Lecture 6: Logical foundations

1 Introduction: different formal approaches
2 Penalty logic
3 Penalty logic and Bayesian networks
4 Penalty logic and Dempster-Shafer theory
5 Penalty logic and neural nets
6 Learning
1 Introduction: different formal approaches

- Brewka (1994); Besnard, Mercer & Schaub (2002) [for a copy go to http://www.cs.uni-potsdam.de/wv/pdfformat/bemesc02a.pdf]: Optimality Theory through Default Logic with priorities. The priorities are handled by a total ordering defined on the system of defaults. See also Nicolas Rescher’s (1964) book “Hypothetical reasoning” which clearly expresses the very same idea.

- Dick de Jongh & Fenrong Liu (2006). They take an approach in terms of priority sequences of logical expressions, an idea that comes close to Brewka (1994).

- Pinkas (1992) introduced penalty logic and used it to model high-level (logical) properties of neural networks (see also Pinkas, 1995)

- Lima et al. (Lima, Morveli-Espinoza, & Franca, 2007) improve on it.

2 Penalty logic

The presentations follows Darwiche & Marquis (2004) and Blutner (2004). Let's consider the language \mathcal{L}_{At} of propositional logic (referring to the alphabet At of atomic symbols).

Definition 1: A triple $<At, \Delta, k>$ is called a \textit{penalty knowledge base} (PK) iff (i) Δ is a set of consistent sentences built on the basis of At (the possible hypotheses); (ii) $k: \Delta \Rightarrow (0, \infty)$ (the penalty function).

Intuitively, the penalty of an expression δ represents what we should pay in order to get rid of δ. If we pay the requested price we no longer have to satisfy δ. Hence, the larger $k(\delta)$ is, the more important δ is.

From some PK we can extract the system $W = \{[\alpha , k(\alpha)]: \alpha \in \Delta\}$ which is called the \textit{weighted base} of the system PK (see Darwiche & Marquis)
Definition 2: Let α be a formula of our propositional language \mathcal{L}_{At}. A *scenario of α in $PK(W)$* is a subset Δ' of Δ such that $\Delta' \cup \{\alpha\}$ is consistent. The cost $K_{PK}(\Delta')$ of a scenario Δ' in PK is the sum of the penalties of the formulas of PK that are not in Δ':

$$K_{PK}(\Delta') = \sum_{\delta \in (\Delta - \Delta')} k(\delta)$$

Definition 3: An *optimal scenario of α in PK* is a scenario the cost of which is not exceeded by any other scenario (of α in PK), so it is a penalty minimizing scenario. With regard to a penalty knowledge base PK, the following cumulative consequence relation can be defined:

$$\alpha \not\models_{PK} \beta$$ iff β is an ordinary consequence of each optimal scenario of α in PK.

Hence, penalties may be used as a criterion for selecting preferred consistent subsets in an inconsistent knowledge base, thus inducing a non-monotonic inference relation.
Example 1

Weighted base W: $\{a \land b, 2\}, \{-b, 1\}$

Optimal scenario for a in W:
$\Delta_1 = \{a \land b\}$ $K_{PK}(\Delta_1) = 1$

Optimal scenario for $\neg a$ in W: (violating $a \land b$ or b, respectively)
$\Delta_2 = \{-b\}$ $K_{PK}(\Delta_2) = 2$

\[
\begin{array}{c|c|c}
\hline
a & \sim_W & b \\
\hline
\neg a & \sim_W & \neg b \\
\hline
\end{array}
\]
Example 2

First Law: A robot may not injure a human being.
Second Law: A robot must follow (obey) the orders given it by human beings, except where such orders would conflict with the First Law.
Third Law: A robot must protect its own existence, as long as such protection does not conflict with the First or Second Law.

