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Abstract

A central claim of Optimality Theory is that grammars may differ only in how conflicts among

universal well-formedness constraints are resolved:  a grammar is precisely a means of

resolving such conflicts via a strict priority ranking of constraints.  It is shown here how this

theory of Universal Grammar yields a highly general Constraint Demotion principle for

grammar learning. The resulting learning procedure specifically exploits the grammatical

structure of Optimality Theory, independent of the content of substantive constraints defining

any given grammatical module. The learning problem is decomposed and formal results are

presented for a central subproblem, deducing the constraint ranking particular to a target

language, given structural descriptions of positive examples and knowledge of universal

grammatical elements. Despite the potentially large size of the space of possible grammars,

the structure imposed on this space by Optimality Theory allows efficient convergence to a

correct grammar.  Implications are discussed for learning from overt data only, learnability

of partially-ranked constraint hierarchies, and the initial state.  It is argued that Optimality

Theory promotes a goal which, while generally desired, has been surprising elusive:

confluence of the demands of more effective learnability and deeper linguistic explanation.



How exactly does a theory of grammar bear on questions of learnability? Restrictions on what

counts as a possible human language can restrict the search space of the learner.  But this is

a coarse observation: alone it says nothing about how data may be brought to bear on the

problem, and further, the number of possible languages predicted by most linguistic theories

is extremely large.   It would clearly be a desirable result if the nature of the restrictions1

imposed by a theory of grammar could contribute further to language learnability.

The central claim of this paper is that the character of the restrictions imposed by

Optimality Theory (Prince and Smolensky 1991, 1993) have demonstrable and significant

consequences for central questions of learnability.  Optimality Theory explains linguistic

phenomena through the complex interaction of violable constraints.  The main results of this

paper demonstrate that those constraint interactions are nevertheless restricted in a way that

permits the correct grammar to be inferred from grammatical structural descriptions.  These

results are theorems, based on a formal analysis of the Optimality Theory framework; proofs

of the theorems are contained in an appendix.  The results have two important properties.

First, they derive from central principles of the Optimality Theory framework.  Second, they

are nevertheless independent of the details of any substantive analysis of particular

phenomena.  The results apply equally to phonology, syntax, and any other domain admitting

an Optimality Theoretic analysis.  Thus, these theorems provide a learnability measure of the

restrictiveness inherent in Optimality Theory’s account of cross-linguistic variation per se:

constraint reranking.

The structure of the paper is as follows.  Section 1 formulates the Optimality

Theoretic learning problem we address.  Section 2 addresses this problem by developing the

principle of Constraint Demotion, which is incorporated into an error-driven learning

procedure in section 3.  Section 4 takes up some issues and open questions raised by

Constraint Demotion, and section 5 concludes.  Section 6 is an appendix containing the

formal definitions, theorems, and proofs.
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1.  Learnability and Optimality Theory 

Optimality Theory (henceforth, ‘OT’) defines grammaticality by optimization over violable

constraints.  The defining reference is Prince and Smolensky 1993 (abbreviated ‘P&S’ here).

Section 1.1 provides the necessary OT background, while section 1.2 outlines the approach

to language learnability proposed here, including a decomposition of the overall problem; the

results of this paper solve the subproblem involving direct modification of the grammar.

1.1  Optimality Theory

In this section, we present the basics of OT as a series of general principles, each exemplified

within the Basic CV Syllable Theory of P&S.

1.1.1  Constraints and Their Violation

(1)  Grammars specify functions.

A grammar is a specification of a function which assigns to each input a unique

structural description or output.  (A grammar per se does not provide an algorithm

for computing this function, e.g., by sequential derivation.)

In Basic CV Syllable Theory (henceforth, ‘CVT’), an input is a string of Cs and Vs,

e.g., /VCVC/.  An output is a parse of the string into syllables, denoted as follows:

[
F

[
F

(2) a. .V.CVC. =  V]  CVC]

b. +V,.CV.+C, = V  CV] C[
F

c. +V,.CV.C~. = V  CV]  C~][
F

[
F

´ ´

d. .~V.CV.+C, =  ~V]  CV] C[
F

[
F

(These four forms will be referred to frequently in the paper, and will be consistently labeled

a–d.)
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Output a is an onsetless open syllable followed by a closed syllable; periods denote

the boundaries of syllables (F).  Output b contains only one, open, syllable. The initial V and

final C of the input are not parsed into syllable structure, as notated by the angle brackets +,.

