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Abstract
A central claim of Optimality Theory is that grammars may differ only in how conflicts among
universal well-formedness constraite resolved: grammar is precisely a means of
resolving such conflicts via a strict priority ranking of constraints. Itis shown here how this
theory of Universal Grammayields a highlygeneral Constraint Demotigorinciple for
grammar learning. The resultingarningprocedurespecifically exploits thegrammatical
structure of Optimality Theory, independent of the content of substantive constraints defining
any given grammatical module. The learning problem is decomposed and formal results are
presented for a central subproblem, deducing the constakihg particular to #arget
language, giverstructural descriptions of positivexamples and knowledge of universal
grammatical elements. Despite the potentially large size of the space of possible grammars,
the structure imposed on this space by Optimality Theory allows efficient convergence to a
correctgrammar. Implicationare discussed fdearning from overt data only, learnability
of partially-ranked constraint hierarchies, d@hdinitial state. It is argued th&ptimality
Theory promotes a goathich, while generally dgred, has been surprisirgusive:

confluence of the demands of more effective learnability and deeper linguistic explanation.



How exactly does a theory of grammar bear on questions of learnability? Restrictions on what
counts as a possible human language can restrict the search space of the learner. But this is
a coarse observation: alone it says notlibgut how datanay bebrought to bear on the
problem, and further, the number of possible languages predicted by most linguistic theories
is extremely largé. It wouldlearly be a desirablesult if the nature of the restrictions
imposed by a theory of grammar could contribute further to language learnability.

The centraklaim of this paper is that the character of the restrictiomsosed by
Optimality Theory (Prince and Smolensk991, 1993have demonstrable asgynificant
consequencef®r central questions déarnability. OptimalityTheory explains linguistic
phenomena through the complex interaction of violable constraints. The main results of this
paper demonstrate that those constraint interactions are nevertheless restricted in a way that
permits the correct grammar to be inferred from grammatical structural descriptions. These
results are theorems, based on a formal analysis of the Optimality Theory framework; proofs
of the theoremare contained in an appendix. The redudtgetwo important properties.

First, they derive from central principles of the Optimality Theory framework. Second, they
are nevertheless independent of tefails of anysubstantiveanalysis of particular
phenomena. The results apply equally to phonology, syntax, and any other domain admitting
an Optimality Theoretic analysis. Thus, these theorems provide a learnability measure of the
restrictiveness inherent in Optimality Theorgscount ofcross-linguistic variatioper se:
constraint reranking.

The structure of the paper is as follows. Section 1 formulate®ptienality
Theoretic learning problem we address. Section 2 addresses this problem by developing the
principle of Constraint Demotionyhich is incorporated into an error-drivelearning
procedure in section 3. Section 4 takes up sm$iges andpen questions raised by
Constraint Demotion, and section 5 concludes. Section 6 is an appendix containing the

formal definitions, theorems, and proofs.
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1. Learnability and Optimality Theory

Optimality Theory (henceforth, ‘OT Ylefines grammaticality by optimization over violable
constraints. The defining reference is Prince and Smolensky 1993 (abbreviated ‘P&S’ here).
Section 1.1 provides the necessary OT background, while section 1.2 outlines the approach
to language learnability proposed hereluding a decomposition of the overall problem; the

results of this paper solve the subproblem involving direct modification of the grammar.

1.1 Optimality Theory
In this section, we present the basics of OT as a series of general principles, each exemplified

within the Basic CV Syllable Theory of P&S.
1.1.1 Constraints and Their Violation

(1) Grammars specify functions.
A grammar is a specification of a function which assigns to gguit a unique
structural description asutput (A grammaiper sedoes not provide an algorithm

for computing this function, e.g., by sequential derivation.)

In Basic CV Syllable Theory (henceforth, ‘CVT’), an input is a string of Cs and Vs,

e.g., /VCVC/. An output is a parse of the string into syllables, denoted as follows:

2 a .V.CVC. =[, V][, CVC]

i)

(V).CV{C) =VI[,CV]C

o

(Vy.cv.ad. =VI[, CV][, a]
d. .OV.CV.(C) =[,0OV][,CV]C

(These four forms will beeferred to frequently in the paper, and will be consistently labeled

a—d)
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Outputa is an onsetless opexllablefollowed by a closed syllable; periods denote
the boundaries of syllables)( Outputb contains only one, open, syllable. The initial V and
final C of the input are not parsed into syllable structure, as notated by the angle Krackets
These segmentsxemplify underparsing and arenot phonetically realized, sd is
‘pronounced’ simply as .CV. Thierm .CV. is theovert formcontained irb. Parsec
consists of a pair of open syllables, in which the nucleus of the second syllable is not filled by
an input segment. This empty nucleusdgatedd, andexemplifiesoverparsing The
phonetic interpretation of this empty nucleus is an epenthetic vowel.cTass.CV.CV. as
its overtform. As inb, theinitial V of the input is unparsed m Parse is also a pair of
open syllables (phonetically, .CV.CV.), but this time it is the onset of the first syllable which

is unfilled (notatedd; phonetically, an epenthetic consonant), while the final C is unparsed.

(3) Gen Universal Grammar provides a functiGenwhich, given any input, generates

Gen(l), the set of candidate structural descriptiond .for

The inputl is an identifiedsubstructure containealithin each of its candidatutputs in
Gen(l). The domain oGenimplicitly defines the space of possible inputs.

In CVT, for any input, the candidate outputs@er{(l) consist in all possible parsings
of the string intosyllables, includingthe possible over- and underparsingtructures
exemplifiedabove in p—d). All syllablesareassumed to contain a nucleus position, with
optional preceding onset arfdllowing coda positions. CVT adopts tlemplifying
assumption (true ahanylanguages) that th&yllable positions onset and coadaay each
contain at most one C, and thacleus positiormay contain at most one V. The four
candidates of /VCVC/ in (2) amnly illustrative ofthe full setGen(/VCVC/). Since the
possibilities ofoverparsing arenlimited, Gen/VCVC/) in factcontains an infinite number

of candidates.



Tesar & Smolensky Learnability in Optimality Theory 4

The next principle identifiesthe formal character of substantivgrammatical

principles.
(4) Con Universal Grammar provides a s&inof universal well-formedness constraints.

The constraints i@onevaluate the candidate outputs for a given input in parallel (i.e.,
simultaneously). Given a candidatetput,each constraint assesses a multi-seharfks
where each mark correspds to one violation of the constraint. The collection of all marks
assessed a candidate pgrse denotednarkgp). A mark assessed by a constrainis
denoted €. A parseais more marked than a pais&ith respect t iff C assesses more
marks toa than tob. (The theory recognizes the notions more- and less-marked, but not
absolute numerical levels of markedness.)

The CVT constraints are given in (5).

(5) Basic CV Syllable Theory Constraints
ONSeT  Syllables have onsets.
NoCobA Syllables danot have codas.
PARSE  Underlying (input) material is parsed into syllable structure.
FLLNYC  Nucleus positions are filled with underlying material.

Ons

FiLL Onset positions (when present) are filled with underlying material.

These constraints can be ilka&ed with the candidate outputs &-¢). The marks incurred

by these candidates are summarized in table (6).
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(6) Constraint Tableau fdr,

Candidates ®seT | NoCopa | FLLN® | parse | FiLLOns
INCVC/—
i . .OV.CV.C * *
b. (V).CV.(C) * %
c. (V).Cv.CL * *
a. V.CVC. * *

This is an OTconstraint tableau The competing candidates are shown in the left
column. Theothercolumnsare for theuniversal constraints, each indicated by the label at
the top of the column. Constraint violations are indicated with *’, one for each violation.

Candidatea = .V.CVC. violates @sETin its first syllable and NCoDA in its second;
the remainingonstraints areatisfied. The single maukhich ONSET assesses .V.CVC. is
denoted *QuseT. This candidate is daithful parse: itinvolves neitherunder- nor
overparsing, and therefore satisfiesftithfulnessconstraints RRse and FLLZ. By contrast,

b =(V).CV.(C) violates RRSE, and more than once. This tableau will be further explained

below.

1.1.2 Optimality and Harmonic Ordering

The central notion obptimality now makes its appearance. The idea is that by
examining the marks assigned by the universal constraints to all the candidate outputs for a
given input, we cariind the least marked, or optimal, one; thely well-formedparse
assigned by thgrammar tahe input is theptimalone (or optimal ones, if several parses
should tie for optimality). The relevant notion of ‘least marked’ is not the simplistic one of

just counting numbers of violations. Rather, in a given language, different constraints have
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different strengths or priorities: they are not all equal in force. When a choice must be made
betweensatisfyingone constraint or another, the stronger must take priority. The result is

that the weaker will be violated in a well-formed structural description.

(7) Constraint Rankinga grammarranks the universal constraints in adominance

hierarchy.

When one constraint; dominates another constaint ihiénarchy,the relation is
denotedC; >C, . Thenking defining a grammar tetal: thehierarchy determines the
relative dominance of every pair of constraints:

Cl > Cz > > Cn

(8) Harmonic Orderinga grammar’s constraint ranking inducdsaamonic ordering< of
all structural descriptionsTwo structures andb are compared bgentifying the
highest-ranked constraifitwith respect to which andb are not equally marked: the
candidatewnhich is less marked witfespect taC is themore harmonicor the one

with higher Harmony(with respect to the given ranking).

a < b denotes that is less harmonic tham The harmonic ordering determines the relative
Harmony of every pair of candidates. For a given input, the most harmonic of the candidate
outputsprovided byGenis theoptimal candidate: it is the one assigned to the input by the
grammar. Onlyhis optimal candidate is well-formedll lessharmonic candidatesre ill-
formed? .

A formulation of harmonic ordering that will prove quite useful for learning involves
Mark Cancellation Consider a pair of competing candidaesdb, with corresponding
lists of violation marksnarkga) andmarkgb). Mark Cancellation is a process applied to a
pair of lists of marks, and it cancels violation marks in common to the two lists. Thus, if a

constraintC assesses one or more marksté bothmarkga) andmarkgb), an instance of
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*C is removed from each list, atize process is repeatadtil at most onef thelists still
contains a mark€. (Note that ia andb are equally marked with respect@pthe two lists
contain equally mangnarks *C, andall occurrences of @ areeventuallyremoved.) The
resulting lists ofuncancelled markare denotedanarks(a) andmarks(b). If a mark *C
remains in the uncancelled mark listapfthena is more marked with respect @ If the
highest-ranked constraint assessing an uncancelled mark has a markda), thena < b:
this is the definition of harmonic orderirgin terms of mark cancellation. Mark cancellation
is indicated with diagonal shading in the tableau (9): one mawks®cancels between the

first two candidates of (631 andb, and one uncancelled mark&®RsE remains irmarks(b).