Weighted base W

- $\neg I$ 5 (first law)
- F 2 (second law)
- P 1 (third law)
- $(S \land F) \rightarrow K$ 1000 (S: giving the order to kill her)
- $K \rightarrow I$ 1000 (K: the robot kills her)

Two scenarios for S in W (violating F and $\neg I$, respectively)

$\Delta_1 = \{\neg I, P, (S \land F) \rightarrow K, K \rightarrow I\}$ $K_{PK}(\Delta_1) = 2$
$\Delta_2 = \{F, P, (S \land F) \rightarrow K, K \rightarrow I\}$ $K_{PK}(\Delta_2) = 5$

$\text{S |}_W \neg I$
Semantics

Consider a penalty knowledge base \(PK = <At, \Delta, k> \). Let \(\nu \) denote an ordinary (total) interpretation for the language \(\mathcal{L}_{At} (\nu: At \rightarrow \{0,1\}) \). The usual clauses apply for the evaluation \([[.]]_\nu \) of the formulas of \(\mathcal{L}_{At} \) relative to \(\nu \). The following function indicates how strongly an interpretation \(\nu \) conflicts with the space of hypotheses \(\Delta \) of a penalty knowledge base \(PK \):

Definition 4 (system energy of an interpretation)

\[
\mathcal{E}_{PK}(\nu) = \text{def} \sum_{\delta \in \Delta} k(\delta) [[\neg \delta]]_\nu
\]

\(\mathcal{E}_{PK}(\nu) \) is also called violation rank (Pinkas), cost (deSaint-Cyr et al.), weight (Darwiche & Marquis) of the interpretation.
Example 1 again

Weighted base $W: \{a \land b, 2, \neg b, 1\}$. Let us consider the following four interpretations over the variables appearing in W, $\text{Var}(W)$:

- $\mathfrak{v} 1 = (a, b)$ \hspace{1cm} $\mathcal{E}_{PK}(\mathfrak{v} 1) = 1$
- $\mathfrak{v} 2 = (a, \neg b)$ \hspace{1cm} $\mathcal{E}_{PK}(\mathfrak{v} 2) = 2$
- $\mathfrak{v} 3 = (\neg a, b)$ \hspace{1cm} $\mathcal{E}_{PK}(\mathfrak{v} 3) = 3$
- $\mathfrak{v} 4 = (\neg a, \neg b)$ \hspace{1cm} $\mathcal{E}_{PK}(\mathfrak{v} 4) = 2$

Hence, the interpretation with minimum energy is $\mathfrak{v} 1$.

Preferred models

Let α be a wff of the language \mathcal{L}_{At}. An interpretation ν is called a model of α just in case $[[\alpha]]_\nu = 1$.

Definition 4

A preferred model of α is a model of α with minimal energy \mathcal{E} (with regard to the other models of α). As the semantic counterpart to the syntactic notion $\alpha \mid \sim_{PK} \beta$ given in Definition 3 we can define the following relation:

$\alpha \mid \approx_{PK} \beta$ iff each preferred model of α is a model of β.

As a matter of fact, the syntactic notion (Definition 3) and the present semantic notion (21) coincide. Hence, the logic is sound and complete. A proof can be found in Pinkas (1995).

Example 1, continued: $a \mid \approx b; \neg a \mid \approx \neg b$.

9
3 Penalty logic and Bayesian networks

Consider a Bayesian network with binary random variables a_1, a_2, \ldots, a_n. Consider a partial specification of these random variables described by a set of "interpretations" V. Let α be a conjunction of literals (atoms or their negation) that describes this set V, i.e. $V = \{v: v(\alpha) = 1\}$.

Finding a most probable world model: find the specification of the random variables that maximizes the probability $\mu(v)$ of the joint distribution; in other words, find $\operatorname{argmax}_{v \in V} [\mu(v)]$.

Example: $\alpha = a_1 \land \neg a_2$, find an optimal specification of the random variables $\{a_3, a_4, a_5\}$ maximizing the joint probability $\mu(a_1 = 1, a_2 = 0, a_3 = 0/1, a_4 = 0/1, a_5 = 0/1)$. Of course, the concrete solution depends on the details of the conditioned probability tables.