These segments exemplify underparsing, and are not phonetically realized, so b is

‘pronounced’ simply as .CV.  The form .CV. is the overt form contained in b.  Parse c

consists of a pair of open syllables, in which the nucleus of the second syllable is not filled by

an input segment.  This empty nucleus is notated ~, and exemplifies overparsing.  The´

phonetic interpretation of this empty nucleus is an epenthetic vowel.  Thus c has .CV.CV. as

its overt form.  As in b, the initial V of the input is unparsed in c.  Parse d is also a pair of

open syllables (phonetically, .CV.CV.), but this time it is the onset of the first syllable which

is unfilled (notated ~; phonetically, an epenthetic consonant), while the final C is unparsed.

(3)  Gen:  Universal Grammar provides a function Gen which, given any input I, generates

Gen(I), the set of candidate structural descriptions for I.

The input I is an identified substructure contained within each of its candidate outputs in

Gen(I).  The domain of Gen implicitly defines the space of possible inputs.

In CVT, for any input I, the candidate outputs in Gen(I) consist in all possible parsings

of the string into syllables, including the possible over- and underparsing structures

exemplified above in (b–d).  All syllables are assumed to contain a nucleus position, with

optional preceding onset and following coda positions.  CVT adopts the simplifying

assumption (true of many languages) that the syllable positions onset and coda may each

contain at most one C, and the nucleus position may contain at most one V.  The four

candidates of /VCVC/ in (2) are only illustrative of the full set Gen(/VCVC/).  Since the

possibilities of overparsing are unlimited, Gen(/VCVC/) in fact contains an infinite number

of candidates.
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The next principle identifies the formal character of substantive grammatical

principles.

(4) Con: Universal Grammar provides a set Con of universal well-formedness constraints.

The constraints in Con evaluate the candidate outputs for a given input in parallel (i.e.,

simultaneously).  Given a candidate output, each constraint assesses a multi-set of marks,

where each mark corresponds to one violation of the constraint.  The collection of all marks

assessed a candidate parse p is denoted marks(p).  A mark assessed by a constraint ÷ is

denoted *÷.  A parse a is more marked than a parse b with respect to ÷ iff ÷ assesses more

marks to a than to b. (The theory recognizes the notions more- and less-marked, but not

absolute numerical levels of markedness.)

The CVT constraints are given in (5).

(5) Basic CV Syllable Theory Constraints

ONSET Syllables have onsets.

NOCODA Syllables do not have codas.

PARSE Underlying (input) material is parsed into syllable structure.

Nucleus positions are filled with underlying material.FILL Nuc

Onset positions (when present) are filled with underlying material.FILL Ons

These constraints can be illustrated with the candidate outputs in (a–d).  The marks incurred

by these candidates are summarized in table (6).
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(6)  Constraint Tableau for 

Candidates ONSET NOCODA PARSEFILL Nuc FILL Ons

   /VCVC/ ÷

L   d. *  *.~V.CV.+C,

b. +V,.CV.+C, * *

c. +V,.CV.C~.´ * *  

a. .V.CVC. * *

This is an OT constraint tableau.  The competing candidates are shown in the left

column.  The other columns are for the universal constraints, each indicated by the label at

the top of the column.  Constraint violations are indicated with ‘*’, one for each violation.

Candidate a = .V.CVC. violates ONSET in its first syllable and NOCODA in its second;

the remaining constraints are satisfied.  The single mark which ONSET assesses .V.CVC. is

denoted *ONSET.  This candidate is a faithful parse: it involves neither under- nor

overparsing, and therefore satisfies the faithfulness constraints PARSE and FILL .  By contrast,2

b = +V,.CV.+C, violates PARSE, and more than once.  This tableau will be further explained

below.

1.1.2  Optimality and Harmonic Ordering

The central notion of optimality now makes its appearance.  The idea is that by

examining the marks assigned by the universal constraints to all the candidate outputs for a

given input, we can find the least marked, or optimal, one; the only well-formed parse

assigned by the grammar to the input is the optimal one (or optimal ones, if several parses

should tie for optimality). The relevant notion of ‘least marked’ is not the simplistic one of

just counting numbers of violations.  Rather, in a given language, different constraints have
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different strengths or priorities: they are not all equal in force.  When a choice must be made

between satisfying one constraint or another, the stronger must take priority.  The result is

that the weaker will be violated in a well-formed structural description.

(7)  Constraint Ranking: a grammar ranks the universal constraints in a dominance

hierarchy.