(9) Mark Cancellation

Candidates @seT | NoCobA FILLNUC‘ Parse | FILLOM

d. OV.CV.C) [ R
b, (V).CV.C) . x

Defining grammaticality via harmonic ordering has an important consequence:

(10) Minimal Violation: the grammatical candidate minimally violates the constraints, relative

to the constraint ranking.

The constraints of UG argolable they are potentially violated in well-formed structures.
Such violation isninimal however, in the sense that gf@ammatical parsp of an input
will best satisfy aconstraintC, unlessall candidates that fare better thawon C also fare
worse tharp on some constraint which is higher ranked tian

Harmonic ordering can be iliwated with CVT by reexamining the tableau (6) under

the assumption that the universal constraints are ranked by a particular grimmar, , with the

ranking given in (11).
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(11) Constraint hierachy fdr; :  M3ET > NoCopA > FiLL NU¢ > RRsE > FiLL Ons

The constraints (and their colummse ordered in (6) left-to-right, reflecting the hierarchy
in (11). Thecandidates in this tableau have been listed in harnood&r,from highest to
lowest Harmony; the optimal candidate is marked marfiaiyarting at the bottom of the
tableau,a < ¢ can be verified as followsThe firststep is tocancel common marks: here,
there are none. The next step igdatermine which candidate hdmee worstuncancelled
mark, i.e., most violatethe mosthighly ranked constraint: it ia, which violates Q@SET.
Thereforea is the leshiarmonic. In determining that< b, first cancethe common mark
*PARSE, ¢ then earns thevorstmark of thetwo, *FiLLNUC. When comparind to d, one
*PARSE mark cancels, leavingnarks(b) = {*PARSE} and marks(d) = {* FiLL O”?. The
worst mark is the uncancelled ARSE incurred byb, sob < d.

L, is a language in which all syllables have the overt form .CV.: onsets are required,

codas are forbidden. In case of problematic inputs such as /VCVC/ where a faithful parse into

CV gyllables isnot possible, this language uses overparsing to pravidsingonsets, and

underparsing to avoid codas (it is the language derﬁ)géggl in P&S:86.2.2.2).
Exchanging the twolEL constraints inL; gives the gramnmiay
(12) Constraint Hierachy fdr, :  IBET > NOCODA > FILLO" 3> RRrsE > FiLL NU°

Now the tableau corresponding () becomes (13); theolumns have been re-
ordered to reflect the constraint reranking, and the candidates have been re-ordered to reflect

the new harmonic ordering.
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(13) Constraint Tableau fdr,

Candidates ®seT | NoCoba | FILLO | parse | FiLNUe
INCVC/—
= . (V).CV.CL. * *
b. (V).CV.(C) * %
d. .OV.CV.(.C * *
a. V.CVC. * *

Like L, all syllables inL, are CV; /VCVC/getssyllabified differently,however. InL, ,
underparsing is used to avoid onsetiggiables,and overparsing to avoid codals,( is
P&S's languageSay, ., )-

The relation betweeh, and, illustrates a principle of Optimality Theory central

to learnability concerns:

(14) Typology by Reranking
Systematic cross-linguistic variation is due entirely to variation in language-specific
rankings of thauniversalconstraints irCon Analysis ofthe optimal formsarising
from all possible rankings @on givesthe typology ofpossible human languages.

Universal Grammar may impose restrictions on the possible ranki@ysof

Analysis of allrankings ofthe CVT constraintseveals a typology of basic C§yllable
structures that explains Jakobson'’s typological generalizations (Jakobson 1962, Clements and
Keyser 1983): see P&S:86. tinis typologylicit syllables mayhave required or optional
onsets, and, independently, forbidden or optional codas.

One further principle of OT will figure in our analysis of learnability, richness of the



Tesar & Smolensky Learnability in Optimality Theory 10

base. Discussion of this principle will be postponed until its point of relevance, section 4.3.

1.2 Decomposing the Learning Problem

The results presented in ttpaper address a particulsubproblem othe overall
enterprise of language learnabilitfhat subproblem, and the corresponding results, are best
understood in the context of an overall approach to language learnability. This section briefly
outlines that approach. The nature of and motivation for the approach are further discussed
in section 4.2.

To begin, three types of linguistic entities must be distinguished:

(15) Three Kinds of Linguistic Entities
Full structural descriptionsthe candidate outputs Gfen including overt structure
and input.
Overt structurethe part of a description directly accessible to the learner.

The grammar determines which structural descriptions are grammatical.

In terms of CVT, full structural descriptions are exemplified by the descriptions listed
in (2). Owvert structure is the part of a structutakcription that actually is realized
phonetically. Forexample, inb = (V).CV.(C), the overt structure i€V; the unparsed
segments$V) and(C) are not included. Unparsed segments are present in the full structural
description, but not the overt structure. The part of the grammar to be learned is the ranking
of the constraints, as exemplified in (11).

It is important to keep in mind that the grammar evaluates full structural descriptions;
it does not evaluate overt structure in isolation. This is, of course, hardly novel to Optimality
Theory; it is fundamental to linguistic theory in general. The general challenge of language
acquisition, undeany linguistictheory, is that oinferringthe correct grammar from overt

data, despite the gap between thw arising fromthe hidden elements o$tructural
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descriptions, absent from overt data.
It is also important to distinguish three processes, each of which plays an important

role in the approach to language acquisition proposed here:

(16) Three Processes
Production-Directed Parsingmapping an underlying forrfinput) to its optimal
description—qgiven a grammar.
RobustInterpretive Parsing mapping anovert structure tats full structural
description, complete with all hidden structure—given a grammar.

Learning the Grammardetermining a grammar from full grammatical descriptions.

Production-directed parsingtise computation of that structural description, among those
candidates produced Bencontaining a given input, which is optimal with respect to a given
ranking. Production-directed parsing takes a part of a structural description, the underlying
form, and fills in the rest of the structure. Robust interpretive parsing also takes a part of a
structural description and fills in the rest, but it starth & different part, the overt structure.
Robust interpretive parsing is closer to what many readers probably associate with the word
“parsing.” “Robustness” refers to the fact thatawert structure nogenerated by the
grammar currently held the learner isiot simplyrejected: rather, it iassignedhe most
harmonic structur@ossible. The learner can,aurse tell thatthe assigned parse is not
grammatical by her current grammar (by comparing it to the description her grammar assigns
to the same underlying form); in fact, the learner will exploit that observation during learning.
Both production-directed parsing anobust interpretivgparsing make use dghe same
harmonicordering of structural descriptions inducedthy constraint ranking-hey differ

in the part of the structurthey start from: production-directed parsing gfgwith an

underlying form, and chooses among candidates with the same underlying form, while robust



Tesar & Smolensky Learnability in Optimality Theory 12

interpretive parsing starts with awert structureand chooses among candidates with the
same overt structure.

These entities and processes are all intimately connected, as schematically shown in

(17).

(17) Decomposition of the Learning Problem

learn Grammar given
Learning *\

Grammar specifies Full structural descriptions
« well-formedness contibns » Overt structure
on structural descriptions * ‘Hidden’ structure
given
Robust
Interpretive

Parpsmg compute

Overt Structu re

Any linguistic theory mustultimately be able tsupport procedureghich are tractable
performance approximations to baihrsing and learning. Ideally, a grammatitedory
should provide sufficient structure so that procedures for both parsing and grammar learning
can be strongly shaped by grammatical principles.

In the approach to learning developed here, full structural descriptions bear not just
a logical relationship between overt structures and grammars: they also play an active role in
the learning process. We propose that a language learner uses a grammar to interpret overt
forms by imposing on those overt forms the best structural descriptions, as determined by her
current ranking. She then makes use of those descriptions in learning.

Specifically, we propose that a learner starts with an initial ranking of the constraints.

As overtformsare observed, the learner uses the currently hypothesizkitg to assign
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structural descriptions to those forms. These hypothesized full structures are treated by the
grammar learning subsystem as the target parses to be assigned by the correct grammar: they
are used to change the hypothesized ranking, yielding a new grammar. The new ranking is
then used tassign newull descriptions t@vert forms. This process continues, back and

forth, until the correct ranking is converged upon. At that point, the ranking will assign the
correct structuratlescriptions to each of tlwvert structuresand theovert structures will

indicate that the ranking is correct, and should not be changed.

The process of computing optimal structural descriptionsufaterlying forms
(production-directed parsing) has already been addressed elsewhere. Algorithms which are
provably correct fosignificant classes of OT grammars have #reloped, based upon
dynamic programming (Tes&894, 198ab, in press). For positive initial results in applying
similar techniques to robust interpretive parsing, see Tesar, in preparation a.

At this point, we putsidethe largerearning algorithm until section 4.8 the
present paper is devoted to téproblem ir{17) labelled “grammar learning”: inferring
constraint rankings fronfull structural descriptions. The netto sections develop an
algorithm for performing sucimference. This algorithm haspaoperty important for the
success ofthe overall learningapproach: whersupplied withthe correct structural
descriptions for a language, it is guaranteetindthe correctranking. Furthermore, the
number of structural descriptions required by the algorithm is quite modest, especially when

compared to the number of distinct rankings.

2. Constraint Demotion

Optimality Theory is nherently comparative; thgrammaticality of astructural
description is determinedot in isolation, butwith respect to competing candidates.
Therefore, the learner is not informed about the correct ranking by positive data in isolation;

the role of the competing candidates must be addre3sesl fact isnot aliability, but an
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advantage: a comparative theory gives comparative structure to be exploited. Each piece of
positive evidence, a grammaticsfructural descriptionbrings with it a body ofmplicit
negative evidencm theform of the competing descriptions. Given accesSénoand the
underlying form (contained in the given structural description), the learner has access to these
competitors. Any competing candidate, along with the grammatical structure, determines a
data pairrelated to the correcanking:the correctranking must mak¢he grammatical
structure more harmonic than the ungrammatical competitor. Call the observed grammatical
structure thevinner, and any competing structuréoger. The challenge faced by the learner

is then, given a suitable set of slmber/winnerpairs, to find a ranking such that easimner

is more harmonic than its correspondiager. Constraint Demotion solves this challenge,

by demoting the constraints violated by thianer down in thehierarhy so that they are
dominated bythe constraints violated by the loser. Thamprinciple ispresented more
precisely in this section, and an algorithm for learning constraint rankings from grammatical

structural descriptions is presented in section 3.
2.1 The Basic Idea
In our CV languagd.; , theinnerfor input /VCVC/ is COV.CV.(C). Table (6)

gives the marks incurred by the winner (labelfednd by three competiigsers These may
be used to fornthreeloser/winnerpairs, as shown in (18). Wark-data pairs the paired

lists of constraint violation marks forl@ser/winnerpair.