10
Global semantics and finding a most probable world model (Kooij, 2006)

$$\mu(a_1, \ldots, a_n) = \prod_{i=1}^{n} \mu(a_i / \text{Parents}(a_i))$$

In the example:
$$\mu(a_1, \ldots, a_5) = \mu(a_1) \cdot \mu(a_2) \cdot \mu(a_3/a_1,a_2) \cdot \mu(a_4/a_3) \cdot \mu(a_5/a_3)$$

$$\text{argmax}_{v \in V} \mu(a_1 = v(a_1), \ldots, a_n = v(a_n))$$
$$= \text{argmax}_{v \in V} \mu(v)$$
$$= \text{argmin}_{v \in V} -\log \mu(v)$$
$$= \text{argmin}_{v \in V} \sum_{i=1}^{n} -\log \mu(a_i = v(a_i) / \text{Parents}(a_i) = v(\ldots))$$

The log-terms will be interpreted as penalties of corresponding rules:
$$\langle (\land_{x \in \text{Parents}(a_i)} x = v(x)) \rightarrow a_i = v(a_i), -\log \mu(a_i = -v(a_i) / \text{Parents}(a_i) = v(\ldots)) \rangle$$
Example

Consider the weighted rules connected with the a_3-part of the CPTs:

<table>
<thead>
<tr>
<th>a_1</th>
<th>a_2</th>
<th>$\mu(a_3 = T / a_1, a_2)$</th>
<th>weighted rule for $a_3 = T$</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>0.8</td>
<td>$\langle \neg a_1 \land \neg a_2 \rightarrow a_3, -\log 0.2 \rangle$</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>0.4</td>
<td>$\langle \neg a_1 \land a_2 \rightarrow a_3, -\log 0.6 \rangle$</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>0.5</td>
<td>$\langle a_1 \land \neg a_2 \rightarrow a_3, -\log 0.5 \rangle$</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>0.3</td>
<td>$\langle a_1 \land a_2 \rightarrow a_3, -\log 0.7 \rangle$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>a_1</th>
<th>a_2</th>
<th>$\mu(a_3 = F / a_1, a_2)$</th>
<th>weighted rule for $a_3 = F$</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>0.2</td>
<td>$\langle \neg a_1 \land \neg a_2 \rightarrow \neg a_3, -\log 0.8 \rangle$</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>0.6</td>
<td>$\langle \neg a_1 \land a_2 \rightarrow \neg a_3, -\log 0.4 \rangle$</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>0.5</td>
<td>$\langle a_1 \land \neg a_2 \rightarrow \neg a_3, -\log 0.5 \rangle$</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>0.7</td>
<td>$\langle a_1 \land a_2 \rightarrow \neg a_3, -\log 0.3 \rangle$</td>
</tr>
</tbody>
</table>
The mapping theorem

Assume a Bayesian network is mapped into a penalty knowledge base in the indicated way. Then finding a most probable world model of a conjunction of literals α and finding a preferred model (minimal energy) of α with regard to the penalty knowledge base are equivalent tasks (leading to the same optimal interpretation)

Comment
Looking for preferred models in penalty logic can be interpreted as a kind of qualitative reasoning in Bayesian networks. Which values of a set of random variables give a maximal probability for a given specification α of a proper subset of these random variables? The concrete probability value for the specification α doesn’t matter. What counts is the optimality of the assignment.
4 Penalty logic and Dempster-Shafer theory

Dempster-Shafer theory is a theory of evidence. There are different pieces φ_i of evidence that give rise to a certain belief function and a (dual) plausibility function. Different pieces of evidence can be combined by means of Dempster’s rule of combination.

A standard application is in medical diagnostics where some positive test result X can give a positive evidence for some disease Y but a negative test result gives absolutely no evidence for or against the disease.
Definition (mass function)

A mass function on a domain \(\Omega \) of possible worlds (for a given piece of information) is a function \(m: 2^W \to [0, 1] \) such that the following two conditions hold:

\[
\begin{align*}
m(\emptyset) &= 0, \\
\sum_{V \subseteq \Omega} m(V) &= 1
\end{align*}
\]

Definition (belief/plausibility function based on \(m \))