When one constraint  dominates another constraint  in the hierarchy, the relation is÷1 ÷2

denoted   >>  .  The ranking defining a grammar is total: the hierarchy determines the÷1 ÷2

relative dominance of every pair of constraints:

  >>  >> þ >> ÷1 ÷2 ÷n

(8)  Harmonic Ordering: a grammar’s constraint ranking induces a harmonic ordering � of

all structural descriptions.  Two structures a and b are compared by identifying the

highest-ranked constraint ÷ with respect to which a and b are not equally marked: the

candidate which is less marked with respect to ÷ is the more harmonic, or the one

with higher Harmony (with respect to the given ranking).

a � b denotes that a is less harmonic than b.  The harmonic ordering � determines the relative

Harmony of every pair of candidates.  For a given input, the most harmonic of the candidate

outputs provided by Gen is the optimal candidate: it is the one assigned to the input by the

grammar.  Only this optimal candidate is well-formed; all less harmonic candidates are ill-

formed . 3

A formulation of harmonic ordering that will prove quite useful for learning involves

Mark Cancellation.  Consider a pair of competing candidates a and b, with corresponding

lists of violation marks marks(a) and marks(b).  Mark Cancellation is a process applied to a

pair of lists of marks, and it cancels violation marks in common to the two lists.  Thus, if a

constraint ÷ assesses one or more marks *÷ to both marks(a) and marks(b), an instance of
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*÷ is removed from each list, and the process is repeated until at most one of the lists still

contains a mark *÷.  (Note that if a and b are equally marked with respect to ÷, the two lists

contain equally many marks *÷, and all occurrences of *÷ are eventually removed.)  The

resulting lists of uncancelled marks are denoted marksN(a) and marksN(b).  If a mark *÷

remains in the uncancelled mark list of a, then a is more marked with respect to ÷.  If the

highest-ranked constraint assessing an uncancelled mark has a mark in marksN(a), then a � b:

this is the definition of harmonic ordering � in terms of mark cancellation. Mark cancellation

is indicated with diagonal shading in the tableau (9): one mark *PARSE cancels between the

first two candidates of (6), d and b, and one uncancelled mark *PARSE remains in marksN(b).

(9)  Mark Cancellation

Candidates ONSET NOCODA PARSEFILL Nuc FILL Ons

 d. .~V.CV.+C, * *

b. +V,.CV.+C, * *

Defining grammaticality via harmonic ordering has an important consequence:

(10)  Minimal Violation: the grammatical candidate minimally violates the constraints, relative

to the constraint ranking.

The constraints of UG are violable: they are potentially violated in well-formed structures.

Such violation is minimal, however, in the sense that the grammatical parse p of an input I

will best satisfy a constraint ÷, unless all candidates that fare better than p on ÷ also fare

worse than p on some constraint which is higher ranked than ÷.

Harmonic ordering can be illustrated with CVT by reexamining the tableau (6) under

the assumption that the universal constraints are ranked by a particular grammar, , with the

ranking given in (11). 
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FILL Nuc FILL Ons(11)  Constraint hierachy for : ONSET >> NOCODA >>  >> PARSE >> 

The constraints (and their columns) are ordered in (6) left-to-right, reflecting the hierarchy

in (11).  The candidates in this tableau have been listed in harmonic order, from highest to

lowest Harmony; the optimal candidate is marked manually .  Starting at the bottom of the4

tableau, a � c can be verified as follows.  The first step is to cancel common marks: here,

there are none.  The next step is to determine which candidate has the worst uncancelled

mark, i.e., most violates the most highly ranked constraint: it is a, which violates ONSET.

Therefore a is the less harmonic.  In determining that c � b, first cancel the common mark

*PARSE; c then earns the worst mark of the two, * .  When comparing b to d, oneFILL Nuc

*PARSE mark cancels, leaving marksN(b) = {*PARSE} and marksN(d) = {* }.  TheFILL Ons

worst mark is the uncancelled *PARSE incurred by b, so b � d.

 is a language in which all syllables have the overt form .CV.: onsets are required,

codas are forbidden.  In case of problematic inputs such as /VCVC/ where a faithful parse into

CV syllables is not possible, this language uses overparsing to provide missing onsets, and

underparsing to avoid codas (it is the language denoted  in P&S:§6.2.2.2).

Exchanging the two FILL  constraints in  gives the grammar :

FILL Ons FILL Nuc(12)  Constraint Hierachy for : ONSET >> NOCODA >>  >> PARSE >> 

Now the tableau corresponding to (6) becomes (13); the columns have been re-

ordered to reflect the constraint reranking, and the candidates have been re-ordered to reflect

the new harmonic ordering.
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(13)  Constraint Tableau for 

Candidates ONSET NOCODA PARSEFILL Ons FILL Nuc

   /VCVC/ ÷

L   c. *  *+V,.CV.C~.´

b. +V,.CV.+C, * *

d. .~V.CV.+C, * *  

a. .V.CVC. * *

Like , all syllables in  are CV; /VCVC/ gets syllabified differently, however. In ,

underparsing is used to avoid onsetless syllables, and overparsing to avoid codas (  is

P&S’s language ).