(18) Mark-data pairsl(; )

loser < winner markgloser) markgwinner)
a~d V.CVC. < [V.CV.(C) *ONSET *N OCODA *PARSE *FILL ONS
b~d: (V).CV{C) < LOV.CV.(C) *PARSE *PARSE *PARSE *FILL O"S
c~di (V).Cv.CO. < OV.CV.C) *PARSE * FiLL NU¢ *P ARSE *FiLL O"S
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To make contact with more familiar OT constraint tableaux, the information in (18)

will also be displayed in the format of (19).

(19) Initial data

not-yet-ranked

loser/winnerpairs || FLLNYC | FLLO™ | pRrse | ONSET | NoCoba
d v OV.CV.(C) ® ®

a .V.CVC. * *

d v [V.CV.O o

b (V).CVLC)

d v [V.CV.O o

c (V).CV.CL. *

At this point, the constraints are unranked; thietted vertical lines separating

constraints in (19) conveys that no relative ranking of adjacent constraints is intended. The
winner is indicated with &; ¥ will denote the structure thataptimal according to the

current grammar, which may not be the same as the winner (the structure that is grammatical

in the targetanguage). The constraint violations of thimner, markgwinner), are dis-

tinguished by the symbal. Diagonal shading denotes mark cancellation, as in tableau (9).
Now in order that each loser be lessmonic than the winner, the marks incurred by

the formermarkglosen, must collectively be worse thamarkgwinner). According to (8),

what this means more precisely is tloger must incur the worst uncancelled mark, compared

to winner. This requires that uncancelled marks be identified, so the first step is to cancel the

common marks in (18).
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(20) Mark-data pairs after cancellatidn ()

loserwinner pairs marks(loser) marks (winner)
a~d V.CVC. < [V.CV.(C) *ONSET *N OCODA *PARSE *FILL ONS
b~d:. (V).CV{C) < [V.CV.(C) *PARSE *PARSE *pARSEFILL ONS
c~di (V).CV.OI. < [V.CV.(C) *pARSE *FiLL NUC £parsE* FiLL ONS

The cancelled marks have been-struek ddte that the cancellation operation which
transformsmarksto marks is defined only orpairs of sets ofmarks;e.g., *FARSE is
cancelled in the paits < d andc < d, but not in the paia < d. Note also that cancellation
of marks is done token-by-token: in thev b < d, one but not the oth@nark *PARSE in
markgb) is cancelled.

The table (20) of mark-data afteancellation isthe data ornwhich Constraint
Demotion operates. Another representation in tableau form is given in (19), where common
marks in each loser/winner pair of rows are indicated asettadtby diagonal shading. This
table also reveals whaticcessful learning must accomplithe ranking ofthe constraints
must be adjusted so that, for each pair, all of the uncancelled winnergrankslominated
by at least one loser mark *Using the standard tableau conventionpafsitioning the
highest-ranked constraints to the left, todumns containing uncancellednarks need to
be moved far enough to the right (down in tierarchy) sdhat, foreach pair, there is a
column (constraint) containing anncancelled * (loser markyhich isfurther to the left
(dominant in the hierarchy) than all of the columns containing uncanee{l@shner marks).

The algorithm to accomplish this is based upon the principle in (21).

(21) The Principle o€onstraint Demotion: foany constraintC assessing an uncancelled
winner mark, ifC is notdominated by a constraint assessing an uncancelled loser

mark, demoteC to immediatelybelow the highest-ranked constraasisessing an
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uncancelled loser mark.

Constraint Demotionvorks bydemoting the constraints witimcancelled winner
marks down far enough in the hierarchy so that they are dominated by an uncancelled loser
mark, ensuring that each winner is more harmonic than its competing losers.

Notice that it isnot necessary foall uncancelled loser marks to dominate all
uncancelled winner marks: one will suffice. wiever, given more than one uncancelled loser
mark, it is oftennot immediatelyapparentvhich one needs to dominate thacancelled
winner marks (the paia < d above is such a case)his isthe challenge successfully

overcome by Constraint Demaotion.

2.2 Stratified Domination Hierarchies

Optimality Theory grammars are defined by rankings in which the domination relation
between anywo constraints is specified. Thearning algorithmhowever, workswith a
larger space of hypotheses, the spacstmaitified hierarchies A stratified domination

hierarchy has the form:

(22) Stratified Domination Hierarchy

{C} Cyp ..., C3} > {Cy, Cg, ...,Cg} > ... > {C5,Cq, ...Cq }

The constraint€; ¢, ,.Cz; comprise the first stratum in the hierarchy: they are not
ranked with respect to one anotheuf they each dominatall the remainingconstraints.
Similarly, the constraint€, Cg ..., C5 comprise the second stratuthey are notranked
with respect to one another, libey each dominat&l the constraints in the lower strata.

In tableaux, strata will be separated from each other by solid vertical lines, while constraints
within the samestratum will be separated by dottdohes, with no relative ranking implied.

The original notion of constraint ranking, in which a domination relation is specified

for every pair of candidates, can now be seensgeeial case dhe stratified hierarchy,
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where each stratugontains exactly one constraint. That special case will be labeled here a
total ranking Henceforth, ‘hierarchy’ will mean stratified hierarchy; when appropriate,
hierarchies will be explicitly qualified as ‘totally ranked.’

The definition of harmonic ordering (8) needs to be elaborated slightly for stratified
hierarchies. Whe@; and, are in thesamestratum,two marks *C; and €, are equally
weighted in the computation of Harmony. In eff@titconstraints in a single stratum are
collapsed together, and treated as though they were a single constraint, for the purposes of
determining the relative Harmony of candidates. Minimal violation with respect to a stratum
is determined byhe candidatencurring the smallessum of violations assessed by all

constraints in the stratum. The tableau in (23) gives a simple illustration.

(23) Harmonic ordering with a stratified hierarcliy:  #,{C5; }C3

Cy Cy C3 Cy
Py *1 *
P> * *1
1= pg *
Ps * *)

Here,all candidates are compared to the optimal pge]n this illustration, parsgs, and

p; violate different constraintghich are in thesamestratum of thénierarchy. Therefore,

these marks cannot decide between the candidates, and it is left to the lower-ranked constraint
to decide in favor op;. Notice that candidatg, is still eliminated bythe middle stratum

because it incurs more than the minimal number of marlastraints in the middle stratum.

(The symbol *! indicates a mark fatal in comparison with the optimal parse.)

With respect to the comparison of candidates, marks assessed by different constraints
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in the same stratum can be thought of as ‘cancellingguse they do not decide between the
candidates. It is crucial, though, that the marks not be cancelled for the purposes of learning.
The term Mark Cancellation, as used in the rest of this paper, should be understood to only
cancel marks assessed by shene constraint to competing candidates, independent of the

constraint hierarchy.

2.3 An Example: Basic CV Syllable Theory
Constraint Demotion (abbreviated CD) will now be illustrated usig; specifically,

with the target language;  of (6,11). The initial stratified hierarchy is set to

(24) H = H, = {FLLNUC FILLOS, ParsE, ONSET, NOCODA}

Suppose that the first loser/winner pab isd of (18). Mark Cancellation is applied

to the corresponding pair of mark lists, resulting in the mark-data pair shown in (25).

(25) Mark-data pair, Step 1.{ )

loser < winner marks(loser) marks (winner)

b~d: (V).CV{C) < IV.CV.(C *pARSE*PARSE | *PARSE*FILL ONS

Now CD can be applied. The highest-ranked{jruncancelled loser mark—the only
one—is *RARSE. Themarks(winner) are checked to see if they are dominated RS2

The only winner mark is FiLL©O"S

, Which isot so dominated. CD thereforalls for
demotingFiLL Ons to the stratum immediatéglow RARSE. Since no such stratum currently

exists, it is created. The resulting hierarchy is (26).
(26) H = {FILLNUC PARSE, ONSET, NoCopA} > { FiLL O

This demotion is shown in tableau form in (27); recall that strata are separated by solid

vertical lines, whereas dotted vertical lines separate constraints in the same stratum; diagonal
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shadingdenotes markancellation. The uncancelled winner maris demoted to a (new)
stratumimmediatelybelow the stratuncontainingthe highest uncancelled winner mark *,
which now becomes a fatal violation *! rendering irrelevant the dominated vio&{which

is therefore greyed out).

(27) First Demotion

— T

Ons Ons

loser/winnerpair | FILLNYC | FrL MRSE | ONSET | NoCopa | FiLL

d =y 0OV.CV.(C) ®
b (V).CV.(C) *|

Now another loser/winner pair is selected. Suppose this id of (18):

(28) Mark-data pair for CD, Step 2( )

loser < winner mark§loser) marks (winner)

a~d V.CVC. < [OV.CV.(C) | *ONSET*NOCODA | *PARSE *FiLL©NS

There are no common marks to cancel. CD dalidinding the highest-ranked of the
marks(loser). Since QISET and NDCODA are bothtop ranked, either will do; choose, say,
ONSET. Next, each constraint with a marknirarks(winner) is checked to see if it dominated
by ONSET. FiLL ©"Sis so dominated. ARSE is not, however, so it is demoted to the stratum

immediately below that of 5ET.
(29) H = {FILLNUC ONSET, NoCopa} > { FILLO" PaRrsg

In tableau form, this demotion is shown in (30). (Both thieEd and NoCODA violations
are marked as fatal, *!, because both are highest-ranking violations of the loser: they belong

to the same stratum.)



Tesar & Smolensky Learnability in Optimality Theory 21

(30) Second Demotion

— T

loseriwinnerpair || FILLNY® | parse | ONsET | NoCopa | FILLO™S | ParsE
d =y OV.CV.(C) ® ®
a V.CVC. *| *|
Suppose now that the ndgser/winnerpair is:
(31) Mark-data pair for CD, Step 8 )
loser < winner mark§loser) marks (winner)

c~d i (V).CV.CC. < [V.CV.(C *paRsE* FLL NUC £ pARSE*FiLL ONS

Since the uncancelled loser markjtt \U¢  already dominates the uncancelled winner mark,
*FILL O™ no demotion results, arid is unchanged. This is an example otiamformative
pair, given its location in the sequence of training pairs: no demotions result.

Suppose the nektser/winnerpair results from a new input, /\VC/, with a new optimal

parse,[1V.(C).

(32) Mark-pair for CD, Step 4.4 )

loser < winner mark§winner) marks (winner)

VC) < [V.C) *PARSE*PARSE *paRSE*FILL ONS

Ons

Since thewinner mark FiLL isnot dominated by the loser mark ARSE, it must be

demoted to the stratum immediately belowrBE, resulting in the hierarchy in (33).

(33) H = {FILLNUC ONSET, NoCopA} > {PARSE} > { FILLO"§
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This demotion is shown in tableau (34).

(34) Third Demotion

loser/winnerpair | FILLNY® | OnsET | NoCopa | FL®® | parse | FiL©Ons
=y LV.(C) ®
(VC) *|

This stratified hierarchy generates precidely , using the interpretation of stratified

hierarchies described above. For any furkb&gr/winnerpairs that could be considerdaser
is guaranteed to have at least one uncancelled mark assessed by a constraint dominating all
the constraints assessing uncancelled markwinoer. Thus, no further data ilvbe

informative:L, has been learned.

