob/a 0.0 1.19 1.19 0.0 0.0 0.0 0.0 1.19 1.19
su/a-ob/i 0.0 10.50 10.50 0.0 0.0 0.0 0.0 10.50 10.50
su/i-ob/a 0.0 0.07 0.07 0.0 0.0 0.0 0.0 0.07 0.07
su/i-ob/i 0.0 0.74 0.74 0.0 0.0 0.0 0.0 0.74 0.74
ob/a-su/a 0.0 0.0 0.0 1.19 0.0 1.19 1.19 0.0 1.19
ob/a-su/i 0.0 0.0 0.0 0.07 0.0 0.07 0.07 0.0 0.07
ob/i-su/a 0.0 0.0 0.0 10.50 0.0 10.50 10.50 0.0 10.50
ob/i-su/i 0.0 0.0 0.0 0.74 0.0 0.74 0.74 0.0 0.74

Tab. 5: Training corpus

tax, prosody and information structure). In the context of our experiment,
I skip over these details by assuming just two more constraints, SO and OS.
They are violated if NP2 is subject and if NP1 is subject respectively. Since
all constraints start off with the initial value 0, there is no a priori preference
for a certain linking—these two constraints simply equip UG with means to
distinguish between the two possible linking patterns. Altogether we thus
get eight constraints:

1. *(su/a/z): Avoid unmarked animate subjects!

2. *(su/i/z): Avoid unmarked inanimate subjects!

3. *(ob/a/z): Avoid unmarked animate objects!

4. *(ob/i/z): Avoid unmarked inanimate objects!

5. *STRUC: Avoid case marking!

6. FAITH: Avoid ergative marked objects and accusative marked sub-
jects!

7. SO: NP1 is subject and NP2 object.

8. OS: NP2 is subject and NP1 object.

All these constraints are set to the initial value 0 and the BiGLA is applied
to a training corpus with the frequencies as in table 5. What is the learning
effect of the different observations? Suppose the algorithm is confronted
with a clause containing an ergative marked animate subject. In speaker
mode, the algorithm produces its own form for the observed meaning (su/a),
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which may be either ergative marking as well, or else accusative marking or
zero marking. The constraint violation profiles of the three candidates at
hand are given in (). (For simplicity, I leave out the last two constraints.
The horizontal ordering of the constraints is arbitrary and should not be
interpreted as a ranking.)

(14)

*(su/a/z) *(su/i/z) *(ob/a/z) *(ob/i/z) *STRUC FAITH
su/a/erg *
su/a/acc * *
su/a/z *

If the learner’s form coincides with the observation, nothing happens. Oth-
erwise, all constraints that favor the observation over the learner’s output
will be promoted, and all constraints that favor the learner’s hypothesis will
be demoted.
If the learner chooses accusative as its own hypothesis, there is only one
constraint that distinguishes between observation and hypothesis, namely
FAITH. It favors the observation over the hypothesis and is thus promoted
in this scenario. If the learner chooses zero marking, *(su/a/z) favors the
observation and is thus promoted, while *STRUC favors the hypothesis and
is demoted. The effect of observing other case marked NPs is analogous. So
the net effect of observing case marked NPs under the speaker perspective is

• promotion of *(su/a/z), *(su/i/z), *(ob/a/z), *(ob/i/z), and FAITH

• demotion of *STRUC

Observing unmarked NPs has by and large the opposite effect. If an animate
subject with zero marking is observed, a mismatch can occur if the learner
produces accusative marking or ergative marking. Both will cause a promo-
tion of *STRUC and a demotion of *(su/a/z). In the former case, we will
additionally get a promotion of FAITH. The same applies mutatis mutandis
for other unmarked NPs. So in total observing unmarked NPs in speaker
mode has the following total learning effect:

• promotion of *STRUC and FAITH

• demotion of *(su/a/z), *(su/i/z), *(ob/a/z) and *(ob/i/z)
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Since there is the same number of marked and unmarked NPs in the train-
ing corpus, we expect these competing forces to cancel out each other, with
the exception of FAITH, which is always promoted. So the unidirectional
GLA would come up with a grammar where FAITH is high and all other
constraints remain around the initial value 0.18 Such a grammar would re-
produce the distribution from the training corpus, i.e. 50% case marking
respecting FAITH but uncorrelated to animacy.
However, the BiGLA also learns in hearer mode, and here the effect is dif-
ferent. First consider what happens if a case marked NP is observed, for
instance an ergative marked animate subject. The possible interpretations
are animate subject and animate object. The pattern of constraint violations
of the relevant candidates is given in ():

