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1 Introduction: different formal approaches 
 

 Brewka (1994); Besnard, Mercer & Schaub (2002) [for a copy go to 
http://www.cs.uni-potsdam.de/wv/pdfformat/bemesc02a.pdf]: 
Optimality Theory through Default Logic with priorities. The 
priorities are handled by a total ordering defined on the system of 
defaults. See also Nicolas Rescher’s (1964) book “Hypothetical 
reasoning” which clearly expresses the very same idea.  

 Dick de Jongh & Fenrong Liu (2006). They take an approach in 
terms of priority sequences of logical expressions, an idea that 
comes close to Brewka (1994). 

 Pinkas (1992) introduced penalty logic and used it to model high-
level (logical) properties of neural networks (see also Pinkas, 1995) 

 Lima et al. (Lima, Morveli-Espinoza, & Franca, 2007) improve on it. 
 Prince (2002) and Pater et al. (2007; 2007) compare OT hierarchies 

and systems with weighted constraints. 
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2  Penalty logic  
 
The presentations follows Darwiche & Marquis (2004) and Blutner 
(2004). Let's consider the language ℒAt of propositional logic (referring 
to the alphabet At of atomic symbols).  
 

Definition 1: A triple <At, , k> is called a penalty knowledge base 
(PK) iff (i)  is a set of consistent sentences built on the basis of At (the 
possible hypotheses); (ii) k:   (0, )  (the penalty function).  
 

Intuitively, the penalty of an expression  represents what we should 
pay in order to get rid of . If we pay the requested price we no longer 
have to satisfy . Hence, the larger k() is, the more important  is.  
 

From some PK we can extract the system W = {[, k()]: } which 
is called the weighted base of the system PK (see Darwiche & Marquis) 
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Definition 2: Let  be a formula of our propositional language ℒAt . A 
scenario of   in PK(W) is a subset ’ of  such that ’{} is 
consistent. The cost KPK(’) of a scenario ’ in PK is the sum of the 
penalties of the formulas of PK that are not in ’: 
 

KPK(’) = (-’) k() 
 

Definition 3: An optimal scenario of  in PK is a scenario the cost of 
which is not exceeded by any other scenario (of  in PK), so it is a 
penalty minimizing scenario. With regard to a penalty knowledge base 
PK, the following cumulative consequence relation can be defined:   
 

 |~PK  iff  is an ordinary consequence of  
each optimal scenario of  in PK. 

 
Hence, penalties may be used as a criterion for selecting preferred 
consistent subsets in an inconsistent knowledge base, thus inducing a 
non-monotonic inference relation.  
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Example 1 
  
Weighted base W: {ab, 2, ¬b, 1}  
 
Optimal scenario for a in W:   
1 = {ab}  KPK(1) = 1     
 
Optimal scenario for ¬a in W:  (violating ab or b, respectively) 
2 = {¬b}  KPK(2) = 2     
 
 
 
 
 
 

   a |~W  b 
 

a |~W  b 
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Example 2 
  
First Law:  A robot may not injure a human being.  
Second Law:  A robot must follow (obey) the orders given it by human 
beings, except where such orders would conflict with the First Law.  
Third Law:  A robot must protect its own existence, as long as such 
protection does not conflict with the First or Second Law. 
 
Weighted base W 

I  5  (first law) 
F  2  (second law) 
P  1  (third law) 
(S  F)  K 1000  (S: giving the order to kill her) 
K  I  1000  (K: the robot kills her) 
 

Two scenarios for S in W (violating F and I, respectively) 
1 = {I, P, (S  F)  K, K  I} KPK(1) = 2     
2 = {F, P, (S  F)  K, K  I} KPK(2) = 5  S |~W  I 
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Semantics 
 
Consider a penalty knowledge base PK = <At, , k>.  Let  denote an 
ordinary (total) interpretation for the language ℒAt (: At{0,1}). The 
usual clauses apply for the evaluation [[ .]]  of the formulas of ℒAt 
relative to . The following function indicates how strongly an 
interpretation  conflicts with the space of hypotheses  of a penalty 
knowledge base PK:   
 
Definition 4 (system energy of an interpretation) 
ℰPK() =def   k() [[ ]]    
 
ℰPK() is also called violation rank (Pinkas), cost (deSaint-Cyr et al.), 
weight (Darwiche & Marquis) of the interpretation.
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Example 1 again 
 
Weighted base W: {ab, 2, ¬b, 1}.  
Let us consider the following four interpretations over the variables 
appearing in W, Var(W): 
 

• 1 = (a, b)   ℰPK(1) = 1 
• 2 = (a,¬b)   ℰPK(2) = 2 
• 3 = (¬a, b)  ℰPK(3) = 3 
• 4 = (¬a,¬b)  ℰPK(4) = 2 
 

Hence, the interpretation with minimum energy is 1. 
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Preferred models  
 

Let  be a wff of the language ℒAt.  An interpretation  is called a 
model of  just in case [[ ]]  = 1.  
 