2.4 Why Not Constraint Promotion?

Constraint Demotion is defined entirely terms ofdemotion all movement of
constraints is downward in theerarchy. One could reasonably ask if this is an arbitrary
choice; couldn’t the learner just as easily promote constraints towards the correct hierarchy?
The answer is no, and understanding why reveals the logic behind Constraint Demotion.

Consider the tableau shown in (35), wdtthe winner, and the loser. The ranking
depicted in the tableau makes the logemore harmonic than the winnel,so the learner

needs to change the hierarchy to achieve the desired eeslilt,
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(35) The Disjunction Problem

loseriwinnerpair | FLLO™ | onser | ALLNYC [ NoCopa | Parse

d v .OV.CV.(C) ® ®

a V.CVC. * *

There are no marks in common, so no marks are cancelled. For the winner to be more
harmonicthan the loser, at least one of the loser's marks must dominate all of the winner’s

marks. This relation is expressed in (36).
(36) (ONseTOr NoCopA) >> (FILL ©"Sand PARSE)

Demotion moves the constraints corresponding to the winner's marks. They are contained
in a conjunction &nd); thus, once the highest-ranked loser mariklestified, all of the

winner marks need to be dominated by it, so all constraints with winner marks are demoted
if not already so dominated. A hypothetipadmotionoperation would move the constraints
corresponding to theser'smarks up in the hierarchy. But notice that the loser’'s marks are
contained in aisjunction (or). It isn’'t clear which ofthe loser’s violabns should be
promoted; perhapall of them, or perhaps just one. Other daight requireone of the
constraints violated by the loser to be dominated by one of the constraints violated by the
winner. Thidoser/winnerpair gives no basis for choosing.

Disjunctionsare notoriouslyproblematic in general computational learning theory.
Constraint Demotion solvethie problem of detanglinghe disjunctions by demoting the
constraints violated by th&inner;there is no choice to bmade among themall must be
dominated. The choice between the constraints violated by the loser is made by picking the
one highest-ranked in the current hierarchy (in (35), that&@. Thus, if other data have

already determined thatNSET >> NOCODA, that relationship is preserved. The constraints
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violated by the winner are only demoted as far as necessary.

2.5 The Initial Hierarchy

The illustration of Constraint Demotiogiven in section 2.3 startedith initial
hierarchyH, , given in (24), having all the constraints in one stratum. Using that as an initial
hierarchy is convenient for demonstrating sdiorenal properties. By starting with all
constraints at the top, CD can be understood to demote constraints down toward their correct
position. Because Cbnly demotes constraints as far as necessary, a constraint never gets
demoted below itsargetposition, and Wl not be demoted further once reaching its target
position. The formal analysis in sections 6.1 to 6.3 asstifges  as the initial hierarchy, and

proves the following result, as (56, 65):

(37) Theorem: Correctness of Constraint Demotion
Starting with all constraints i@onranked in the top stratum, and applying Constraint
Demotion to informative positive evidence as long as such exgsprocess
converges on a stratified hierarchy such tidatotally-ranked refinements of that

hierarchy correctly account for the learning data.

However, usingH, ashe initial hierarchy isnot required by CD. In fact,
convergence is obtained no matter what initial hierarchy is used,; this is proven in section 6.4.
Because the data observed must all be consistent withtstaheanking, there is at least one
constraint never assessing an uncancelled winner mark: the constraint top-ranked in the total

ranking. It is possible to have more than one such constraint (there are thrge for ); there

will always be at least one. These constraints will never betddrfor any loser/winner pair,
because onlgonstraints assessing uncancelled winner marks for some loser/winner pair get
demoted. Therefore, these constraints stay put, no matter where thage in thenitial

hierarchy. IfH{, isused, these constrairdtart at theop and stay there-or otherinitial
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hierarchies, these constraints stay put, and the other constraints eventually get demoted below
them. This may leave some ‘empty strata’ at the top, but that is of no consequence; all that
matters is the relative position of the strata containing constraints.

This is not all there is to beaidabout thenitial hierarchy;the issue is discussed

further in section 4.3.

3. Selecting Competing Descriptions: Error-Driven Constraint Demotion
Having developed théasic principle ofConstraint Demotion, we now show how it can be

incorporated into a procedure for learning a grammar from correct structural descriptions.

3.1 Parsing Identifies Informative Competitors
CD operates on loser/winner pairs, deducing consequences for the grammar from the fact that
the winner must be more harmonic than the loser. The winner is a positive example provided
externally to the grammar learner: a parse of some input (e.g., an underlying lexical form in
phonology; a predicate/argument structure in syntax), a parse taken to be optimal according
to the target grammar. The loser is an alternative patde shme inputywhich must be
suboptimal withrespect to the targgtammar (unless it happens to have exdbtysame
marks as the winner). Presumably, such a loser must be generated by the grammar learner.
Whether the loser/winner pair is informative depends both on the winner and on the loser.
An antagonistic learning environment can of course always deny the learner necessary
informative examples, making learnitige targegrammar impossible. We consider this
uninteresting and assume that as longh&se remainpotentially informative positive
examples, these are noiliciously withheldfrom the learner(but see section 4.3 for a
discussion ofhe possibility of languages underdetermined by positive evidence). This still
leaves a challenging problehmwever. Having received a potentially informative positive

example, a winner, the learner needs to find a corresponding loser which forms an informative
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loser/winner pair. In principle, if the winner is a parse of an ihpien any of the competing
parses irser(l) can be chosen as the loser; typically, there are an infinity of choices, not all
of which will lead to an informative loser/winner pair. What is needegi®eedure for
chosing a loser which is guaranteed to be informative, as long as any such competitor exists.

The idea (Tesar, in press) is simple. Consider a learner in the midst of learning, with
current constraint hierarcliy. A positive exampl@ is received: the target parse of an input
I. Itis natural for the learner to compute her own pgfger I, optimal with respect to her
current hierarchyH. If thelearner’'s parse’ is different fromthe target parsp, learning
should be possible; otherwise, it isn’'t. For if the target paesguals the learner’s pargé
thenp is already optimal according #d; no demotion occurs, and fearning is possible.
On the othehand, if thetarget pars@ is not thelearner’'s parse’, thenp is suboptimal
according taH, and the hierarchy needs to be modified soplicomes optimal. In order
for a loser to be informative when paired witte winner p, the Harmony ofthe loser
(according to the currefi) must be greater than the Harmonyobnly then will demotion
occur to rendep more harmonic than the loser. The obvious choice for this lopériiss
of maximum Harmony according te(, and ifany competitor to thewvinner hashigher
Harmony according t@, thenp’ must. The type of parsing responsible for compyting
is production-directed parsing, as defined in (16): given an Irgnd a stratified hierarchy
H, compute the optimal parse(s)l ofThis is the problem solved in a number of general cases
by Tesar (1995b), as discussed in section 1.2.

If the optimal parsgiventhe currentH, loser, should happen to equal therrect
parsewinner, the execution of CD will produce no changéinno learning can occur. In
fact, CD need be executed only when there is a mismatch between the correct parse and the
optimal parse assigned bye current rankingThis is anerror-driven learning algorithm

(Wexler andCulicover 1980). Each observed parse is compared with a computed parse of
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the input. If the two parses match, no error occurs, and so no learning takes place. If the two
parses differthe error is attributed tthe current hypothesized ranking, and so CD is used

to adjust the hypothesized ranking. The resulting algorithm is ¢alted-Driven Constraint
Demotion(EDCD).

(38) The Error-Driven Constraint Demotion Algorithm (EDCD)
Given a hierarchyH and a sePositiveDataof grammatical structural descriptions.
For each descriptiowinnerin PositiveData
Setloserto be the optimal description assignedHbyo I, the underlying form of
winner.
If loseris identical towinner, keep3;
Else:
e apply Mark Cancellation, gettingnarks (loser), marks (winner))
e apply Constraint Demotion tan@rks (loser), marks(winner)) andH

® adopt the new hierarchy resulting from demotion as the current hierarchy

This algorithm demonstrates that using the familiar strategy of error-driven learning does not
require inviolableconstraints or independentiyaluableparameters. Becau§¥ptimality
Theory is defined by means of optimizatien;ors aredefined withrespect to the relative
Harmony of several ¢ine structural descriptions, rather than particular diagnosteria
applied to an isolated parse. Constraint Demotionmaptishes learning precisely on the

basis of the comparison of entire structural descripfions.

3.2 Data Complexity: The Amount of Data Required to Learn the Grammar
The data complexity of a learning algorithnthe amount of data thateds to be
supplied to the algorithm in order to ensure that it learns the correct grammar. For EDCD,

an opportunityfor progress towards the corrggammar is presented evdime anerror
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occurs (a mismatch between a positive datum and the corresponding parse which is optimal
with respect to the current hypothesized grammar). Any such error results in a demotion, and
the convergence results ensure that each demotion bidpypothesizegrammar ever
closer to thecorrectgrammar. Therefore, it is convenient to measla@complexity in
terms of themaximumnumber oferrors that could occur before therrectgrammar is
reached.

With EDCD, an error can result in the demotion of one or several constraints, each
being demoted down one or more strata. The minimum amount of progress resulting from a
single error is the demotion of one constraint down one stratum. The worst-case data
complexity thus amounts to the maximum distance between a possible starting hierarchy and
a possiblgargethierarchy to be learned, where the distance between the two hierarchies is
measured in terms of one-stratum demotions of constraints. The maximum possible distance
betweentwo stratified hierarchies iBI(N-1), whereN is thenumber of constraints in the
grammar; this then e maximumnumber oferrorsmade prior tdearningthe correct

hierarchy. This result is proved in the appendix as (74):

(39) Theorem: Computational complexity of Constraint Demotion
Starting with an arbitrarynitial hierarchy,the number of informative loser/winner
pairs required fokearning is amostN(N-1), whereN = number of constraints in

Con

The significance of this result is perhaps best illustratezbhyparing it to the number
of possiblegrammars. Given thanytargetgrammar is consistent with at leastetotal
ranking of the constraints, the number of possible grammars is the number of possible total
rankingsN!. This number grows very quickly as a function of the number of constiints

and if the amount of data required fearning scaled witlthe number of possibl¢otal
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rankings, it would be cause for concern indeed. Fortunately, the data complexity just given
for EDCD is quite reasonable in iggaling. Infact, it doesnot takemany universal
constraints to give a drastic difference between the data complexity of EDCD and the number
of total rankings: whei=10, the EDCD dataomplexity is90, while the number oftotal
rankings isover 3.6million. With 20constraints, the EDCD data complexity is 380, while

the number of totatankings isover 2 billion billion (2.43 x 148 ). This reveals the
restrictiveness of thetructureimposed by Optimalityheory on the space of grammars: a
learner carefficiently home in on anytargetgrammar, managing an explosively-sized
grammar space with quite modest data requents by fully exploiting the inherent structure
provided by strict domination.

