Lecture 6: Logical foundations

- 1 Introduction: different formal approaches
- 2 Penalty logic
- 3 Penalty logic and Bayesian networks
- 4 Penalty logic and Dempster-Shafer theory
- 5 Penalty logic and neural nets
- 6 Learning

1 Introduction: different formal approaches

- Brewka (1994); Besnard, Mercer & Schaub (2002) [for a copy go to <u>http://www.cs.uni-potsdam.de/wv/pdfformat/bemesc02a.pdf</u>]:
 Optimality Theory through Default Logic with priorities. The priorities are handled by a total ordering defined on the system of defaults. See also Nicolas Rescher's (1964) book "Hypothetical
 - reasoning" which clearly expresses the very same idea.
- Dick de Jongh & Fenrong Liu (2006). They take an approach in terms of priority sequences of logical expressions, an idea that comes close to Brewka (1994).
- Pinkas (1992) introduced penalty logic and used it to model highlevel (logical) properties of neural networks (see also Pinkas, 1995)
- Lima et al. (Lima, Morveli-Espinoza, & Franca, 2007) improve on it.
- Prince (2002) and Pater et al. (2007; 2007) compare OT hierarchies and systems with weighted constraints.

2 Penalty logic

The presentations follows Darwiche & Marquis (2004) and Blutner (2004). Let's consider the language \mathcal{L}_{At} of propositional logic (referring to the alphabet At of atomic symbols).

Definition 1: A triple $\langle At, \Delta, k \rangle$ is called a *penalty knowledge base* (PK) iff (i) Δ is a set of consistent sentences built on the basis of At (the possible hypotheses); (ii) k: $\Delta \Rightarrow (0, \infty)$ (the penalty function).

Intuitively, the penalty of an expression δ represents what we should pay in order to get rid of δ . If we pay the requested price we no longer have to satisfy δ . Hence, the larger k(δ) is, the more important δ is.

From some PK we can extract the system $W = \{ [\alpha, k(\alpha)] : \alpha \in \Delta \}$ which is called the *weighted base* of the system PK (see Darwiche & Marquis)

Definition 2: Let α be a formula of our propositional language \mathcal{L}_{At} . A *scenario of* α *in* PK(W) is a subset Δ' of Δ such that $\Delta' \cup \{\alpha\}$ is consistent. The cost $K_{PK}(\Delta')$ of a scenario Δ' in PK is the sum of the penalties of the formulas of PK that are not in Δ' :

$$K_{PK}(\Delta') = \sum_{\delta \in (\Delta - \Delta')} k(\delta)$$

Definition 3: An *optimal scenario of* α *in PK* is a scenario the cost of which is not exceeded by any other scenario (of α in PK), so it is a penalty minimizing scenario. With regard to a penalty knowledge base PK, the following cumulative consequence relation can be defined:

 $\alpha \mid \sim_{PK} \beta$ iff β is an ordinary consequence of each optimal scenario of α in PK.

Hence, penalties may be used as a criterion for selecting preferred consistent subsets in an inconsistent knowledge base, thus inducing a non-monotonic inference relation.

Example 1

Weighted base W: { $\langle a \land b, 2 \rangle, \langle \neg b, 1 \rangle$ }

Optimal scenario for a in W: $\Delta_1 = \{a \land b\}$ $K_{PK}(\Delta_1) = 1$

Optimal scenario for $\neg a$ *in* W: (violating a b or b, respectively) $\Delta_2 = \{\neg b\}$ $K_{PK}(\Delta_2) = 2$

$$a \mid \sim_W b$$

 $\neg a \mid \sim_W \neg b$

Example 2

First Law: A robot may not injure a human being. *Second Law*: A robot must follow (obey) the orders given it by human beings, except where such orders would conflict with the First Law. *Third Law*: A robot must protect its own existence, as long as such protection does not conflict with the First or Second Law.