Definition 4 
A preferred model of  is a model of  with minimal energy ℰ (with 
regard to the other models of ).  As the semantic counterpart to the 
syntactic notion  |~PK  given in Definition 3 we can define the 
following relation:  
   PK  iff each preferred model of  is a model of . 
 
As a matter of fact, the syntactic notion (Definition 3) and the present 
semantic notion (21) coincide.  Hence, the logic is sound and complete. 
A proof can be found in Pinkas (1995). 
 

Example 1, continued:  a   b; a  b. 
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a1 a2

a3

a4 a5

3 Penalty logic and Bayesian networks  
 
Consider a Bayesian network with binary random 
variables a1, a2, …, an. Consider a partial specificat-
ion of these random variables described by a set of 
“interpretations” V.  Let  be a conjunction of 
literals (atoms or their negation) that describes this 
set V, i.e. V = {: () = 1}.   
 
Finding a most probable world model: find the specification of the 
random variables that maximizes the probability () of the joint 
distribution; in other words, find argmax V [()]. 
 

Example:  = a1a2, find an optimal specification of the random 
variables {a3, a4, a5} maximizing the joint probability  
(a1 = 1, a2 = 0, a3 = 0/1, a4 = 0/1, a5 = 0/1). Of course, the concrete 
solution depends on the details of the conditioned probability tables. 
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a1 a2

a3

a4 a5

Global semantics and finding a most probable 
world model (Kooij, 2006) 
 
(a1, …, an) =  

n

i 1
(ai / Parents(ai)) 

 
In the example: 
(a1, …, a5) = (a1)  (a2)  (a3/a1,a2)  (a4/a3)  (a5/a3) 
 
 argmax V  (a1 = (a1), …, an = (an))  

= argmax V  () 
= argmin V  log () 
= argmin V   


n

i 1
log (ai = (ai) / Parents(ai) = (…)) 

 
The log-terms will be interpreted as penalties of corresponding  rules: 
 

 )())(( )( iiaParentsx aaxx
i

   , log (ai = (ai) / Parents(ai) = (…)) 
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a1 a2 

a3

Example 
 
Consider the weighted rules connected with the a3-part 
of the CPTs:  
 
a1 a2 (a3 = T / a1, a2) weighted rule for a3 = T 
F F 0.8 a1  a2  a3, log 0.2 
F T 0.4 a1  a2  a3, log 0.6 
T F 0.5 a1  a2  a3, log 0.5 
T T 0.3 a1  a2  a3, log 0.7 
 
a1 a2 (a3 = F / a1, a2) weighted rule for a3 = F 
F F 0.2 a1  a2  a3, log 0.8 
F T 0.6 a1  a2  a3, log 0.4 
T F 0.5 a1  a2  a3, log 0.5 
T T 0.7 a1  a2  a3, log 0.3 
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The mapping theorem 
 
Assume a Bayesian network is mapped into a penalty knowledge base 
in the indicated way. Then finding a most probable world model of a 
conjunction of literals  and finding a preferred model (minimal 
energy) of  with regard to the penalty knowledge base are equivalent 
tasks (leading to the same optimal interpretation) 
 
Comment 
Looking for preferred models in penalty logic can be interpreted as a 
kind of qualitative reasoning in Bayesian networks. Which values of a 
set of random variables give a maximal probability for a given 
specification  of a proper subset of these random variables? The 
concrete probability value for the specification  doesn’t matter. What 
counts is the optimality of the assignment. 



 14

4 Penalty logic and Dempster-Shafer theory  
 
Dempster-Shafer theory is a theory of evidence. There are different 
pieces i of evidence that give rise to a certain belief function and a 
(dual) plausibility function. Different pieces of evidence can be 
combined by means of Dempster’s rule of combination. 
 
A standard application is in medical diagnostics where some positive 
test result X can give a positive evidence for some disease Y but a 
negative test result gives absolutely  no evidence for or against the 
disease.   
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Definition (mass function) 
 

A mass function on a domain  of possible worlds (for a given piece of 
information) is a function m: 2W  [0, 1] such that the following two 
conditions hold: 
 

m() = 0. 

V m(V) = 1 
 

Definition (belief/plausibility function based on m) 
 

Let m be a mass function on . Then for every U  : 
 

Bel(U) =def V  U m(V)  
Pl(U) =def VU m(V) 
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Dempster’s rule of combination 
 
Suppose m1 and m2 are basic mass functions over W. Then m1  m2 is 
given by Dempster’s combination rule without renormalization: 
 

m1  m2 (U) = ViVj=U m1(Vi)  m2(Vj) 
 

Facts:  

Assume m(U) = i
n
i m1 (U); Pl plausibility function based on m; Pli 

plausibility function based on mi. Then we have: 
 

1. Pl({}) = 
V

V


m(V) ;   Pli({}) = 
V

V


mi(V) 

2. Pl({}) =  

n

i 1
 Pli({})  [“contour function”] 

W 
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Relating penalties to Dempster-Shafer theory  
 

Let be W = {[i, k(i)]: i} a weighted base of a system PK in our 
language ℒAt.  
Each formula i represents a piece of evidence for Vi = {:  |= i}. 
Formally, this is expressed by the following mass function mi: 