Let \(m \) be a mass function on \(\Omega \). Then for every \(U \subseteq \Omega \):

\[
\begin{align*}
\text{Bel}(U) &= \text{def} \sum_{V \subseteq U} m(V) \\
\text{Pl}(U) &= \text{def} \sum_{V \cap U \neq \emptyset} m(V)
\end{align*}
\]
Dempster’s rule of combination

Suppose \(m_1 \) and \(m_2 \) are basic mass functions over \(W \). Then \(m_1 \oplus m_2 \) is given by Dempster’s combination rule without renormalization:

\[
m_1 \oplus m_2 (U) = \sum_{V_i \cap V_j = U} m_1(V_i) \cdot m_2(V_j)
\]

Facts:

Assume \(m(U) = \bigoplus_{i=1}^{n} m_i(U) \); \(Pl \) plausibility function based on \(m \); \(Pl_i \) plausibility function based on \(m_i \). Then we have:

1. \(Pl({v}) = \sum_{v \in V} m(V) \); \(Pl_i({v}) = \sum_{v \in V} m_i(V) \)

2. \(Pl({v}) = \prod_{i=1}^{n} Pl_i({v}) \) [“contour function”]
Relating penalties to Dempster-Shafer theory

Let be $W = \{[\alpha_i, k(\alpha_i)]: \alpha_i \in \Delta\}$ a weighted base of a system PK in our language \mathcal{L}_{At}.

Each formula α_i represents a piece of evidence for $V_i = \{\nu: \nu |= \alpha_i\}$. Formally, this is expressed by the following mass function m_i:

$$m_i(V_i) = 1 - e^{-k(\alpha_i)}; m_i(\Omega) = e^{-k(\alpha_i)}$$

Using facts 1 and 2 it can be shown that

$$\text{Pl} \{\nu\} = e^{-\mathcal{E}_{PK}(\nu)}$$

This brings to light a relation between penalties and evidence where each formula of the knowledge base is considered to be given by a distinct source, this source having a certain probability to be faulty, and all sources being independent.

1 For a proof see deSaint-Cyr, Lang, & Schiex (1994).
5 Penalty logic and neural nets

Main thesis: Certain activities of connectionist networks can be interpreted as nonmonotonic inferences. In particular, there is a strict correspondence between Hopfield networks and penalty/reward nonmonotonic inferential systems. There is a direct mapping between the information stored in such (localist) neural networks and penalty/reward knowledge bases.

- Certain logical systems are singled out by giving them a "deeper justification".
- Understanding Optimality Theory: Which assumptions have a deeper foundation and which ones are pure stipulations?
- New methods for performing nonmonotonic inferences: Connectionist methods (simulated annealing etc.)
Hopfield network - fast dynamics

Let the interval \([-1, +1]\) be the working range of each neuron

+1: maximal firing rate
0: resting
-1: minimal firing rate

\(S = [-1, 1]^n \)
\(w_{ij} = w_{ji}, w_{ii} = 0 \)

Asynchronous Updating:

\[s_i(t+1) = \begin{cases}
\theta (\sum_j w_{ij} s_j(t)), & \text{if } i = \text{rand}(1,n) \\
 s_i(t), & \text{otherwise}
\end{cases} \]
Summarizing the main results

Theorem 1 (Cohen & Großberg 1983)
Hopfield networks are resonance systems (i.e. $\lim_{n \to \infty} f^n(s)$ exists and is a resonance for each $s \in S$ and $f \in F$)

Theorem 2 (Hopfield 1982)
$E(s) = -\frac{1}{2} \sum_{i,j} w_{ij} s_i s_j$ is a **Ljapunov-function** of the system in the case of asynchronous updates. The output states $\lim_{n \to \infty} f^n(s)$ can be characterized as **the local minima** of E