Weighted base W

$\neg I$	5	(first law)
F	2	(second law)
Р	1	(third law)
$(S \land F) \to K$	1000	(S: giving the order to kill her)
$K \rightarrow I$	1000	(K: the robot kills her)

Two scenarios for S in W (violating F and ¬I, respectively) $\Delta_1 = \{\neg I, P, (S \land F) \rightarrow K, K \rightarrow I\}$ $K_{PK}(\Delta_1) = 2$ $\Delta_2 = \{F, P, (S \land F) \rightarrow K, K \rightarrow I\}$ $K_{PK}(\Delta_2) = 5$ S |~w ¬I

Semantics

Consider a *penalty knowledge base* $PK = \langle At, \Delta, k \rangle$. Let v denote an ordinary (total) interpretation for the language \mathcal{L}_{At} ($v: At \rightarrow \{0,1\}$). The usual clauses apply for the evaluation $[[.]]_v$ of the formulas of \mathcal{L}_{At} relative to v. The following function indicates how strongly an interpretation v conflicts with the space of hypotheses Δ of a penalty knowledge base PK:

Definition 4 (system energy of an interpretation) $\mathcal{E}_{PK}(v) =_{def} \sum_{\delta \in \Delta} k(\delta) [[\neg \delta]]_{v}$

 $\mathcal{E}_{PK}(v)$ is also called *violation rank* (Pinkas), *cost* (deSaint-Cyr et al.), *weight* (Darwiche & Marquis) of the interpretation.

Example 1 again

Weighted base W: { $\langle a \land b, 2 \rangle$, $\langle \neg b, 1 \rangle$ }. Let us consider the following four interpretations over the variables appearing in *W*, Var(*W*):

• v1 = (a, b)• $v2 = (a, \neg b)$ • $v3 = (\neg a, b)$ • $v4 = (\neg a, \neg b)$ $\mathcal{E}_{PK}(v1) = 1$ $\mathcal{E}_{PK}(v2) = 2$ $\mathcal{E}_{PK}(v3) = 3$ $\mathcal{E}_{PK}(v4) = 2$

Hence, the interpretation with minimum energy is v1.

Preferred models

Let α be a wff of the language $\mathcal{L}_{At.}$ An interpretation ν is called a *model* of α just in case $[[\alpha]]_{\nu} = 1$.

Definition 4

A preferred model of α is a model of α with minimal energy \mathcal{E} (with regard to the other models of α). As the semantic counterpart to the syntactic notion $\alpha \mid_{\mathsf{PK}} \beta$ given in Definition 3 we can define the following relation:

 $\alpha \models_{PK} \beta$ iff each preferred model of α is a model of β .

As a matter of fact, the syntactic notion (Definition 3) and the present semantic notion (21) coincide. Hence, the logic is sound and complete. A proof can be found in Pinkas (1995).

Example 1, continued: $a \models b; \neg a \models \neg b$.

3 Penalty logic and Bayesian networks

Consider a Bayesian network with binary random variables $a_1, a_2, ..., a_n$. Consider a partial specification of these random variables described by a set of "interpretations" *V*. Let α be a conjunction of literals (atoms or their negation) that describes this set *V*, i.e. $V = \{v: v(\alpha) = 1\}$.

Finding a most probable world model: find the specification of the random variables that maximizes the probability $\mu(\nu)$ of the joint distribution; in other words, find $\operatorname{argmax}_{\nu \in V}[\mu(\nu)]$.

Example: $\alpha = a_1 \land \neg a_2$, find an optimal specification of the random variables $\{a_3, a_4, a_5\}$ maximizing the joint probability $\mu(a_1 = 1, a_2 = 0, a_3 = 0/1, a_4 = 0/1, a_5 = 0/1)$. Of course, the concrete solution depends on the details of the conditioned probability tables.

Global semantics and finding a most probable world model (Kooij, 2006)

$$\mu(a_1, \ldots, a_n) = \prod_{i=1}^n \ \mu(a_i / \operatorname{Parents}(a_i))$$

In the example:

 $\mu(a_1, \ldots, a_5) = \mu(a_1) \cdot \mu(a_2) \cdot \mu(a_3/a_1, a_2) \cdot \mu(a_4/a_3) \cdot \mu(a_5/a_3)$

$$\begin{aligned} \operatorname{argmax}_{\nu \in V} \mu(a_1 = \nu(a_1), \dots, a_n = \nu(a_n)) \\ &= \operatorname{argmax}_{\nu \in V} \mu(\nu) \\ &= \operatorname{argmin}_{\nu \in V} -\log \mu(\nu) \\ &= \operatorname{argmin}_{\nu \in V} \sum_{i=1}^n -\log \mu(a_i = \nu(a_i) / \operatorname{Parents}(a_i) = \nu(\dots)) \end{aligned}$$