(15)

*(su/a/z) *(su/i/z) *(ob/a/z) *(ob/i/z) *STRUC FAITH
su/a/erg *
ob/a/erg * *

The latter but not the former violates FAITH. Due to the effect of speaker
learning, FAITH quickly becomes the strongest constraint, so the learner will
rarely, if ever, come up with a non-faithful interpretation for an observed
form. Hence mismatches between observations and the learner’s interpreta-
tion are rare. Case marked NPs thus have almost no learning effect in hearer
mode.
This is dramatically different for unmarked NPs. Suppose the learner is
confronted with an unmarked animate subject.

(16)

*(su/a/z) *(su/i/z) *(ob/a/z) *(ob/i/z) *STRUC FAITH
su/a/z *
ob/a/z *

Now both interpretations, as subject and as object, are consistent with
FAITH. So an object interpretation and thus a mismatch is possible. This
will lead to a promotion of *(ob/a/z) and a demotion of *(su/a/z). Ob-
serving an animate object, a mismatch has the opposite effect—promotion of
*(su/a/z) and demotion of *(ob/a/z). There are about nine times as many

18 Due to the symmetry of the training corpus with respect to linking, OS and SO are
promoted and demoted by the same amount and both remain close to 0.
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animate subjects as animate objects in the training corpus though. So the
net effect of observing unmarked animate NPs is a promotion of *(ob/a/z)
and a demotion of *(su/a/z). For inanimate NPs this is exactly the other
way round. Here the objects outnumber the subjects roughly by the factor
14. Hence in total *(su/i/z) will be promoted and *(ob/i/z) demoted.
To summarize, the net effect of learning in hearer mode is

• promotion of *(su/i/z) and *(ob/a/z)

• demotion of *(su/a/z) and *(ob/i/z)

So bidirectional learning has the effect that the asymmetries in the frequen-
cies of NP types in the training corpus lead to an asymmetric ranking of
the corresponding constraints in the learned grammar. Note that Aissen’s
sub-hierarchies are in fact induced from the statistics of language use here:
*(su/i/z) � *(su/a/z), and *(ob/a/z) � *(ob/i/z).
A computer simulation revealed that the above considerations are largely
correct (except that there is a net demotion of *STRUC). The BiGLA was
fed with 50,000 observations which were drawn at random from a distribution
as in table 5. The constraint rankings that were acquired are give in table 6.

*(su/a/z): −1.32
*(su/i/z): 2.89
*(ob/a/z): 0.92
*(ob/i/z): −1.07
*STRUC: −1.05
FAITH: 7.94
OS: −0.03
SO: 0.03

Tab. 6: Grammar that was acquired by the BiGLA from the corpus with
random case marking

The development of the rankings of the constraints are plotted in figure 4.
The x-axis gives the number of observations (in thousands) and the y-axis
the ranking of the constraints.
In this grammar, FAITH is by far the strongest constraint. Hence the lan-
guage described by this grammar never uses case marking in an unfaith-
ful way. Further, the disharmonic constraints *(su/i/z) and *(ob/a/z) are
ranked well above *STRUC. So case marking of disharmonic NPs is strongly
preferred (the distance between the relevant competing constraints is about
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4.0 and 2.0 units respectively, which corresponds to a strong preference, but
not a categorical rule). The harmonic constraints *(su/a/z) and *(ob/i/z)
have about the same ranking as *STRUC—case marking of harmonic NPs is
thus totally optional.
These considerations apply if an NP is unambiguous. For an ambiguous un-
marked NP, the harmonic interpretation is always preferred because *(ob/a/z)
� *(su/a/z) and *(su/i/z)� *(ob/i/z). To achieve bidirectional optimality,
this tendency has to be counteracted by using case marking for disharmonic
NPs, while harmonic NPs also receive the correct interpretation without case
marking. Hence on top of the preference for structural DCM, there is an even
stronger tendency for pragmatic DCM.
The chart below gives the relative frequencies of NP types in a corpus that
was generated by maintaining the proportions of meanings from the SAM-
TAL corpus but using the grammar from table 6.
Let us consider all cells where the object is accusative marked and the subject
is thus not in danger of being understood as an object. Ergative marking
is redundant. It is nevertheless used in 60.6% of all cases. These 60.6%
are not equally distributed over animate and inanimate subjects. 95.7% of
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E-E E-A E-Z A-E A-A A-Z Z-E Z-A Z-Z
su/a-ob/a 0.0 1.59 0.43 0.0 0.0 0.0 0.0 2.17 0.57
su/a-ob/i 0.0 12.09 7.05 0.0 0.0 0.0 0.0 8.68 13.65
su/i-ob/a 0.0 0.16 0.17 0.0 0.0 0.0 0.0 0.03 0.0
su/i-ob/i 0.0 1.41 1.29 0.0 0.0 0.0 0.0 0.48 0.21
ob/a-su/a 0.0 0.0 0.0 2.08 0.0 1.92 0.29 0.0 0.48
ob/a-su/i 0.0 0.0 0.0 0.29 0.0 0.0 0.79 0.0 0.0
ob/i-su/a 0.0 0.0 0.0 13.49 0.0 8.68 7.12 0.0 12.98
ob/i-su/i 0.0 0.0 0.0 1.32 0.0 0.63 1.46 0.0 0.11