Theorem 3 (Hopfield 1982)
The output states $\lim_{n \to \infty} f^n(s)$ can be characterized as **the global minima** of E if certain stochastic update functions f are considered (faults!).
Example

\[w = \begin{pmatrix} 0 & 0.2 & 0.1 \\ 0.2 & 0 & -1 \\ 0.1 & -1 & 0 \end{pmatrix} \]

\[E(s) = -0.2s_1s_2 - 0.1s_1s_3 + s_2s_3 \]

\[
\begin{array}{c|c|c|c|c}
\langle 1 & 0 & 0 \rangle & \langle 1 & 0 & 1 \rangle & \langle 1 & 1 & 0 \rangle & \langle 1 & 1 & 1 \rangle & \langle 1 & 1 & -1 \rangle \\
E & 0 & -0.1 & -0.2 & 0.7 & -1.1 \\
\end{array}
\]

\[\text{ASUP}_w(<1 0 0>) = \min_{E(s)} E = <1 1-1> \]
The correspondence between symmetric networks and penalty knowledge bases

1. relate the nodes of the networks to atomic symbols a_i of \mathcal{L}_{At}. $At = \{p_1, p_2, p_3\}$
2. translate the network in a corresponding weighted base $W = \{\langle p_1 \leftrightarrow p_2, 0.2 \rangle, \langle p_1 \leftrightarrow p_3, 0.1 \rangle, \langle p_2 \leftrightarrow \neg p_3, 1 \rangle\}$
3. relate states and interpretations:
 $s \equiv \nu$ iff $s_i = \nu(a_i)$
4. observe that the energy of a network state is equivalent to the energy of an interpretation: $E(s) = \mathcal{E}_{PK}(\nu) = \text{def} \sum_{\delta \in \Delta} k(\delta) \llbracket -\delta \rrbracket_\nu$
 E.g.:

 $E(<1\ 1\ 1>) = 0.7 = -0.2-0.1+1$
 $E(<1\ 1-1>) = -1.1 = -0.2+0.1-1$
 ...

22
Example from phonology

The phonological features may be represented as by the atomic symbols BACK, LOW, HIGH, ROUND. The generic knowledge of the phonological agent concerning this fragment may be represented as a Hopfield network using *exponential weights* with basis $0 < \varepsilon \leq 0.5$.

<table>
<thead>
<tr>
<th></th>
<th>-back</th>
<th>+back</th>
</tr>
</thead>
<tbody>
<tr>
<td>/i/</td>
<td>/u/</td>
<td>+high</td>
</tr>
<tr>
<td>/e/</td>
<td>/o/</td>
<td>-high/low</td>
</tr>
<tr>
<td>/æ/</td>
<td>/ɔ/</td>
<td>+low</td>
</tr>
<tr>
<td></td>
<td>/a/</td>
<td></td>
</tr>
</tbody>
</table>
Exponential weights and strict constraint ranking

Strong Constraints: \(\text{LOW} \rightarrow \neg \text{HIGH}; \ \text{ROUND} \rightarrow \text{BACK} \)

Assigned Poole-system

\[\text{VOC} \leftrightarrow \varepsilon^1 \text{BACK}; \ \text{BACK} \leftrightarrow \varepsilon^2 \text{LOW} \]

\[\text{LOW} \leftrightarrow \varepsilon^4 \neg \text{ROUND}; \ \text{BACK} \leftrightarrow \varepsilon^3 \neg \text{HIGH} \]

Keane's markedness conventions
Conclusion

- As with weighted logical system, OT looks for an optimal satisfaction of a system of conflicting constraints

- The exponential weights of the constraints realize a strict ranking of the constraints:

- Violations of many lower ranked constraints count less than one violation of a higher ranked constraint.

- The grammar doesn't count!
6 Learning

Translating connectionist and standard statistic methods of learning into an update mechanism of a penalty logical system.

Boersma & Hayes (2001): gradual learning algorithm (stochastic OT)
Goldwater & Johnson (2003): maximum entropy model
Jäger (2003): Comparison between these two models
Pater, Bhatt & Potts (2007)

These papers are also a starting point for understanding iterated learning and the modelling of (cultural) language evolution.
References

deSaint-Cyr, F. D., Lang, J., & Schiex, T. (1994). Penalty logic and its link with Dempster-Shafer theory, *Proceedings of the 10th Int. Conf. on Uncertainty in Artificial Intelligence (UAI'94)* (pp. 204-211).