The log-terms will be interpreted as penalties of corresponding rules:

$$\left\langle \left(\wedge_{x \in Parents(a_i)} x = \nu(x) \right) \rightarrow a_i = \nu(a_i), -\log \mu(a_i = -\nu(a_i) / \text{Parents}(a_i) = \nu(\dots) \right) \right\rangle$$
11

Example

Consider the weighted rules connected with the a₃-part of the CPTs:

a ₁	a ₂	$\mu(a_3 = T / a_1, a_2)$	weighted rule for $a_3 = T$
F	F	0.8	$\langle \neg a_1 \land \neg a_2 \rightarrow a_3, -\log 0.2 \rangle$
F	Т	0.4	$\langle \neg a_1 \land a_2 \rightarrow a_3, -\log 0.6 \rangle$
Т	F	0.5	$\langle a_1 \wedge \neg a_2 \rightarrow a_3, -\log 0.5 \rangle$
Т	Т	0.3	$\langle a_1 \wedge a_2 \rightarrow a_3, -\log 0.7 \rangle$
a ₁	a ₂	$\mu(a_3 = F / a_1, a_2)$	weighted rule for $a_3 = F$
a ₁ F	a ₂ F	$\mu(a_3 = F / a_1, a_2)$ 0.2	weighted rule for $a_3 = F$ $\langle \neg a_1 \land \neg a_2 \rightarrow \neg a_3, -\log 0.8 \rangle$
a ₁ F F	a ₂ F T	$\mu(a_3 = F / a_1, a_2) \\ 0.2 \\ 0.6$	weighted rule for $a_3 = F$ $\langle \neg a_1 \land \neg a_2 \rightarrow \neg a_3, -\log 0.8 \rangle$ $\langle \neg a_1 \land a_2 \rightarrow \neg a_3, -\log 0.4 \rangle$
a ₁ F F T	a ₂ F T F	$\mu(a_3 = F / a_1, a_2)$ 0.2 0.6 0.5	weighted rule for $a_3 = F$ $\langle \neg a_1 \land \neg a_2 \rightarrow \neg a_3, -\log 0.8 \rangle$ $\langle \neg a_1 \land a_2 \rightarrow \neg a_3, -\log 0.4 \rangle$ $\langle a_1 \land \neg a_2 \rightarrow \neg a_3, -\log 0.5 \rangle$

The mapping theorem

Assume a Bayesian network is mapped into a penalty knowledge base in the indicated way. Then finding a most probable world model of a conjunction of literals α and finding a *preferred model* (minimal energy) of α with regard to the penalty knowledge base are equivalent tasks (leading to the same optimal interpretation)

Comment

Looking for preferred models in penalty logic can be interpreted as a kind of qualitative reasoning in Bayesian networks. Which values of a set of random variables give a maximal probability for a given specification α of a proper subset of these random variables? The concrete probability value for the specification α doesn't matter. What counts is the optimality of the assignment.

4 Penalty logic and Dempster-Shafer theory

Dempster-Shafer theory is a theory of *evidence*. There are different pieces φ_i of evidence that give rise to a certain belief function and a (dual) plausibility function. Different pieces of evidence can be combined by means of Dempster's rule of combination.

A standard application is in medical diagnostics where some positive test result X can give a positive evidence for some disease Y but a negative test result gives absolutely no evidence for or against the disease. **Definition** (mass function)

A mass function on a domain Ω of possible worlds (for a given piece of information) is a function m: $2^W \rightarrow [0, 1]$ such that the following two conditions hold:

 $m(\emptyset) = 0.$ $\Sigma_{V \subseteq \Omega} m(V) = 1$

Definition (belief/plausibility function based on m)

Let m be a mass function on Ω . Then for every $U \subseteq \Omega$:

 $Bel(U) =_{def} \Sigma_{V \subseteq U} m(V)$ $Pl(U) =_{def} \Sigma_{V \cap U \neq \emptyset} m(V)$

Dempster's rule of combination

Suppose m_1 and m_2 are basic mass functions over W. Then $m_1 \oplus m_2$ is given by Dempster's combination rule without renormalization:

$$\mathbf{m}_1 \oplus \mathbf{m}_2 (U) = \sum_{V_1 \cap V_j = U} \mathbf{m}_1(V_i) \cdot \mathbf{m}_2(V_j)$$

Facts:

Assume $m(U) = \bigoplus_{i=1}^{n} m_i(U)$; Pl plausibility function based on m; Pl_i plausibility function based on m_i. Then we have:

W

1.
$$\operatorname{Pl}(\{\nu\}) = \sum_{\substack{V \\ \nu \in V}} m(V);$$
 $\operatorname{Pl}_{i}(\{\nu\}) = \sum_{\substack{V \\ \nu \in V}} m_{i}(V)$
2. $\operatorname{Pl}(\{\nu\}) = \prod_{i=1}^{n} \operatorname{Pl}_{i}(\{\nu\})$ ["contour function"]

Relating penalties to Dempster-Shafer theory

Let be $W = \{ [\alpha_i, k(\alpha_i)] : \alpha_i \in \Delta \}$ a *weighted base* of a system PK in our language \mathcal{L}_{At} .