The relation between  and  illustrates a principle of Optimality Theory central

to learnability concerns:

(14)  Typology by Reranking

Systematic cross-linguistic variation is due entirely to variation in language-specific

rankings of the universal constraints in Con.  Analysis of the optimal forms arising

from all possible rankings of Con gives the typology of possible human languages.

Universal Grammar may impose restrictions on the possible rankings of Con.

Analysis of all rankings of the CVT constraints reveals a typology of basic CV syllable

structures that explains Jakobson’s typological generalizations (Jakobson 1962, Clements and

Keyser 1983): see P&S:§6.  In this typology, licit syllables may have required or optional

onsets, and, independently, forbidden or optional codas.

One further principle of OT will figure in our analysis of learnability, richness of the
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base. Discussion of this principle will be postponed until its point of relevance, section 4.3.

1.2  Decomposing the Learning Problem

The results presented in this paper address a particular subproblem of the overall

enterprise of language learnability.  That subproblem, and the corresponding results, are best

understood in the context of an overall approach to language learnability.  This section briefly

outlines that approach.  The nature of and motivation for the approach are further discussed

in section 4.2.

To begin, three types of linguistic entities must be distinguished:

(15)  Three Kinds of Linguistic Entities

Full structural descriptions: the candidate outputs of Gen, including overt structure

and input.

Overt structure: the part of a description directly accessible to the learner.

The grammar:  determines which structural descriptions are grammatical.

In terms of CVT, full structural descriptions are exemplified by the descriptions listed

in (2).  Overt structure is the part of a structural description that actually is realized

phonetically. For example, in b = +V,.CV.+C,, the overt structure is CV; the unparsed

segments +V, and +C, are not included.  Unparsed segments are present in the full structural

description, but not the overt structure.  The part of the grammar to be learned is the ranking

of the constraints, as exemplified in (11).

It is important to keep in mind that the grammar evaluates full structural descriptions;

it does not evaluate overt structure in isolation.  This is, of course, hardly novel to Optimality

Theory; it is fundamental to linguistic theory in general.  The general challenge of language

acquisition, under any linguistic theory, is that of inferring the correct grammar from overt

data, despite the gap between the two arising from the hidden elements of structural



11Tesar & Smolensky Learnability in Optimality Theory

descriptions, absent from overt data.

It is also important to distinguish three processes, each of which plays an important

role in the approach to language acquisition proposed here:

(16) Three Processes

Production-Directed Parsing: mapping an underlying form (input) to its optimal

description—given a grammar.

Robust Interpretive Parsing:  mapping an overt structure to its full structural

description, complete with all hidden structure—given a grammar.

Learning the Grammar:  determining a grammar from full grammatical descriptions.

Production-directed parsing is the computation of that structural description, among those

candidates produced by Gen containing a given input, which is optimal with respect to a given

ranking.  Production-directed parsing takes a part of a structural description, the underlying

form, and fills in the rest of the structure.  Robust interpretive parsing also takes a part of a

structural description and fills in the rest, but it starts with a different part, the overt structure.

Robust interpretive parsing is closer to what many readers probably associate with the word

“parsing.”  “Robustness” refers to the fact that an overt structure not generated by the

grammar currently held by the learner is not simply rejected: rather, it is assigned the most

harmonic structure possible.  The learner can, of course, tell that the assigned parse is not

grammatical by her current grammar (by comparing it to the description her grammar assigns

to the same underlying form); in fact, the learner will exploit that observation during learning.

Both production-directed parsing and robust interpretive parsing make use of the same

harmonic ordering of structural descriptions induced by the constraint ranking. They differ

in the part of the structure they start from: production-directed parsing starts with an

underlying form, and chooses among candidates with the same underlying form, while robust
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interpretive parsing starts with an overt structure, and chooses among candidates with the

same overt structure.

These entities and processes are all intimately connected, as schematically shown in

(17).

(17)  Decomposition of the Learning Problem

Any linguistic theory must ultimately be able to support procedures which are tractable

performance approximations to both parsing and learning.  Ideally, a grammatical theory

should provide sufficient structure so that procedures for both parsing and grammar learning

can be strongly shaped by grammatical principles.