Tab. 7: Corpus that was generated by the acquired grammar

all (unambiguous) inanimate subjects, but only 58.3% of all (unambiguous)
animate subjects carry ergative case. The same pattern can be observed
for objects. Redundant accusative marking is used in 65.2% of all cases.
However, 83.0% of the animate objects, but only 63.3% of the inanimate
objects are accusative marked (if they co-occur with an ergative marked
subject). So we in fact see a clear preference for structural DCM.
This effect is more dramatic if we consider potentially ambiguous NPs. In
total, 38.9% of all subjects that co-occur with an unmarked object are erga-
tive marked. For animate subjects, this figure is 34.8%, but for inanimate
subjects it is 90.4%. As for the objects, 43.6% of objects in a clause with an
unmarked subject are accusative marked. For animate objects, this figure
rises to 79.8%, while for inanimate objects it is only 39.4%. Of course case
marking of subjects and objects influence each other: for the most harmonic
meaning (animate subject and inanimate object) 31.5% of all clauses use no
case marking at all, while for the least harmonic meaning (inanimate sub-
ject and animate object) case marking is 100% obligatory, only the choice
between subject marking, object marking or both is optional. So in sum we
see that pragmatic DCM is also present on top of structural DCM.

10 The next generation

The sample corpus that was generated with the acquired grammar can of
course be used as input to a second run of the BiGLA. This procedure may
be repeated over several “generations”. In this way the BiGLA can be used
to simulate diachronic development. The successive constraint rankings that
emerge in this way are plotted in figure 5. The learning procedure was
repeated 500 times, and the generations are mapped to the x-axis, while
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the y-axis again gives the constraint rankings. While there are no rough
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Fig. 5: Diachronic development

changes from one generations to the next, the grammar as a whole gradually
changes its characteristics over time. The Aissen sub-hierarchies—*(su/i/z)
� *(su/a/z) and *(ob/a/z) � *(ob/i/z)—are always respected though.
We may distinguish four phases. During the first phase (generations 1–10),
the constraints *(su/i/z) and *(ob/a/z) stay closely together, and they in-
crease their distance from *STRUC. This amounts to an ever stronger ten-
dency for case marking of disharmonic NPs. Simultaneously, *(su/a/z) and
*(ob/i/z) stay close to *STRUC, i.e. we have optional case marking of har-
monic NPs. This corresponds to a split ergative system with optional mark-
ing of harmonic and obligatory marking of disharmonic NPs. This character-
istics remains relatively stable during the second phase (roughly generations
11–60). Then the system becomes unstable. The two constraints pertaining
to the disharmonic combinations—*(su/i/z) and *(ob/a/z)—remain high.
However, the two “harmonic” constraints *(su/a/z) and *(ob/i/z) are grad-
ually lowered while *STRUC rises. During this process, *STRUC assumes
a position strictly below the disharmonic but strictly above the harmonic
case marking constraints. This amounts to a gradual loss of case marking
of harmonic NPs, while marking of disharmonic NPs remains obligatory.
At around generation 280 this process is completed, and in the remaining
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220 generations the system remains stable in a state where case marking is
obligatory for disharmonic and prohibited for harmonic NPs. An almost19