Each formula α_i represents a piece of evidence for $V_i = \{v: v \mid = \alpha_i\}$. Formally, this is expressed by the following mass function m_i :

$$m_i(V_i) = 1 - e^{-k(\alpha i)}; m_i(\Omega) = e^{-k(\alpha i)}$$

Using facts 1 and 2 it can be shown that¹

$$Pl(\{v\}) = e^{-\mathcal{E}_{PK}(v)}$$

This brings to light a relation between penalties and evidence where each formula of the knowledge base is considered to be given by a distinct source, this source having a certain probability to be faulty, and all sources being independent.

¹ For a proof see deSaint-Cyr, Lang, & Schiex (1994).

5 Penalty logic and neural nets

Main thesis: Certain activities of connectionist networks can be interpreted as nonmonotonic inferences. In particular, there is a strict correspondence between Hopfield networks and penalty/reward nonmonotonic inferential systems. There is a direct mapping between the information stored in such (localist) neural networks and penalty/reward knowledge bases.

- Certain logical systems are singled out by giving them a "deeper justification".
- Understanding Optimality Theory: Which assumptions have a deeper foundation and which ones are pure stipulations?
- New methods for performing nonmonotonic inferences: Connectionist methods (simulated annealing etc.)

Hopfield network - fast dynamics

Let the interval [-1,+1] be the *working range* of each neuron

+1: maximal firing rate0: resting-1 : minimal firing rate)

$$\begin{split} S &= [-1, \, 1]^{\ n} \\ w_{ij} &= w_{ji} \ , \, w_{ii} = 0 \end{split}$$

Summarizing the main results

Theorem 1 (Cohen & Großberg 1983)

Hopfield networks are resonance systems (i.e. $\lim_{n\to\infty} f^n(s)$ exists and is a resonance for each $s \in S$ and $f \in F$)

Theorem 2 (Hopfield 1982) $E(s) = -\frac{1}{2} \sum_{i,j} w_{ij} s_i s_j$ is a *Ljapunov-function* of the system in the case of asynchronous updates. The output states $\lim_{n\to\infty} f^n(s)$ can be characterized as *the local minima* of E

Theorem 3 (Hopfield 1982)

The output states $\lim_{n\to\infty} f^n(s)$ can be characterized as *the global minima* of E if certain stochastic update functions f are considered (faults!).

Example

$$w = \begin{pmatrix} 0 & 0.2 & 0.1 \\ 0.2 & 0 & -1 \\ 0.1 & -1 & 0 \end{pmatrix}$$

 $\mathbf{E}(\mathbf{s}) = -0.2\mathbf{s}_1\mathbf{s}_2 - 0.1\mathbf{s}_1\mathbf{s}_3 + \mathbf{s}_2\mathbf{s}_3$

Input

Output

E

<1 0 0> ≤	<1 0 0>	0
	<1 0 1>	-0.1
	<1 1 0>	-0.2
	<1 1 1>	0.7
	<1 1-1>	-1.1

 $ASUP_w(<1 \ 0 \ 0>) = min_E(s) = <1 \ 1-1>$

The correspondence between symmetric networks and penalty knowledge bases

- 1. relate the nodes of the networks to atomic symbols a_i of $\mathcal{L}_{At.}$ At = { p_1, p_2, p_3 }
- 2. translate the network in a corresponding weighted base $W = \{ \langle p_1 \leftrightarrow p_2, 0.2 \rangle, \langle p_1 \leftrightarrow p_3, 0.1 \rangle, \langle p_2 \leftrightarrow \neg p_3, 1 \rangle \}$
- 3. relate states and interpretations: $s \cong v \text{ iff } s_i = v(a_i)$

4. observe that the energy of a network state is equivalent to the energy of an interpretation: $\mathbf{E}(s) = \mathcal{E}_{PK}(v) =_{def} \sum_{\delta \in \Delta} k(\delta) [[\neg \delta]]_v$ E.g.:

 $\begin{array}{ll} \mathbf{E}(<1\ 1\ 1>) = 0.7 & = -0.2-0.1+1 \\ \mathbf{E}(<1\ 1-1>) = -1.1 & = -0.2+0.1-1 \end{array}$

Example from phonology

-back	+back	
/i/	/u/	+high
/e/	/0/	-high/-low
/æ/	/ɔ/ /a/	+low

The phonological features may be represented as by the atomic symbols BACK, LOW, HIGH, ROUND. The generic knowledge of the phonological agent concerning this fragment may be represented as a Hopfield network using *exponential weights* with basis $0 < \varepsilon \le 0.5$.

Exponential weights and strict constraint ranking

Strong Constraints: LOW $\rightarrow \neg$ HIGH; ROUND \rightarrow BACK

Assigned Poole-system

VOC $\leftrightarrow \epsilon^1$ BACK; BACK $\leftrightarrow \epsilon^2$ LOW LOW $\leftrightarrow \epsilon^4 \neg$ ROUND; BACK $\leftrightarrow \epsilon^3 \neg$ HIGH

Keane's markedness conventions

Conclusion

- As with weighted logical system, OT looks for an optimal satisfaction of a system of conflicting constraints
- The exponential weights of the constraints realize a strict ranking of the constraints:
- Violations of many lower ranked constraints count less than one violation of a higher ranked constraint.
- The grammar doesn't count!

6 Learning

Translating connectionist and standard statistic methods of learning into an update mechanism of a penalty logical system.

Boersma & Hayes (2001): gradual learning algorithm (stochastic OT) Goldwater & Johnson (2003): maximum entropy model Jäger (2003): Comparison between these two models Pater, Bhatt & Potts (2007)

These papers are also a starting point for understanding iterated learning and the modelling of (cultural) language evolution.

References

- Blutner, R. (2004). *Neural Networks, Penalty Logic and Optimality Theory*. Amsterdam: ILLC.
- Boersma, P., & Hayes, B. (2001). Empirical tests of the gradual learning algorithm. *Linguistic Inquiry*, *32*, 45-86.
- Darwiche, A., & Marquis, P. (2004). Compiling propositional weighted bases. *Artificial Intelligence*, 157, 81-113.
- de Jongh, D., & Liu, F. (2006). *Optimality, Belief and Preference*: Institute for Logic, Language and Computation (ILLC), University of Amsterdam.
- deSaint-Cyr, F. D., Lang, J., & Schiex, T. (1994). Penalty logic and its link with Dempster-Shafer theory, *Proceedings of the 10th Int. Conf. on Uncertainty in Artificial Intelligence (UAI'94)* (pp. 204-211).

- Goldwater, S., & Johnson, M. (2003). *Learning OT constraint rankings using a maximum entropy model*. Paper presented at the Stockholm Workshop on Variation within Optimality Theory, Stockholm.
- Jäger, G. (2003). Maximum entropy models and Stochastic Optimality Theory. Potsdam: University of Potsdam.
- Kooij, J. F. P. (2006). Bayesian Inference and Connectionism. Penalty Logic as The Missing Link, *Essay written for the course "Neural Networks and Symbolic Reasoning"*. Amsterdam.
- Lima, P. M. V., Morveli-Espinoza, M. M. M., & Franca, F. M. G.
 (2007). Logic as Energy: A SAT-Based Approach (Vol. 4729).
 Berlin, Heidelberg: Springer.
- Pater, J., Bhatt, R., & Potts, C. (2007). Linguistic optimization. Ms., University of Massachusetts, Amherst.
- Pater, J., Potts, C., & Bhatt, R. (2007). Harmonic Grammar with linear programming. *Ms., University of Massachusetts, Amherst.[ROA-827].*

- Pinkas, G. (1992). Logical inference in symmetric connectionist networks. Unpublished Doctoral thesis, Washington University, St Louis, Missouri.
- Pinkas, G. (1995). Reasoning, connectionist nonmonotonicity and learning in networks that capture propositional knowledge. *Artificial Intelligence*, 77, 203-247.
- Prince, A. (2002). Anything goes, *A new century of phonology and phonological theory* (pp. 66–90). New Brunswick: Rutgers University.

Rescher, N. (1964). Hypothetical Reasoning: North-Holland Pub. Co.