In the approach to learning developed here, full structural descriptions bear not just

a logical relationship between overt structures and grammars: they also play an active role in

the learning process.  We propose that a language learner uses a grammar to interpret overt

forms by imposing on those overt forms the best structural descriptions, as determined by her

current ranking.  She then makes use of those descriptions in learning.

Specifically, we propose that a learner starts with an initial ranking of the constraints.

As overt forms are observed, the learner uses the currently hypothesized ranking to assign
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structural descriptions to those forms.  These hypothesized full structures are treated by the

grammar learning subsystem as the target parses to be assigned by the correct grammar: they

are used to change the hypothesized ranking, yielding a new grammar.  The new ranking is

then used to assign new full descriptions to overt forms.  This process continues, back and

forth, until the correct ranking is converged upon.  At that point, the ranking will assign the

correct structural descriptions to each of the overt structures, and the overt structures will

indicate that the ranking is correct, and should not be changed.

The process of computing optimal structural descriptions for underlying forms

(production-directed parsing) has already been addressed elsewhere.  Algorithms which are

provably correct for significant classes of OT grammars have been developed, based upon

dynamic programming (Tesar 1994, 1995ab, in press).  For positive initial results in applying

similar techniques to robust interpretive parsing, see Tesar, in preparation a.

At this point, we put aside the larger learning algorithm until section 4.2, for the

present paper is devoted to the subproblem in (17) labelled “grammar learning”:  inferring

constraint rankings from full structural descriptions. The next two sections develop an

algorithm for performing such inference.  This algorithm has a property important for the

success of the overall learning approach: when supplied with the correct structural

descriptions for a language, it is guaranteed to find the correct ranking.  Furthermore, the

number of structural descriptions required by the algorithm is quite modest, especially when

compared to the number of distinct rankings.

2.  Constraint Demotion

Optimality Theory is inherently comparative; the grammaticality of a structural

description is determined not in isolation, but with respect to competing candidates.

Therefore, the learner is not informed about the correct ranking by positive data in isolation;

the role of the competing candidates must be addressed.  This fact is not a liability, but an
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advantage: a comparative theory gives comparative structure to be exploited.  Each piece of

positive evidence, a grammatical structural description, brings with it a body of implicit

negative evidence in the form of the competing descriptions.  Given access to Gen and the

underlying form (contained in the given structural description), the learner has access to these

competitors.  Any competing candidate, along with the grammatical structure, determines a

data pair related to the correct ranking: the correct ranking must make the grammatical

structure more harmonic than the ungrammatical competitor.  Call the observed grammatical

structure the winner, and any competing structure a loser.  The challenge faced by the learner

is then, given a suitable set of such loser/winner pairs, to find a ranking such that each winner

is more harmonic than its corresponding loser.  Constraint Demotion solves this challenge,

by demoting the constraints violated by the winner down in the hierarhy so that they are

dominated by the constraints violated by the loser.  The main principle is presented more

precisely in this section, and an algorithm for learning constraint rankings from grammatical

structural descriptions is presented in section 3.

2.1  The Basic Idea

In our CV language ,  the winner for input /VCVC/ is .~V.CV.+C,.  Table (6)

gives the marks incurred by the winner (labelled d) and by three competing losers.  These may

be used to form three loser/winner pairs, as shown in (18).  A mark-data pair is the paired

lists of constraint violation marks for a loser/winner pair.

(18)  Mark-data pairs ( )

loser �   winner marks(loser) marks(winner)

a � d .V.CVC. �   .~V.CV.+C, *ONSET *NOCODA *PARSE *FILL Ons

b � d +V,.CV.+C, �   .~V.CV.+C, *PARSE *PARSE *PARSE *FILL Ons

c � d +V,.CV.C~. �   .~V.CV.+C, *PARSE * *PARSE *´ FILL Nuc FILL Ons
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To make contact with more familiar OT constraint tableaux, the information in (18)

will also be displayed in the format of (19).

(19)  Initial data

not-yet-ranked

loser/winner pairs PARSE ONSET NOCODAFILL Nuc FILL Ons

d T .~V.CV.+C, Ç Ç

a .V.CVC. * *

d T .~V.CV.+C, Ç ÇÇ

b +V,.CV.+C, * *

d T .~V.CV.+C, Ç ÇÇ

c +V,.CV.C~.´ * *

At this point, the constraints are unranked; the dotted vertical lines separating

constraints in (19) conveys that no relative ranking of adjacent constraints is intended.  The

winner is indicated with a T; L will denote the structure that is optimal according to the

current grammar, which may not be the same as the winner (the structure that is grammatical

in the target language).  The constraint violations of the winner, marks(winner), are dis-

tinguished by the symbol Ç.  Diagonal shading denotes mark cancellation, as in tableau (9).