categorical split ergative system has emerged.
The development of the probabilities for of structural (i.e. redundant) case
marking of an NP of a given semantic type are given in the first graphics of
figure 6. There the gradual loss of case morphology at harmonic NPs is easy
to discern.
Needless to say that the diachronic development that is predicted by the
BiGLA (together with GEN, the constraint set, and the probability distri-
bution over meanings from SAMTAL) depends on the pattern of case marking
that was used in the first training corpus. A full understanding of the dynam-
ics of this system and the influence of the initial conditions requires extensive
further research. In the remainder of this section I will report the results of
some experiments that give an idea of the overall tendencies though.
If the first training corpus contains no case marking at all (a somewhat unre-
alistic scenario, given that the GEN supplies case morphemes—perhaps this
models the development of a language immediately after some other devices
have been reanalyzed as case morphemes), the overall development is similar
to the previous set up. The ranking that BiGLA induces from the initial
corpus places *STRUC extremely high (at 35.25), while the constraints that
favor case marking are placed much lower, thus reflecting the absence of case
marking. Still, the Aissen sub-hierarchies are respected, with *(su/a/z) at
−21.33, *(su/i/z) at 4.38, *(ob/a/z) at 1.26 and *(ob/i/z) at −21.07. During
the following 50 generations *STRUC is constantly lowered until it assumes
a position half-way between the harmonic and the disharmonic constraints.
The ranking that thus emerges is qualitatively identical to the steady state
that was reached after 280 generations in the previous experiment. On the
corpus side, this means that the probability of a disharmonic NP to be case
marked gradually rises from 0% to 100% within 50 generations, while har-
monic NPs remain obligatorily unmarked. Again, the emerging split ergative
system is a steady state. The change of the case marking probabilities over
time is depicted in the second graphics of figure 6.
So if the initial training corpus does not display a correlation between ani-
macy and case marking, the iteration of bidirectional learning with the said
constraint set and lexicon shows an inherent tendency towards split ergative
systems.
It was mentioned in the beginning that DCM is a strong universal tendency.
There are very few languages with an inverse DCM pattern. This is predicted

19 In a corpus that was generated by the grammar of the 500th generation, more than
95% of all NPs follow the split ergative pattern.
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by the assumption of Aissen’s universal sub-hierarchies: there cannot be a
language that marks animate subjects with higher probability than inani-
mate ones, say. It is revealing to run the BiGLA on a training corpus with
such an (allegedly impossible) pattern. I did a simulation with a training
corpus where all and only the harmonic NPs were case marked. The devel-
opment of the constraint ranking and of the case marking probabilities is
given in the figures 7 and 8. The BiGLA in fact learns the inverse pat-
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Fig. 7: The future of anti-DCM: constraint rankings

tern, i.e. it comes up with a grammar where the Aissen sub-hierarchies are
reversed: *(su/a/z) � *(su/i/z) and *(ob/i/z) � *(ob/a/z). Accordingly,
the language that is learned in the first generation marks almost all harmonic
NP but nearly no disharmonic ones. So UG admits such a language, and it
is also learnable. However, it is extremely unstable. After fifteen generations
the Aissen sub-hierarchies emerge and remain stable for the remainder of the
simulation (which ran over 1000 generations). Nonetheless, the case marking
patterns changed dramatically after that. For about 100 generations after
the emergence of the Aissen hierarchies, case marking is virtually obligatory
for all NPs. This corresponds to a ranking were *STRUC is ranked very low.
This phase is followed by a smooth raising of *STRUC, accompanied by a
simultaneous lowering of *(su/a/z) and *(ob/i/z), until all three constraints
are roughly at the same level. This means that case marking of harmonic
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NPs becomes optional while marking of disharmonic NPs remains obligatory.
During the subsequent 500 generations, the symmetry between subjects and
objects is broken. Accusative marking of inanimate NPs is totally lost, while
ergative marking of animate NPs stays optional. After a final crisis where
*(su/a/z) is lowered and hence ergative marking of animates is lost, the
system also enters the steady state of split ergativity.
A large number of further simulations indicated that split ergativity is in fact
the only stable state under the side conditions used here, i.e. the constraint
set, the generator and the relative probabilities of the possible interpretations.
While these simulations establish a connection between the statistical pat-
terns of language use and the independently motivated constraint hierarchies
postulated by Aissen, the experimental results are at odds with the actual
typological tendencies. Languages with split ergativity are a minority among
the languages of the world. The majority of languages follows a nominative-
accusative pattern, often combined with DOM. It is a matter of dispute
whether pure (morphological) ergative languages exist at all, and in any case
they are very rare. How do these facts relate to the predictions of iterated
learning? I will conclude this section with some speculations about the typol-
ogy of case marking patterns within the paradigm of iterated learning using
BiGLA.
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The generator relation that was used in the above experiments represents a
typologically marked language type because each NP has both an ergative
and an accusative form next to the unmarked form. Such tripartite sys-
tems exist but are very rare. In most languages, each NP has at most two
morphological forms for the syntactic core functions. In most split ergative
languages, some NPs have a special ergative and other NPs a special ac-
cusative form next to the unmarked one, but no NP has both. So another
plausible approximation to a lexicon would stipulate only two morphological
forms for each NP, unmarked and marked, and leave the interpretation of
the marked form as ergative or accusative to the constraint ranking.20