 

mi(Vi) = 1ek(i) ; mi() = ek(i) 
 

Using facts 1 and 2 it can be shown that1  
 

Pl({})  = ezzzzzzzzzz       
 

This brings to light a relation between penalties and evidence where 
each formula of the knowledge base is considered to be given by a 
distinct source, this source having a certain probability to be faulty, and 
all sources being independent. 
                                                 
1 For a proof see deSaint-Cyr, Lang, & Schiex (1994). 

ℰPK() 
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5  Penalty logic and neural nets 
 
Main thesis: Certain activities of connectionist networks can be 
interpreted as nonmonotonic inferences. In particular, there is a strict 
correspondence between Hopfield networks and penalty/reward 
nonmonotonic inferential systems. There is a direct mapping between 
the information stored in such (localist) neural networks and 
penalty/reward knowledge bases. 
 
 Certain logical systems are singled out by giving them a "deeper 

justification". 
 Understanding Optimality Theory: Which assumptions have a 

deeper foundation and which ones are pure stipulations? 
 New methods for performing nonmonotonic inferences: 

Connectionist methods (simulated annealing etc.) 
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Hopfield network - fast dynamics 
 
Let the interval [-1,+1] be the 
working range of each neuron  
 

+1: maximal firing rate 
  0: resting 
-1 : minimal firing rate) 
 
S = [-1, 1] n 

wij = wji , wii = 0 
 
ASYNCHRONOUS UPDATING: 
              (j wijsj(t)),  if  i = rand(1,n) 
s i(t+1)  =        

si(t),  otherwise 
 

Step 3 Step 4

Step 98651 Step 98652

Step 1 Step 2
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Summarizing the main results 
 
Theorem 1 (Cohen & Großberg 1983) 
Hopfield networks are resonance systems (i.e. limn fn(s) exists and is 
a resonance for each sS and fF) 
 

Theorem 2  (Hopfield 1982) 
E(s) = ½ i,j wij si sj  is a Ljapunov-function 
of the system in the case of asynchronous 
updates. The output states limn fn(s) can 
be characterized as the local minima of E 
 

Theorem 3 (Hopfield 1982) 
The output states limn fn(s) can be characterized as the global 
minima of E if certain stochastic update functions f are considered 
(faults!). 

E start

A

Basynchronous
updates

asynchronous updates with fault
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Example 
 
 
 
  

   E(s) = -0.2s1s2 - 0.1s1s3 + s2s3 

 
        E 

<1 0 0>    <1 0 0>    0 
  <1 0 1>  -0.1 

     <1 1 0>  -0.2 
     <1 1 1>   0.7 
      <1 1-1>   -1.1    

ASUPw(<1 0 0>) =  minE(s)  =  <1 1-1> 
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The correspondence between symmetric networks and penalty 
knowledge bases 
 
1. relate the nodes of the networks to atomic 

symbols ai of ℒAt.  At = {p1,p2,p3} 
2. translate the network in a corresponding 

weighted base W = {p1p2, 0.2, p1p3, 
0.1,  p2p3, 1} 

3. relate states and interpretations:  
s   iff si = (ai) 

4. observe that the energy of a network state is equivalent to the energy 
of an interpretation: E(s) = ℰPK()  =def     k() [[ ]]    E.g.: 
 

E(<1 1 1>) = 0.7     = 0.20.1+1  
E(<1 1-1>) = 1.1    = 0.2+0.11 

… 
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Example from phonology 

 
 
 
 
 
 
 
 
 
 
 
The phonological features may be represented as by the atomic symbols 
BACK, LOW, HIGH, ROUND. The generic knowledge of the 
phonological agent concerning this fragment may be represented as a 
Hopfield network using exponential weights with basis 0 <   0.5.  

back +back  

/i/ /u/ +high 

/e/ /o/ high/low 

/æ/ /]/ 
/a/ 

+low 
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Exponential weights and strict constraint ranking 
 
Strong Constraints:  LOW  HIGH; ROUND  BACK 
 
 
 
 
 
 
 
 
 
Assigned Poole-system 
 
VOC 1 BACK; BACK 2 LOW  
LOW 4 ROUND; BACK 3 HIGH  

Keane's marked-
ness conventions 
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Conclusion 

 
 As with weighted logical system, OT looks for an optimal 

satisfaction of a system of conflicting constraints 
 
 The exponential weights of the constraints realize a strict ranking of 

the constraints:  
 
 Violations of many lower ranked constraints count less than one 

violation of a higher ranked constraint. 
 
 The grammar doesn't count! 
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6 Learning  
Translating connectionist and standard statistic methods of learning 
into an update mechanism of a penalty logical system.  
 
Boersma & Hayes (2001): gradual learning algorithm (stochastic OT) 
Goldwater & Johnson (2003): maximum entropy model 
Jäger (2003): Comparison between these two models 
Pater, Bhatt & Potts (2007) 
 
These papers are also a starting point for understanding iterated 
learning and the modelling of (cultural) language evolution.
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