Now in order that each loser be less harmonic than the winner, the marks incurred by

the former, marks(loser), must collectively be worse than marks(winner).  According to (8),

what this means more precisely is that loser must incur the worst uncancelled mark, compared

to winner.  This requires that uncancelled marks be identified, so the first step is to cancel the

common marks in (18).
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(20)  Mark-data pairs after cancellation ( )

loser/winner pairs marksN(loser) marksN(winner)

a � d .V.CVC. �   .~V.CV.+C, *ONSET *NOCODA *PARSE *FILL Ons

b � d +V,.CV.+C, �   .~V.CV.+C, *PARSE *PARSE *PARSE *FILL Ons

c � d +V,.CV.C~. �   .~V.CV.+C, *PARSE * * PARSE *´ FILL Nuc FILL Ons

The cancelled marks have been struck out.  Note that the cancellation operation which

transforms marks to marksN is defined only on pairs of sets of marks; e.g., *PARSE is

cancelled in the pairs b � d and c � d, but not in the pair a � d.  Note also that cancellation

of marks is done token-by-token: in the row b � d, one but not the other mark *PARSE in

marks(b) is cancelled.

The table (20) of mark-data after cancellation is the data on which Constraint

Demotion operates.  Another representation in tableau form is given in (19), where common

marks in each loser/winner pair of rows are indicated as ‘cancelled’ by diagonal shading.  This

table also reveals what successful learning must accomplish: the ranking of the constraints

must be adjusted so that, for each pair, all of the uncancelled winner marks Ç are dominated

by at least one loser mark *.  Using the standard tableau convention of positioning the

highest-ranked constraints to the left, the columns containing uncancelled Ç marks need to

be moved far enough to the right (down in the hierarchy) so that, for each pair, there is a

column (constraint) containing an uncancelled * (loser mark) which is further to the left

(dominant in the hierarchy) than all of the columns containing uncancelled Ç (winner marks).

The algorithm to accomplish this is based upon the principle in (21).

(21) The Principle of Constraint Demotion: for any constraint ÷ assessing an uncancelled

winner mark, if ÷ is not dominated by a constraint assessing an uncancelled loser

mark, demote ÷ to immediately below the highest-ranked constraint assessing an
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uncancelled loser mark.

Constraint Demotion works by demoting the constraints with uncancelled winner

marks down far enough in the hierarchy so that they are dominated by an uncancelled loser

mark, ensuring that each winner is more harmonic than its competing losers.

Notice that it is not necessary for all uncancelled loser marks to dominate all

uncancelled winner marks: one will suffice.  However, given more than one uncancelled loser

mark, it is often not immediately apparent which one needs to dominate the uncancelled

winner marks (the pair a � d above is such a case).  This is the challenge successfully

overcome by Constraint Demotion.

2.2  Stratified Domination Hierarchies

Optimality Theory grammars are defined by rankings in which the domination relation

between any two constraints is specified.  The learning algorithm, however, works with a

larger space of hypotheses, the space of stratified hierarchies.  A stratified domination

hierarchy has the form:

(22)  Stratified Domination Hierarchy

{ , , ..., } >> { , , ..., } >> ... >> { , , ..., }÷1 ÷2 ÷3 ÷4 ÷5 ÷6 ÷7 ÷8 ÷9

The constraints , , ...,  comprise the first stratum in the hierarchy:  they are not÷1 ÷2 ÷3

ranked with respect to one another, but they each dominate all the remaining constraints.

Similarly, the constraints , , ...,  comprise the second stratum: they are not ranked÷4 ÷5 ÷6

with respect to one another, but they each dominate all the constraints in the lower strata.

In tableaux, strata will be separated from each other by solid vertical lines, while constraints

within the same stratum will be separated by dotted lines, with no relative ranking implied.

The original notion of constraint ranking, in which a domination relation is specified

for every pair of candidates, can now be seen as a special case of the stratified hierarchy,
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where each stratum contains exactly one constraint.  That special case will be labeled here a

total ranking.  Henceforth, ‘hierarchy’ will mean stratified hierarchy;   when appropriate,

hierarchies will be explicitly qualified as ‘totally ranked.’

The definition of harmonic ordering (8) needs to be elaborated slightly for stratified

hierarchies.  When  and  are in the same stratum, two marks *  and *  are equally÷1 ÷2 ÷1 ÷2

weighted in the computation of Harmony.  In effect, all constraints in a single stratum are

collapsed together, and treated as though they were a single constraint, for the purposes of

determining the relative Harmony of candidates.  Minimal violation with respect to a stratum

is determined by the candidate incurring the smallest sum of violations assessed by all

constraints in the stratum.  The tableau in (23) gives a simple illustration.