In this setup, each transitive clause type has four morphological variants
because both NPs can be either marked or unmarked each. We still have
eight possible meanings. A training corpus with 50% probability of case
marking for each NP type (using the SAMTAL distribution of meanings)
thus looks as in table 8. Here “M” stands for “marked.”

M-M M-Z Z-M Z-Z
su/a-ob/a 1.19 1.19 1.19 1.19
su/a-ob/i 10.50 10.50 10.50 10.50
su/i-ob/a 0.07 0.07 0.07 0.07
su/i-ob/i 0.74 0.74 0.74 0.74
ob/a-su/a 1.19 1.19 1.19 1.19
ob/a-su/i 0.07 0.07 0.07 0.07
ob/i-su/a 10.50 10.50 10.50 10.50
ob/i-su/i 0.74 0.74 0.74 0.74

Tab. 8: Training corpus

In the previous setup, the interpretation of the case morphemes was taken
care of by the constraints FAITH. Since here we only have one case mor-
pheme, this constraint has to be split up into two, one favoring an accusative
and one an ergative interpretation of this morpheme.

6.1 : m⇒su: Marked NPs are subjects.

6.1 : m⇒ob: Marked NPs are objects.

20 For the purposes of this paper, I equate the generator relation with the lexicon and
hence do not assume the generator to be universal. A more refined model of learning has
thus to include the acquisition of the generator as well. For the time being, I ignore this
issue for the sake of simplicity.

34



The development of the constraint rankings under this setup is given in the
first graphics of figure 9.
Here it takes about 400 generations before a steady state is reached. The
stable ranking is virtually categorical with three strata, namely

{*(su/i/z), *(ob/a/z)} � {m⇒su, m⇒ob, *STRUC, SO, OS} �
{*(su/a/z), *(ob/i/z)}

This ranking corresponds to a split ergative pattern. Systematic experimen-
tation showed that as in the previous setup, split ergativity is in fact the only
steady state, regardless of the nature of the initial training corpus.
However, the dynamics of the system is very sensitive to the relative frequen-
cies of the different meanings. The emergence of Aissen’s sub-hierarchies is
due to the fact that there are much more clauses of the type “animate sub-
ject – inanimate object” than the inverse type. The clauses where both
arguments are of the same animacy are irrelevant here. Their relative fre-
quency is decisive for the precise nature of the steady states though. In the
SAMTAL corpus, the number of clauses were both arguments are animate
(300) has the same order of magnitude as the number of clauses with two
inanimate arguments (186). If we look for instance at definiteness instead,
this is different. Here the absolute frequencies are as in table 9.

subj/def subj/indef

obj/def 1806 24
obj/indef 1292 29

Tab. 9: Frequencies of clause types with respect to definiteness

There are about sixty times as many clauses with two definite arguments
as clauses with two indefinite NPs. Feeding a training corpus with these
relative frequencies and 50% probability of case marking for each NP type
into iterated BiGLA gives a qualitatively different trajectory than in the
previous experiment. It is given in the second graphics of figure 9.
Here the system reaches a steady state after about 70 generations. The
emerging ranking is the following (where “*(ob/d/z)” stands for “Avoid un-
marked definite objects!” etc.):