The power provided by strict domination for learning can be further underscored by
considering that CD uses as its working hypothesis space not the space of total rankings, but
the space of all stratified hierarchies, which is much larger and contains all total rankings as
a subset. The disparity between the size of the working hypothesis space and the actual data

requirements is that much greater.

4. Issues for the Constraint Demotion Approach
We close by considering a number of implications and open questions arising from the

learnability results of the preceding two sections.

4.1 Learnability and Total Ranking

The discussion in thisaperassumes thahelearningdata are generated by a UG-
allowed grammar, which, by (14), is a totally-ranked hierarchy. When learning is successful,
the learned stratified hierarchy, evemdit totally ranked, iompletely consistent with at
least onetotal ranking. Theempirical basidor (14) is the broadinding that correct

typologies of adult languages do not seem to result when constraints are permitted to form
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stratified hierarchies. Generally speaking, allowsanstraints to have equsinking
produces empirically problematic constraint interactions.

From the learnability perspective, the formal resgilten for Error-Driven Constraint
Demotion depend critically on the assumption that the target language is given by a totally-
ranked hierarchy. This is a consequence of a principle implicit in EDCD. This principle states
that the learner should assume that the observed description is optimal for the corresponding
input, and that it is thenly optimal description. This principle resembtgber proposed
learning principles, such as Clark’s Principle@dntrast (E.Clark 1987) and/Nexler's
Uniqueness Principle (Wexler 1981). EDCD makes vigorous use of this learning principle.

In fact, it ispossiblefor thealgorithm to rurendlessly whepresented datom a
non-totally-ranked stratified hierarchyzor theminimalillustration, suppose that there are
two constraint€ andC’, and two candidate pargesndp’, wherep violates onlyC andp’
violatesonly C'. SupposeC andC’ are bothinitially top-ranked. Assumethe target
hierarchy also rank€ andC’ in the samestratum, and that thievo candidates tie for
optimality. Bothp andp’ will therefore be separately observed as positive evidence. When
p is observed, EDCD will assume tt@mpetitorp’ to be suboptimal, since its marks are not
identical to those gd. EDCD will therefore demot€, the constraint violated by the observed
optimal parsep, belowC’. Later, when the other optimal candidates observed, EDCD
will reverse the rankings of the constraints. Thlscontinue endlessly, and learning will fail
to converge. Notice that this instability occaven though the initial hierarchy correctly had
the constraints in the same stratum. Not only does the algorithm fail to converge on the non-
fully-ranked target hierarchy: when given the correct hierarchy, in time EDCD rejects it.

In understanding this somewhat unusstate ofaffairs, it is important t@arefully
distinguishthe space dfargetgrammars being learned fraime space dfiypotheses being

explored during learning. It is often assumed in learnability theory that language acquisition
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operates withirthe limts imposed byUG: that hypothesizegrammarsare alwaydully-

specified grammars admitted by UG. This has the advantage that learning can never terminate
in a UG-disallowed state; such a learning process makes it obvious why adult grammars lie
in the UG-allowed spacelhe learning approach presented here provides a different kind of
answer: UG-disallowed grammars containedhia workinghypothesis space cannot be
learned by the learning algorithm. Consistent with a theme of recent work in Computational
Learning Theorye.g., Pittand Valiant1988,Kearns and Vazirani 1994; for a tutorial, see
Haussler 1996), learning a membethad target space is greatly aided by allowing a learning
algorithm to search within a larger space: the space of stratified hierarchies.

How does the learner get to a totally-ranked hierarchy? At the endpoint of learning,
the hierarchymaynot befully ranked. The result is a stratified hierarchy with the property
that itcould be further refined into typically several fully-ranked hierarchies, each consistent
with all thelearningdata. Lacking any evidence on which to do,the learning algorithm
does notommit to anysuch refinement; it isrror-driven, and no further errors are made.

In human terms, one could suppose that by adulthood, a learner hashelearned
stratified hierarchy and refined it to a fully-ranked hierarchy. itoisclear thatanything
depends upon which fully-ranked hierarchy is chosen.

It is currently an open question whetltiee Constraint Demotion approach can be
extended to learn languages generated by strakifexdrchies in generahcludingthose
which are inconsistent withny total ranking. In such languages, some inputs/ have
multiple optimaloutputs that do no¢arn identical sets of marks. In sucketdting, the
learner’s primary data might consist of a set of underlying forms, and foradaith pptimal
structural descriptions, should there be more than one. Much of the analysis might extend to
this setting, but thalgorithm would need to be extended with an additional step to handle

pairsopt; ~ opt, of tying optima. In this step, each markmarks(opt;) must be placed in
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the samestratum as a corresponding markmarks(opt,): a somewhat delicatausiness.
Indeed, achieving ties for optimality between forms which incur different marks is always a
delicate matter. It appedikely to us thatearning languages which awt derive from a
totally-ranked hierarchy is in general much more difficult than the totally-ranked case. If this
is indeed true, demands of learnability could ultimatghfaen a fundamental principle of OT:
UG admits only (adult) grammars defined by totally-ranked hierarchies.

While learnability appears to beglematic in the face of ties for optimality between
outputs withdifferentmarks (impossible given a totally-ranked hierarchy), recall that EDCD
has no problems whatever coping with tiesdptimality betweeroutputswith the same

marks (possible given a totally-ranked hierarchy).

4.2 lterative Approaches to Learning Hidden Structure
The learner can’'t deduce the hidden structure for overt structures until she has learned
the grammar; but she can't learn the grammar until she has the hidden structure. This feature
of the language learning problem is challenging, but not at all special to language, as it turns
out. Even in such mundane contexts as a computer learning to recognize handwritten digits,
this same problem arises. This problem has been extensiudigd in the learning theory
literature (often under theame ‘unsupervised learning,.g.,Hinton 1989). Much of the
work has addressed automatic speech recognition (mostly under the name ‘Hidden Markov
Models,’” e.g.Baum and Petri@966,Bahl, Jelinek and Mrcer 1983, Brown &dl. 1990);
these speech systems are simultaneously learninggl) tihe acoustic data they are ‘hearing’
is an example of, say, the phone [f], and (i) what makes for a good acoustic realization of [f].
This problem has been addressed, in theory and practice, with a fair degree of success.
The formulation is approximately as follows. A parametrized system is assumed which, given
the values of hidden variables, produces the probabilities\kat variables will have various

values: this is themodelof the relation between hidden and overt variables. Given the hidden
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variables constituting [flvithin a sequence gfhones, such a model woulpecify the
probabilities odifferent acoustic values in the portion of the acoustic stream corresponding
to thehidden[f]. The learning system needs to ledhne correct model parameters so that
hidden [f]s wil be associated with theorrect acoustiwvalues, athe same time as it is

learning to classify all acoustic tokens of [f] as being of type [f].

(40) The Problem of Learning Hidden Structure

Given a set of overt learning data (e.g., acoustic data)

a parametrized model whiaklates overinformation to hidderstructure
(e.g., abstract phones)

Find: a set of model parameters such that the hidden structure assigned to the data
by the model makethe overt data mogtrobable (this model ‘best
explains’ the data)

There is a class of algorithms for solving this type of problem, the Expectation-Maximization
or EM algorithms (Dempster, Laird aRlibin1977; for recent tutorial introductions, see
Nadas and Mercer 199§molensky1996a). Thebasic idea common to this class of

algorithms may be characterized as in (41).

(41) EM-type solution to the Problem of Learning Hidden Structure
0. Adopt some initial model of the relation between hidden and overt structure; this
can be a random set of parameter values, or a more informed initial guess.
1. Given this initialmodel, and given somevert learningdata, find the hidden
structure that makes the observed data most probable according to the model.
Hypothesizing this hidden structure provides the best explanation of the overt
data, assuming the current (generally poor) model.

2. Usingthe hiddenstructureassigned to the overt data, find new model parameter
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values that make the complete (hidden and overt) data most probable.

3. Now that thanodel has been changed, itlvassign different (generally more
correct) hidden structure to the original overt data. The algorithm executes
steps 1 and 2 repeatediyntil the values ofthe model andthe hidden
structure converge (stop changing).

This kind of algorithm can bproven to converge for aumber of classes of statistical
learning problems.

In Optimality Theory, the Harmony of structural descriptions is computed from the
grammar non-numerically, and there is no probabilistic interpretation of Harmony. But the
approach in (41) coulstill be applied. Whether this iterative algorithm can be proven to
converge, whether it converges in a reasonable time—thesstsrissuesareall open
research problems #te moment.But initial positive experimental results learnisgess
systems (Tesar, in preparation b) and extensive previous experience with EM-type algorithms
in related applications suggettat there are reasonable prospects for good performance, as
long as algorithms can be devised for the subproblems in steps 1 and 2 of (41) which satisfy
a ‘correctness’ criterion: thegive the respectiveorrectanswers when givettne correct
respective input. In other wordsiyenthe correcimodel, thecorrecthiddenstructure is
assignedhe overt dataand vice-versa. The corresponding OT subprobkm@precisely
those addressed by the three processes in (16): production-direcsaty,peobust
interpretive parsing, and grammar learning. Significant progress has already been made on
parsing algorithms. The work in this paper completely satisfies this criterion for learning the
grammar: EDCD finds the correct ranking, given the correct full descriptions (including the

hidden structure).

4.3 Implications of Richness of the Base

A relevant central principle of Optimality Theory not yet considered is this:
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(42) Richness of the base: The set of possible inputs to the grammars of all languages is the
same. The grammatical inventories of languages are defined as the forms appearing
in the descriptions which emerge from the grammar when it is fed the universal set of

all possible inputs.

Thus, systematic differences in inventories arise from diffezenstraint rankings, not
different inputs. The lexicon of a language is a sample from the inventory of possible inputs;
all properties of the lexicon arise indirectly from the grammar, which delimits the inventory
from which the lexicon idrawn. There are nmorphemestructure constraints on
phonological inputs; no lexical parameter which determines whether a language. has

As pointedout to us by Aan Prince(1993),richness ofthe basehassignificant
implicationsfor the explanatory role of the grammar, in particular the relationship between
thefaithfulnessconstraints (e.g.,ARSE and FiLL) and thestructural constraints. Recall that
the faithfulness constraints require the overt structure of a description to match the underlying
form. In order for marked structures to appeaovert structures, one or more of the
faithfulnessconstraints must dominate the structural constraints violated bydheed
structure. Conversely, a language in which a maskedturenever appears is properly
explained by having the relevant structural constraints dominate the faithfulness constraints.