÷1 ÷2 ÷3 ÷4(23)  Harmonic ordering with a stratified hierarchy:  >> { , } >> 

÷1 ÷2 ÷3 ÷4

p1 * ! *

p2 * * !

L p *3

p4 * * !

Here, all candidates are compared to the optimal one, p .  In this illustration, parses p  and3 2

p  violate different constraints which are in the same stratum of the hierarchy.  Therefore,3

these marks cannot decide between the candidates, and it is left to the lower-ranked constraint

to decide in favor of p .  Notice that candidate p  is still eliminated by the middle stratum3 4

because it incurs more than the minimal number of marks to constraints in the middle stratum.

(The symbol *! indicates a mark fatal in comparison with the optimal parse.)

With respect to the comparison of candidates, marks assessed by different constraints



L1

L1

19Tesar & Smolensky Learnability in Optimality Theory

in the same stratum can be thought of as ‘cancelling,’ because they do not decide between the

candidates.  It is crucial, though, that the marks not be cancelled for the purposes of learning.

The term Mark Cancellation, as used in the rest of this paper, should be understood to only

cancel marks assessed by the same constraint to competing candidates, independent of the

constraint hierarchy.

2.3  An Example: Basic CV Syllable Theory

Constraint Demotion (abbreviated CD) will now be illustrated using CVT; specifically,

with the target language  of (6,11).  The initial stratified hierarchy is set to

,0 FILL Nuc FILL Ons(24) , =  = { , , PARSE, ONSET, NOCODA}

Suppose that the first  loser/winner pair is b � d of (18).  Mark Cancellation is applied

to the corresponding pair of mark lists, resulting in the mark-data pair shown in (25).

(25)  Mark-data pair, Step 1 ( )

loser �    winner marksN(loser) marksN(winner)

b � d +V,.CV.+C, �   .~V.CV.+C, *PARSE *PARSE *PARSE *FILL Ons

Now CD can be applied.  The highest-ranked (in ,) uncancelled loser mark—the only

one—is *PARSE.  The marksN(winner) are checked to see if they are dominated by *PARSE.

The only winner mark is * , which is not so dominated.  CD therefore calls forFILL Ons

demoting  to the stratum immediately below PARSE.  Since no such stratum currentlyFILL Ons

exists, it is created.  The resulting hierarchy is (26).

FILL Nuc FILL Ons(26) , = { , PARSE, ONSET, NOCODA} >> { }

This demotion is shown in tableau form in (27); recall that strata are separated by solid

vertical lines, whereas dotted vertical lines separate constraints in the same stratum; diagonal
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shading denotes mark cancellation.  The uncancelled winner mark Ç is demoted to a (new)

stratum immediately below the stratum containing the highest uncancelled winner mark *,

which now becomes a fatal violation *! rendering irrelevant the dominated violation Ç (which

is therefore greyed out).

(27)  First Demotion

loser/winner pair PARSE ONSET NOCODAFILL Nuc FILL Ons

d LT.~V.CV.+C, ÇÇ ÇÇ

b +V,.CV.+C, * *!

Now another loser/winner pair is selected.  Suppose this is a � d of (18):

(28)  Mark-data pair for  CD, Step 2 ( )

loser �   winner marksN(loser) marksN(winner)

a � d .V.CVC. �   .~V.CV.+C, *ONSET *NOCODA *PARSE *FILL Ons

There are no common marks to cancel.  CD calls for finding the highest-ranked of the

marksN(loser). Since ONSET and NOCODA are both top ranked, either will do; choose, say,

ONSET.  Next, each constraint with a mark in marksN(winner) is checked to see if it dominated

by ONSET.   is so dominated.  PARSE is not, however, so it is demoted to the stratumFILL Ons

immediately below that of ONSET.

FILL Nuc FILL Ons(29) , = { , ONSET, NOCODA} >> { ,  PARSE}

In tableau form, this demotion is shown in (30).  (Both the ONSET and NOCODA violations

are marked as fatal, *!, because both are highest-ranking violations of the loser: they belong

to the same stratum.)
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(30)  Second Demotion

loser/winner pair ONSET NOCODA PARSEFILL Nuc FILL Ons

d LT.~V.CV.+C, ÇÇ ÇÇ

a V.CVC. *! *!