{*(obj/d/z), m⇒obj} � *(obj/i/z) � {*(subj/i/z), SO, OS} � *STRUC
� *(su/d/z) � m⇒su
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This grammar seems to describe a language with obligatory object mark-
ing and DSM. However, recall that GEN only supplies one case morpheme
here, and the sub-hierarchy m⇒obj � m⇒su ensures that this morpheme
is unequivocally interpreted as accusative. Thus ergative marking is impos-
sible and the constraint ranking describes a language with obligatory object
marking and no subject marking.
To sum up the findings from this section, we may distinguish several types
of case marking patterns according to their likelihood. Most unlikely are
languages that violate UG, i.e. where there is no constraint ranking that
describes such a language. If we assume a UG as above (i.e the GEN and
set of constraints discussed in the previous section), there can’t be a language
where either both subject and object or neither are case marked. (Feeding
such a corpus into BiGLA leads to a language where about 60% of all clauses
contain exactly one case marker.) Note that it is extremely unlikely but not
impossible to find a corpus with this characteristics, because this language is
a subset of many UG-compatible languages. Such a corpus would be highly
un-representative though.
The next group consists of languages that correspond to some constraint
ranking but are not learnable in the sense that exposing the BiGLA to a
sample from such a language leads to a grammar of a substantially different
language. The language without any case marking would fall into this cate-
gory (provided GEN supplies case marking devices). There is a constraint
ranking which describes such a language, namely

*STRUC � {OS, SO} � {*(su/a/z), *(su/i/z), *(ob/a/z), *(ob/i/z)} �
FAITH

However, if the BiGLA is exposed to a sample from this language, it comes
up with a substantially different ranking, namely

*STRUC � {OS, SO, FAITH} � {*(su/a/z), *(su/i/z), *(ob/a/z),
*(ob/i/z)}

As can be seen from figure 6, this corresponds to a language without struc-
tural case marking. (Structural case marking only evolves in the second
generation.) However, 16.9% of the NPs in a sample corpus drawn from this
language carry case marking nevertheless. In other words, this language has
pragmatic case marking.
The third group consists of languages that are both in accordance with UG
and learnable (in the sense that the BiGLA reproduces a language with a sim-
ilar characteristics), but diachronically instable. This means that the BiGLA
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acquires a language that is similar but not entirely identical to the training
language, and that the deviation between training language and acquired
language always goes into the same direction. Diachronically this leads to a
change of language type after some generations. This can be observed most
dramatically with languages with inverse DCM (compare figure 8). There
the language type switches from inverse split ergativity to obligatory case
marking within less than twenty generations.
There are different degrees of instability. In the third experiment reported
above, a pattern with categorical DOM and optional DSM would last as long
as 400 generations before it changed to categorical split ergativity.
The most likely language types are those that are diachronically stable and
are additionally the target of diachronic change in many cases. The experi-
ments conducted so far indicate that there is exactly one such steady state
for each experimental setup—split ergativity in the first two and nominative-
accusative in the third scenario.21

Schematically expressed, this predicts the following hierarchy of language
types according to their likelihood:

1. diachronically stable and target of diachronic change: split ergative
(first two scenarios), nominative-accusative (third scenario)

2. diachronically moderately stable: optional DSM paired with categori-
cal DOM (first scenario)

3. diachronically very unstable: inverse DCM

4. unlearnable: no case marking, random case marking

5. not UG-conform: zero or two case markers per clause

Given the extremely coarse modeling of the factors that determine case mark-
ing in our experiments and the fact that the experiments all depend on
a probability distribution over meanings that is based on just one corpus
study, these results have to be interpreted with extreme caution. They fit
the actual patterns of typological variation fairly well though, so it seems
worthwhile to pursue this line of investigation further.