Consider CVT. A language like; , all of whose lexical items surface as sequences

.CV. syllables, has a systematimperty. This cannot beexplained by stipulating special
structure in the lexon, namely, a lexicon of underlying forms consisting only of CV
sequences. It igot sufficient thatthe grammaryield .CV. outputswhen given only CV
inputs: it must give .CV. outputs even when the input is, say, /VCVC/, as shown in (6). This
can only be achieved by rankings in which faithfulnessstraints are dominated by the

structural constraints. (8) is such a ranking.
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What kind of evidence could ledlde learner to select tledrrecthierarchy? One
possibility is grammatical alternations. Alternations occur precisely because the underlying
form of an item isaltered in some environmentsander tosatisfy high-rankedtructural
constraints, at the expense of faithfulness. When learning the underlying forms, the learner
could use the alternations as evidence that faithfulness constraints are dominated.

Another proposal, suggested by Prince, is that the initial ranking has the faithfulness
constraints lower-ranked than the structural constraints. The idhed &ructural constraints
will only be demoted below thé&ithfulnessconstraints in response to the appearance of
marked forms in observeaert structuresThis proposal isimilar inspirit to the Subset
Principle (Angluin 1978, Berwick 1986, Pinker 1986, Wexler and Manzini 1987). Because
.CV. gsyllables are unmarked, i.e., they violate no structural constraints, all languages include
them in their syllable structure inventory; other, marked, syllable structures may or may not
appear in the inventory. Starting tfethfulnessconstraints belowsyllable structure
constraints mearsarting with the s@ailest syllablanventory: onlythe unmarkedyllable.

If positive evidence ipresented showing that marksyllablesmust also be allowed, the
constraint violations ofhe markedsyllables willforce demotions of structural constraints
below faithfulness so that underlyisgructures like /CVC/ can surface as .CVC. But if no
positive evidence is provided for admitting marlsgtlables intathe inventory, thenitial,
smallest, inventory will remain.

One notable advantage of the latter proposal is that it accords well with recent work
in child phonological aquisition (Demuth 1995, Gnanadesilé®@b, Levelt 1995). This work
has argued that a range of empirical generalizations concerning phonological acquisition can
be modelled bgonstraint rerankingThis work proceed$rom two assumptions:(a) the
child’s input is the correct adult form; (b) the initial ranking is one in which the faithfulness

constraints are dominated by the structural constraints. (For further discussion of the relation
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of these assumptions to the learnability theory developed here, see Smolensky 1996bc.)

4.4 Learning Underlying Forms

One aspect ocquisitionnot yet discussed is acquisition thfe underlying forms
contained in théexical entries. According to the principle of richness of the base (42), the
set of possible underlying forms is universal; since we are assuming here that knowledge of
universals need not be learned, in a sense there is no learning prolpessibleunderlying
forms. For interesting aspects of syntax, thigretty much all thaineed be said. In OT
analyses of grammatical voice systems (Legendre, Raymond and Smolensky 1993), inversion
(Grimshaw 1993, to appeawh-questions (Billings and Rudin 1994; Legendre et al. 1995,
Ackema and Neeleman, press; LegendréSmolensky and Wilson, ipress), and null
subjects (Grimshaw and Samek-Lodovid95, Samek-Lodovici1995, Grimshaw and
Samek-Lodovicil996), the set ofinderlying forms is universal, arall cros-linguistic
variation arises fronthe grammar: the constrairgnking isall thatneed be learned. The
inputs in these syntactic analyses are all some kind of predicate/argument structure, the kind
of semanticstructure thathas often beertaken asavailable tothe syntacticlearner
independently of the overt data (e.g., Hamburger and Wexler 1973).

In phonology, however, there is nearly always an additional layer to the question of
the underlying forms. While it is as true of phonology as of syntax that richness of the base
entails a universal input set, there is the further question of which of the universally available
inputs is paired with particular morphemes: the problem of learning the language-dependent
underlying forms of morphemés.

This problem was addressed in P&S:89, where the following principle was developed:

(43) Lexicon Optimization: Suppose given an overt strugitaed a grammar. Consider

all structural descriptions (@il inputs) withovert partequal top; let the one with
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maximal Harmony b, a parse of some inplut Thenl is assigned as the underlying

form of .’

The principle of Lexicion Optimizatiocasts thdearning of underlying forms as an
optimization problem. This permitdie problem to be approached with optimization
strategies similar to those already proposed here for the learning of the constraint rankings.
An iterative approach woulidvolve an algorithm whicltcomputes theptimal underlying
forms given the current ranking, and then ukesehypothesized underlying forms when
computing the hypothesized interpretive parses of overt learning data; these parses are then

used to determine a new ranking, and the process repeats until convergence.

4.5 Parametric Independence and Linguistic Explanation

It can be instructive to compare tlearningapproach presented here with recent
learnabilitywork conducted within the Principles and Parameters (P&P) framework. In the
P&P framework, cross-linguistic variation is accounted for by a set of parameters, where a
specific grammar is determined liying each parameter to one of pessible values.
Because OT and P&P both use a finite space of possible grammars, the correct grammar in
either framework can be found, in principle, by brute-force enumeration of the space of
possible grammar®.

Two types of learnability research witl&P are useful as contrasts. The first is the
Cue Learning approachhis is exemplified byoresher andaye (1990),which adopts a
well-defined parametrized space of grammars fdmated part of linguistic phenomena,
metrical stress, and analyzes it in great detail. The goal of the analysis is to identify, for each
setting of each parameter, some surface patt&neg that is diagnostic for that parameter
setting. The learner then monitors overt data looking for these cues, sometimes in a particular
order. Dresher andaye’scues areentirely specific to theiparticular parametrisystem.

A modification to the parameter system could invalidate some of the proposed cues, requiring
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that new ones be soughfny attempt toapply cuelearning toother areas olfinguistic
phenomena essentially start from scratch; the effort will be dictated entirely by the details of
the chosen particular analysis of the phenomena.

A quite different tack is represented in the work of Gibson and Wexler (1994). They
propose a learning algorithm, the Triggering Learning Algorithm (TLA) which can be applied
to any instance of the general class of P&P theories. TLA is a form of error-driven random
search. In response to an error, a parameter is selected at random and its value is changed,;
if the change renders the in@nalyzablethe new parameter setting is kept. The possible
success ofhe algorithm is analyzed iterms of theexistence of “triggers.” A trigger is a
datum which indicatethe appropriatealuefor a specificparameter. The learner is not
assumed to bendowed with prior knowledge of the triggers, asssumed with cues;
success depends upon the learner cataky guessing the right parameter in response to an
error on a trigger, so that the parameter is set properly. This approach uses a hypothesized
grammar as a kind of bladdox, issuingaccept/reject judgements owmert structures, but
nothing more.

A related algorithm makes even less use of the grammar. The algorithm of Niyogi and
Berwick (1993) responds to errors Bipping parameters randomly, regardless of the
resulting (un)analyzabilityThe algorithm usethe grammar only tadetect errors. It is of
course possible to apply algorithms resemblingse to OT grammar spac@s fact,
Pulleyblank and Turkel (in press) have already formulated and studied a ‘Constraint-Ranking
Triggering Learning Algorithm’). Indeed, any of a number of generic search algorithms could
be applied to the space of OT grammars (e.geyank and Turkel 1995 have also applied
a genetic algorithm to learning OT grammars).

These approaches lkearnability analysis withithe P&P theory either: (i) use the

structure of garticular substantive theory, or (ii) make no use of the structure of the theory
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beyond its ability taccept/reject overt structures. HEpproach advocated in this paper falls

in between these two extremes, taking advantage of structure (strict domination of violable
constraints) provided by tlgrammaticatheory, but not restricted &y particular set of
linguistic phenomena (e.g., metrical stress, or even phonology).

It is significant that arigger providesinformation about thevalue of asingle
parameter, rather than relationships between the values of several parameters. This property
is further reinforced by a pposed constraint on learnirtge Single ValueConstraint (R.

Clark 1990,Gibson and Wexlet994):successive hypotheses considered by a learner may
differ by the value of atmost one parameter. The result is fleatnabilityconcerns in the

P&P framework favor parametendich are independenthey interact with eacbther as

little aspossible, so that the effects of each parameter setting can be distinguished from the
effects of the other parameters. In fact, this property of independence has been proposed as
a principle for grammars (Wexler and Manzini 1987). Unfortunately, this results in a conflict
between the goals of learnability, whielvor independent parameters with restricted effects,

and the goals dinguistic theory,which favor parameters with wide-ranging effects and
greater explanatory power (see Safir 1987 for a discussion of this conflict).

Optimality Theorymay provide the opportunity fothis conflict to be avoided. In
Optimality Theory, interaction between constraint)@t only possiblebut explanatorily
crucial. Cross-linguistic variation is explained not by variation in the substance of individual
constraints, but by variation in the relative ranking of the same constraints. Cross-linguistic
variation is thusonly possible tothe extent that constraints interact. The Constraint
Demotion learning algorithmot only tolerates constraint interaction, but is baseaein
upon it. Informative data provide information not about one constraint in isolation, but about
the results of interaction between constraints. Constraimtdh have wide-ranging effects

benefit learnability. Tus the results presented here provide evidence tliptimality
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Theory, linguistic explanation ardarnabilitywork togetherthey both favorinteracting
constraints with wide-ranging effects and explanatory power.

This attractive feature arises fromme fact thatOptimality Theory defines
grammaticality interms of optimization over violable constraint$his centralprinciple
makes constraint interaction theaimexplanatory mechanism. It provides tihaplicit
negative data used by Constraint Demopoecisely because it defines grammaticality in
terms of the comparison of candidate descriptions, rather than in termssuoiitttare of
each cadidate description in isolation. Constraint Demotion proceeds by comparing the
constraint violations assessed candidate structural descripiibiss.makes constraint
interaction the basis for learning.

By makingconstraint interaction the foundation of bditiguistic explanation and
learning, Optimality Theory creates the opportunity for the full alignment of these two goals.
The discovery of sets of constraints which interact strongly in ways that participate in diverse
linguistic phenomeneepresents progress for both theoretegllanation andearnability.

Clearly, this is a desirable property for a theoretical framework.

5. Summary and Conclusions

This paper advocates an approach to langlesgring in whichthe grammar and
analyses ofhe observed data are simultaneously iteratively approximated via optimization.
This approach is motivated part bysimilarities towork in statistical and computational
learning theory. The approach is fundamentally based on the structure of Optimality Theory,
in particular the definition of grammaticality in terms of optimization over violable constraints,
and the resolution of conflicting constraints via strict domination.