21 It is of course possible to construct artificial scenarios with several equilibria due to
perfect symmetry.
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11 Conclusion and open questions

In this paper I proposed a revised version of Boersma’s Gradual Learning
Algorithm. It incorporates the concept of bidirectional optimization in two
ways. First it uses a notion of optimality of an input-output pair that takes
both the hearer perspective and the speaker perspective into account. Sec-
ond, learning is thought of as bidirectional as well. The learner gradually
adjusts both its production and its interpretation preferences to the obser-
vations.
The working of this Bidirectional Gradual Learning Algorithm was applied
to Aissen’s theory of differential case marking. It could be shown that the
constraint sub-hierarchies that Aissen simply assumes to be universal emerge
automatically via learning if the training corpus contains substantially more
harmonic meanings then disharmonic ones. This connection between har-
mony and frequency has been pointed out and used in ZJ’s approach before.
The present system diverges from ZJ in assuming that learning mediates
between statistical biases in the language use and grammatical biases as ex-
pressed by the Aissen hierarchies, while ZJ simply identify these biases.
Several computer simulations confirmed the correlation between the statis-
tical patterns of usage in a training corpus and the characteristics of the
grammars induced from these corpora by the BiGLA.
In these experiments, just the correlation between grammatical functions
with the binary contrast animate/inanimate in simple transitive active clauses
was studied. Further investigations will have to use more informed models. In
particular the effect of using a more articulated and perhaps two-dimensional
substantive hierarchy (the combination of the definiteness hierarchy with the
animacy hierarchy) as well as the effect of diathesis should be studied.
There are also several theoretical questions pertaining to the BiGLA to be
addressed. The most important one is the problem of convergence of learn-
ing. By definition, a learning algorithm for a stochastic language should
converge to a grammar for the learned language provided the training corpus
is a representative sample of the language. The BiGLA obviously does not
have this property; otherwise every language type would be stable. So is it
adequate to call the BiGLA a learning algorithm to start with?
There are several points involved here. First, since the BiGLA is based on a
version of bidirectional StOT, it is only supposed to learn languages that are
described by a grammar from this class. That non-UG-conforming languages
are not learned is thus no problem. However, there are languages that corre-
spond to some constraint ranking, but yet the BiGLA returns the grammar
of a language that slightly or massively differs from the training language.
The unidirectional GLA does not have this property. However, the conver-
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gence condition just requires that a learning algorithm maps representative
samples of a language to a grammar for that language. In unidirectional
StOT, this means that the different possible outputs for a given input are
distributed according to the conditional probabilities that the grammar as-
signs to them. The relative frequencies of the inputs (=meanings) has no
impact on the learning result. This is different with bidirectional learning.
Here also the relative frequencies of the different meanings of a given form in
the training corpus have to converge towards their grammatically determined
conditional probabilities to ensure convergence of learning. Another way to
state this point is this: a StOT-grammar defines a probability distribution
over meaning-form pairs, and a representative sample of a language has to
mirror these probabilities in frequencies. In our experimental setup, how-
ever, the marginal probabilities of the different meanings were determined
by extra-grammatical factors (the relative frequencies from SAMTAL). So
the conditional probabilities of the different forms for a given meaning were
matched by relative frequencies, but not the probabilities of the different
meanings. Hence the BiGLA only converges towards a grammar of the
training language if the SAMTAL-probabilities of meanings coincide with
the probabilities assigned by the grammar. This is only the case if the least
marked meanings are the most frequent ones. (This is the theoretical base
for the correlation between frequencies and language types that is inherent
in the BiGLA.)
Still, the grammar for the language without case marking mentioned above
is in equilibrium in this sense, and yet it is not learnable by the BiGLA. How
is this possible? The problem here is that during the learning process the
hypothesized grammar fits the training corpus better and better, but it is not
guaranteed that the difference to a real grammar becomes arbitrarily small.
There are several remedies possible here, but perhaps this failure to converge
with certain languages is not such a severe disadvantage after all. It should
be noted that the language without case marking is extremely dysfunctional.
On average only 50% of all utterances are interpreted correctly by the hearer.
The language that the BiGLA acquires is better adapted to usage—due to
pragmatic case marking more than half of all utterances get their message
across. So there is also a tendency towards functionality inherent in the
BiGLA, and it meets the convergence condition for a stochastic learning
algorithm only for languages that are functionally adapted in a certain way.
The exact content of this condition is a subject for further research.
Both tendencies that are “built into” the BiGLA—frequent meanings should
be unmarked meanings, and functional languages are better than dysfunc-
tional ones—have been identified as important linguistic factors time and
again by functional linguists (see for instance the discussions in Haspelmath
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1999 and Haspelmath 2002). I expect that formal learning theory and func-
tional linguistics can profit from each other a great deal, and I hope that the
present paper illustrates the fertility of such an alliance.
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