The algorithm presented, Error-Driven Constraint Demotion, solves a critical part of
the learning problem asonstrued by the proposed approach. EDCé2rdangles the

constraint interactions ténd a constraint rankingnaking each othe given structural
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descriptions optimal. The success of the algorithm on this task is guaranteed; the correctness
is a theorem. Further, the algorithm succeeds with quite modest time and data requirements,
in the face of the possibly huge number of possitedn grammars. These modest resource
requirementscontribute significantly tathe overall goal of alearnability account with
requirements realistic for that of a human child. The formal properties are cause for optimism
that formal resultsnay beobtained forother parts of th@verall problem of language
learning, stronger formal results than previously obtained within any linguistic framework.
EDCD succeeds by exploitirtge implicit negative evidence maadwailable by the
structure of Optimality Theory. Because a description is grammatical only in virtue of being
more harmonic than all of its competitors, the learner may select informative competitors for
use as negative evidencBecause it uses thitructureinherent inthe Optimality Theory
framework, the algorithm is informed by the linguistic theory, without being parochial to any
proposed substantive theory of a particular grammatical module. EDCD not only tolerates
but thrives on constraint interaction, the primary explanatory device of the framework. Thus,
an opportunity is now available for greater theoretical synergy in simultaneously meeting the

demands of language learnability and those of linguistic explanation.

6. Appendix: Correctness and Data Complexity

The formal analysis dError-Driven Constraint Demotiolearning proceeds as follows. A
languagd. is presumedwhich isgenerated by some total ranking. Section 6.1 sets up the
basic machinery of stratified constraint hierarchies. Section 6.2 identifies, for any language
L, a distinguished stratified hierarchy whiglnerates it, thearget hierarchy Section 6.3
definesConstraint Demotion. The case wheie constraints arenitially top-ranked is
analyzed first, and CD is shown to converge tot#ligethierarchy. A distance metric
between hierarchies is defined, and it is shown that CD monotonically reduces the distance

between the working hypothesis hierarchy and the target, decreasing the distance by at least
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one unit for eachnformative example. Themaximumnumber of informative examples
needed folearning isthus bounded by the distance betweenittii@l hierarchyand the

target. Section 6.4 extends the results to arbitrary initial constraint hierarchies. Section 6.5
demonstrates the adequacy of production-directed parsing for selecting competitors, proving
that Error-Driven Constraint Demotionilwconverge to a hierarchy consistent with all

positive data presented.
6.1 Stratified Hierarchies

(44) Def. A stratumis a set of constraints. gtratified hierarchyis a linearly ordered set of
strata which partition the universal constraints. A hierarchy distinguishes one stratum
as the top stratum. Each stratum other than the top stratum is immediately dominated
by exactly one other stratum. Thap stratumimmediatelydominates the second
stratum, which immediately dominates the third stratum, and so forth.

(45) Def. Atotal rankingis a stratified hierarchy where each stratum contains precisely one

constraint.

(46) Def. A constraintC, is said to dominate constrdlat , den6Gted C,>> hietarchy

H if the stratum containing, dominates the stratum contai@iing  in hierafchy

(47) Def. Theoffsetof a constrain€ in a hierarchyH is the number of strata that dominate
the stratum containing. C isin a lower stratumn H; than in}, if the offset of
in H; is greater than i, C isin the same stratuim H; and}{, if it has the same

offset in both.

(48) Def. A constraint hierarch{{; h-dominatesH, if every constraint is in the same or a

lower stratum irH, than if;

(49) Def. A constraint hierarch(, is calledefinemenof H, if every domination relation
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C > C' of H, is preserved ifH,
(50) Def. H, denotes the stratified hierarchy with all of the constraints in the top stratum.

(51) Lemma H, h-dominates all hierarchies.

Proof H; h-dominates itself, because h-doation is reflexive (h-domination is satisfied by
constraints that are in the same stratum in both hierarchies). Consider some constraint
C in some hierarch§{. C is either in theop stratum ofH, and thus in the same
stratum as itH, , or it is in some lower straturtofand thus in a lower stratum than

in Hy. ThereforeHy h-dominates all hierarchi€s.
6.2 The Target Stratified Hierarchy

(52) Def. Theh-dominant target stratified hierarchgr simply the ‘target,” for a language
L generated by a totahnking, is denoted, , anddefined as follows.The top
stratum of the targetontains preciselythose constraintsvhich never assess
uncancelled marks tany optimalstructural description ih. The second stratum
consists of precisely those constraints which assess uncancelled marks only to optimal
parses relative to competitors which are assessed at least one uncancelled mark by a
constraint in theop stratum. Each stratum consistspoéciselythose constraints
which (a) cannot occur higher in the target, and (b) only assess uncancelled marks to
optimal parses relative to competitors assessed an uncancelled mark by at least one

constraint ranked higher in the target.

(53) Lemma For anyL generated by a total rankingf;,  exists and is unique.

Proof Existence follows fronthe definition, andthe assumption thét is generated by at
least one totatanking ofthe constraints. Th®p stratum ofH; is guaranteed to
contain at least the constraint rankeidhest inthe totalranking. Among the

constraintsnot placed in theop stratum ofH; , one dominatedl the remaining
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others in the totatanking, and is thus guaranteed to meet the requirements for
placement in the second stratum. The sawgie,| applied to subsequent strata, shows
that all of the constraints will be placed in a straturjn

Uniqueness is guaranteed because a constraint cannot meet the requirements
for placement in more thaane stratum in thénierarchy, because meeting the

requirements for one stratum automatically disqualifies it for any lower sffhta.

(54) Lemma Each constrain€ with offsetn>0 inH; for a language generated btotal
ranking has the following property. There must exist an optimal descripioer
with a competing suboptimal descriptimser such thatC assesses an uncancelled
mark towinner, loseris assessed an uncancelled mark by a cons@aiptwith offset
preciselyn-1, andoseris not assessed any uncancelled marks by any constraints with
offset less than-1.

Proof Consider some constraifif, ~ with off$t0 in targetH; . Suppose, to the contrary,
that no such paloserwinnerexists forC,, . Recall that {f,, assesses an uncancelled
mark to an optimal description relative to some subopteoalpetitor, it must be
dominated by somether constraintvhich assesses an uncancelled mark to the
suboptimalcompetitor, for otherwise theptimal description wouleshot be more
harmonic, and the correct language would not be generated.

One possibility is thaf,, never assesses an uncancelled mark to any optimal
description. But then it would have offset Gy  , contradicting the assumption that
it has offset greater than O.

The other possibility is that for anyinnerassessed an uncancelled mark by
Crelative to soméoser, loseris assessed an uncancelled mark by a constraint with
offset smaller than-1. But thenC,; could be placed one stratum highéfjin , with

resulting offsen-1, and the resulting hierarchy would generate the same language,
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contradicting the fact that by definition every constraint is ranked as high as possible
in3 .
Hence the supposition must be false, and an appropriate pair mustexist.
(55) Theorem For any language generated by a total rankiriy;, ~ generate®(] also has
the property that each constraint is ranked as high agfgghat is;H; h-dominates
every total ranking{" which generatek.
Proof Consider some descriptiovinnerin L, and any competitdoserwith non-identical
marks. Ifwinnerhas no uncancelled marks, it is more harmonic lser. If winner

has an uncancelled mark, then its corresponding constraint must be domirdted in
by some constraint assessing an uncancelled méokep by the definition ofH; .

SoH, generates.

For the second part, consider a total ranKifigvhich generates L.

Consider a constrairit with offset O ifH’. C must not assess an uncancelled
mark to any optimatlescription in the language; otherwis€, would not generate
the language. Therefor€ must have offset O th(; . It follows th@ts offset inJH;
is < C's offset inH’, as both are 0.

Assume that each constraint with offset in H' is in thesame or higher
stratum intH; . Consider the constraii, ; with offsetn+1 in H'. For any pair of
an optimal descriptiowinnerwith a suboptimal competitdoser, if C,,,; assesses an
uncancelledmark to winner, loser must be assessed an uncancelled mark by a
constraintC with offset< nin H’ (that is,C > C, ., in H"); otherwise H{' would not
generate the language. By hypothesis, any constraint with effsetH' has offset
< ninH, . ThereforeC, , has offsek n+1inH| .

By mathematical induction, every constraintHn is in thesame or higher

stratum ingH; . It follows directly that every constraint is in the same or lower stratum
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in H' than inH, . Therefore, targét;,  h-dominai¢s O

(56) Corollary Every total ranking which is a refinementléf  generhtes

Proof By the definition ofH; (52), for every loser/winner pair af, each uncancelled
winner mark is dominated, with respectip  , byuanancelled loser mark. By the
definition of refinement(49), any refinement of{; preservesll such domination

relations ofH; . Therefore, any refinement which is a total ranking genérafds
6.3 Constraint Demotion

(57) Def. The mark cancellation procedure, MarkCamoalkgloser), markgwinner)), is:
For each occurrence of*in bothmarkgloser) andmarkgwinner)
Remove that occurrence offrom both lists

Return the lists asr(arks(loser), marks(winner))

(58) Def. The constraint demotion procedure, Gd(ks (loser), marks(winner)),H), is:
SetH' toH
Find the constrain€, with a mark marks(loser) ranked highest io{’
For eachC,, with a mark imarks(winner)
If C,does not dominat€,, M,
demoteC,, to the stratum immediately belGw

ReturnH’

(59) Lemma The hierarchy output by CD is h-dominated by the input hierarchy.
Proof Because constraint demotion only demotes caings, each constraint is in either the

same or lower stratum in the output hierarchy than it was in the input hier&ichy.

(60) Lemma If the input hierarchy h-dominat#§ , so does the output hierarchy.

Proof This holds because Clill never demote a constraint lower than necessaryC|,et
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be some constraint demoted by CD. Then there is a mark-datenpéis(loser),

marks (winner)) requiring thatC,, be dominated by one of the constraints assessing
uncancelled marks tiwser. Let C, be the onevith the snallest offset (highest
ranked) inH, the inputhierarchy, and led denote its offset. BgssumptionH h-
dominatesH; , s&; i, has offsetn. Thus, every constraint assessing an
uncancelled mark ttmser must have offset n. ThereforeC,, must have offset at
leastn+1 in H, . CD demote<,, to the stratummediatelybelow the one
containingC, , s&,, has offset1 in the resulting hierarchy. Thus,, has offset in
the output hierarchy less than or equal to its offsef in  , guaranteeing that the output

hierarchy h-dominate®( (J

(61) Def. Aninformative pairfor ahierarchyH’ is a mark-data pathat, when given as
input to CD along withH’, causes at least one demotion to occur. The property of
being informative is jointly determined by the mark-data pair and the hierarchy being

evaluated.

(62) Def. Theh-distancebetween a hierarchijt; and a hieraréiy  h-dominated by
is the sum, over all constrairs of the difference between the offsetin H; and

in 3H,.

(63) Lemma Suppose the inptierarchy h-dominate®( . Thedistancebetween the
output hierarchy antl; is decreased by at least one (from the h-distance between the
input hierarchy and{, ) for each demotion.

Proof By lemma (59), the inputierarchy h-dominatethe outputhierarchy. Let C be a
constraint that is demoted, with offsein the input hierarchy, offset in the output
hierarchy, and offsdtin 3, . C is demoted, so™>n. By lemma(60), the output

hierarchy h-dominatel(; , $em>n. Therefore,t(- m) < (t- n), so the contribution
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of C to h-distance is smaller for the output hierarchy. Thus, the output hierarchy h-

distance is at least one less for each constraint demaked.

(64) Lemma Let N be thenumber of constraints. The h-distance friotn ~ Ho cannot
exceed ¥A{-1)N.

Proof By lemma (51);H, h-dominates every hierarchy, and therefore must h-dothipate
The greatest-distance \il be when3H, is a totally ranked hierarchy. The furthest
constraint from the top stratum will be the one in the bo#itwatum, which has offset
(N-1). The next lowest constraint has off$¢t2), and so forth. Thus, the h-distance
will be:

(N-1) + (N-2) +...+1+0
which is precisely ¥A-1)N. O

(65) Theorem Starting withH, and repeatedly presenting CD with mark-data pairs, the
target hierarch§H; is converged upon after at most-£N informative pairs.

Proof By lemma (63), each informative pair reduces the h-distancddgsttone. Therefore
the targethierarchy is converged upon after a number of informative pairs that is at
most the h-distance betwegfyy  andtbmget. Lemma(64) guarantees that this

distance is at most M(1)N. O

6.4 Extension to Arbitrary Initial Hierarchies

Hg here denotes some arbitrary initial hierarchy, kuatnotes the maximal offset i, (one

less than the number of strata, since the offset of the top stratum is zero). A slight elaboration
of CD is made: if the last constraint in a stratum gets demoted, for bookkeeping purposes the
empty stratum is retained in tingerarchy. That way, all the constraintsvhich are not
demoted willhave their offsefstratum number) unaffected (emtyatacanoccur when

starting with an arbitrarynitial hierarchy,but notwhen starting withall constraints top-
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ranked).

With an arbitraryinitial hierarchy the targehierarchyH, isnot theexact goal of
learning. Instead, it is used define a new hierarchy{#  which Cpproaches and can
never go beyond. As before, this bound on demotion makes it possible to compute a limit to

the number of demotions possible before a correct solution is reached.
(66) Def. The offset of constrair@ in hierarchy}H is denoted/(C,H).

(67) Def. Thelower bounding hierarchyor L, H* is the stratified hierarchy in which the
first K strata arempty, and then a copy 8f,  runs from the stratum with offset
down. That is, the offset of any constrainin {* isK more than its offset ifr| :

v(C,H™) =K + v(C,H)

(68) Def. During the operation of the CD algorithm, 2tdenote the h-distance (62)
between thealgorithm’s current stratifiedhierarchy H and the lowetbounding
hierarchyH* :

D = ¥ [V(C,HP) - v(C,H)]

(69) Lemma For each loser/winngrair ofL in which *C is an uncancelled winner matk,
is dominated ir{; by som&’ such that € is an uncancelled loser mark.
Proof H, correctlyaccounts forall the data inL (55) so inany loser/winner pair each

uncancelled winner mark must be dominated by an uncancelled losermark.

(70) Lemma The CD algorithm never demot&selow the stratum with offse(C,H ).
Proof By induction onv(C,H, ), the offset ofC in I}, .

Let C be a constraint in th®p stratum ofH, , withw(C,H;) = 0. TherC

will never bedemoted by CD. For, by thaefinition of CD, such demotiomwould

require that € be an uncancelled mark of a winner, which is imposd$drea



Tesar & Smolensky Learnability in Optimality Theory 51

constraint in the top stratum®f, . Thus for each consttawmith v(C,3H ) = 0,C
is never demoted by CD, and remains in whatever stratum it happens to ocgpy in
The lowest stratum if{, has offd€tso a constraint with v(C,3H; ) = 0 ends up
where it starts, in a stratum with offset at mést0 =K + v(C,H, ) = v(C,H™). This
establishes the base case for the induction.

Now for the inductive step we assume that for all constraintgh v(C,3 )
<k, the CD algorithm never demotéelow offsetv(C,H*). LetC be a constraint
with v(C,H; ) = k. By Lemma(69), for each loser/winner pair in whichC*is an
uncancelledvinner mark,C is dominated inH; by som&’ such that €’ is an
uncancelled loser mark. This implies thathas a lower offset thabin 3H, , and it
follows thatv(C’,H; ) <k. Thus, by thenductive hypothesisC’ is demoted to a
stratum no lower than

V(€ HH = K+ v(C H) <K +k-1=vCH - 1.

Each timeC is demoted (due to an error otoaer/winner pair in which€ is an
uncancelled winner mark), it is demoted to just below the highest stratum containing
aC’ such that € is an uncancelled loser mark. We are guaranteed by induction that
such aC' is to be found among the tepC,H™) - 1 strata, s& cannot be demoted

below stratunv(C,H ™). And C can’tstart below this stratum either, sineéC,H ¥

> K, and no constraint starts lower than This completes the inductive step.

(71) Lemma D can never go negativéd monotonically decreases during the execution
of CD.

Proof That D is never negative noiwllows immediately sincall the terms in the sum
defining it are non-negative, by Lemma (70). That D monotonically decreases during
the execution of CD is obvious, since CD only demotes constraints, which can only

decrease OJ
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(72) Theorem CD converges to a hierarchy generatingfter no more thah(N-1)
informative examples.

Proof By Lemma (71), th@umber of demotions can’t excetet initial value ofD: each
demotion decreas&sby at least 1, anD can never go negative. How large can the
initial value ofD be? In the worst case, the final hierarchy is totally-ranked and the
initial hierarchy is the exact inverse of the final hierarchy. In this &asé\-1, and
the initially-top-ranked constraint must be demot&ds&ata, the constraibelow
it must be demoted R(-1) strata,and soon, with the initially lowest-ranked
constraint not being demoted at all, and ending up top-ranked. The total number of
strata passed throudb, in this worst case is thus twice the corresponding sum in the
case where all constraints are initially top-ranked (64):

2K + 2(K-1) + - + 0= 2(N-1) + 2N-2) + - + 0
= 2[(N-1) + (N-2) + -~ + 0] = 2[N(N-1)/2] =N(N-1)
Atfter the last demotion, at latest aftéfN-1) informative examples, the fact
that there are no more demotions means that there are no more remaining informative
examples. Ifthe hierarchy didnot generateL, then there would exist further
informative examples, and by assumptibe learner would receive them and make

further demotionsd
6.5 Error-Driven Constraint Demotion

(73) Def. The Error-Driven Constraint Demotion algorithm ED®D§itiveData H), is:
For each descriptiowinnerin PositiveData
Setloserto be theoptimal description assigned By to I, theunderlying
form of winner.

If loseris identical towinner, keep3;
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Else:
e apply Mark Cancellation, gettingnarks (loser), marks (winner))
e apply Constraint Demotion tan@rks (loser), marks(winner)) andH{

® adopt the new hierarchy resulting from demotion as the current hierarchy

(74) Theorem Error-Driven Constraint Demotion converges to a hierarchy consistent with
all positive evidence fronk, and converges after at mds$(N-1) informative
examples.

Proof The theorem follows directly from theorem (72), and the fact that, for any observed
winner, if the learner's hypothesized hierarcges noffind the winner optimal,
production-directed parsing will prade a competitor guaranteed to result in at least
one demotion when CD is appliedl

Theorem (74) states that EDCD converges tditaarchy consistent withll positive
evidence front,” rather than “a hierarchy generating for the following reason: if different
grammars have subset relations, wtbeelanguage generated by arammar is a strict

subset of the language generated by another, then EDCD, when given positive evidence from
a subset languagmay converge on a superset language, consistentaNithe paitive
evidence but nogenerating theame language. Tleitcomemaydepend on the starting
hierarchy, among other factors; see section 4.3. This subset sensitivity is a consequence of
the error-driven nature of EDC&mbined with only positive evidencetlife appropriate
loser/winnerpairs were obtained, the Constraint Demotion principle itself, properly applied,
would guarantee convergence to the (correct) subset language. For further discussion, see

Smolensky 1996c¢.
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1. Even a UG with only 20 binary parameters admits over a million grammars.

2. The Rrseand L constraints defined here constitute the parsef/fill model of faithfulness

in OT. The parse/fill model is usedr&S, and in much of the OT literature. More recently,

an alternative conception @ithfulness has beeproposed, the correspondencoedel
(McCarthy and Princd995). The btinctions betweerthe two are irrelevant to the
learnability work described in this paper; the sargalte hold for OT grammars adopting the
correspondence model of faithfulness.

3. Iftwo candidates are assessed exactly the same set of marks by the constraints, then they
are equally harmonic (regardless of the constraint ranking). If they tie as the most harmonic

candidates for an input, then the two outputs are both optimal, with the interpretation of free
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alternation.a ~ b denotes thaa andb have equal Harmony. In practice, it is rather rare to

have more than one optimal output for an input.

4. Determining that this candidate is optimal requires demonstrating that it is more harmonic

thanany of the infinitely many competing candidates: see P&S:87.3 for one technique.

5. There is a choice to be madeskactlyhow to apply this approach to a set of observed,
optimal structural descriptions, resulting in two variations. Because applying CD to a single
mark-data pair doesot ensure that the observed parse (tl@ner) is yet optimal with
respect to all candidates (not just the loser), the learner could re-parse the input according to
the new constraint ranking. If the resulting parse is different from the winner, the new parse
may be used to create a new mark-data pair, to which CD is applied. This process could be
repeated untithe learner’s hierarchy selectse winner asthe optimal description. This
allowsthe learner te@xtract more information out of a single winner, at the cost of greater
processing dedicated to each winner. The dedigom is whether or not to repeatedly apply

parsing and CD to a single winner.

6. Andfuture OT work orsyntax islikely to take onsyntactic properties déxical items,

such as argument structure, where related acquisition issues may be expected to arise.

7. The formulation of P&S is slightly different: only underlying forms whaptimally surface

as are considered. In our versiat, structures which surface @sare considered, because

we want to use lexicon optimization as part of a learning process; when the current grammar
is incorrect, there may well be no underlying forms which optimally surfape d$ius our
formulation of lexicon optimization is dbust’ in thesame sense asur formulation of
interpretive parsing: whethere is nogrammaticaloption, themaximal-Harmony (but

ungrammatical) structure is used nonetheless.

8. This conclusion assum@sr both OT and P&P) thanough information is available to

the learner to permibvert structures to bevaluated against a particular hypothesized
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grammar. Since the lexicon is unbounded, this enumeration approach is not even in principle
applicable to the acquisition of lexical information such as phonological underlying forms or
syntactic argument structure.

9. Under the normal definitions of trigger, a single datum can be a trigger for more than one

parameter, but is such independently. In such a case, the datum would not be interpreted as

expressing any relationship between the values of the two parameters.
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