Suppose now that the next loser/winner pair is:

(31)  Mark-data pair for CD, Step 3 ( )

loser �   winner marksN(loser) marksN(winner)

c � d +V,.CV.C~. �   .~V.CV.+C, *PARSE * * PARSE *´ FILL Nuc FILL Ons

Since the uncancelled loser mark, *  already dominates the uncancelled winner mark,FILL Nuc

* , no demotion results, and , is unchanged.  This is an example of an uninformativeFILL Ons

pair, given its location in the sequence of training pairs: no demotions result.

Suppose the next loser/winner pair results from a new input, /VC/, with a new optimal

parse, .~V.+C,.

(32)  Mark-pair for CD, Step 4 ( )

loser �   winner marksN(winner) marksN(winner)

+VC, �   .~V.+C, *PARSE *PARSE *PARSE *FILL Ons

Since the winner mark *  is not dominated by the loser mark *PARSE, it must beFILL Ons

demoted to the stratum immediately below PARSE, resulting in the hierarchy in (33).

FILL Nuc FILL Ons(33) , = { , ONSET, NOCODA} >> {PARSE} >> { }
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This demotion is shown in tableau (34).

(34)  Third Demotion

loser/winner pair ONSET NOCODA PARSEFILL Nuc FILL Ons

LT .~V.+C, ÇÇ Ç

+VC, * *!

This stratified hierarchy generates precisely , using the interpretation of stratified

hierarchies described above. For any further loser/winner pairs that could be considered, loser

is guaranteed to have at least one uncancelled mark assessed by a constraint dominating all

the constraints assessing uncancelled marks to winner. Thus, no further data will be

informative:  has been learned.

2.4  Why Not Constraint Promotion?

Constraint Demotion is defined entirely in terms of demotion; all movement of

constraints is downward in the hierarchy.  One could reasonably ask if this is an arbitrary

choice; couldn’t the learner just as easily promote constraints towards the correct hierarchy?

The answer is no, and understanding why reveals the logic behind Constraint Demotion.

Consider the tableau shown in (35), with d the winner, and a the loser.  The ranking

depicted in the tableau makes the loser, a, more harmonic than the winner, d, so the learner

needs to change the hierarchy to achieve the desired result, a�d.
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(35) The Disjunction Problem

loser/winner pair ONSET NOCODA PARSEFILL Ons FILL Nuc

d T .~V.CV.+C, Ç Ç

a V.CVC. * *

There are no marks in common, so no marks are cancelled.  For the winner to be more

harmonic than the loser, at least one of the loser’s marks must dominate all of the winner’s

marks.  This relation is expressed in (36).

FILL Ons(36) (ONSET or NOCODA) >> (  and PARSE)

Demotion moves the constraints corresponding to the winner’s marks.  They are contained

in a conjunction (and); thus, once the highest-ranked loser mark is identified, all of the

winner marks need to be dominated by it, so all constraints with winner marks are demoted

if not already so dominated.  A hypothetical promotion operation would move the constraints

corresponding to the loser’s marks up in the hierarchy.  But notice that the loser’s marks are

contained in a disjunction (or).  It isn’t clear which of the loser’s violations should be

promoted; perhaps all of them, or perhaps just one.  Other data might require one of the

constraints violated by the loser to be dominated by one of the constraints violated by the

winner.  This loser/winner pair gives no basis for choosing.

Disjunctions are notoriously problematic in general computational learning theory.

Constraint Demotion solves the problem of detangling the disjunctions by demoting the

constraints violated by the winner; there is no choice to be made among them, all must be

dominated.  The choice between the constraints violated by the loser is made by picking the

one highest-ranked in the current hierarchy (in (35), that is ONSET). Thus, if other data have

already determined that ONSET >> NOCODA, that relationship is preserved.  The constraints
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violated by the winner are only demoted as far as necessary.

2.5  The Initial Hierarchy

The illustration of Constraint Demotion given in section 2.3 started with initial

hierarchy , given in (24), having all the constraints in one stratum.  Using that as an initial,0

hierarchy is convenient for demonstrating some formal properties.  By starting with all

constraints at the top, CD can be understood to demote constraints down toward their correct

position. Because CD only demotes constraints as far as necessary, a constraint never gets

demoted below its target position, and will not be demoted further once reaching its target

position.  The formal analysis in sections 6.1 to 6.3 assumes  as the initial hierarchy, and,0

proves the following result, as (56, 65):

(37)  Theorem:  Correctness of Constraint Demotion

Starting with all constraints in Con ranked in the top stratum, and applying Constraint

Demotion to informative positive evidence as long as such exists, the process

converges on a stratified hierarchy such that all totally-ranked refinements of that

hierarchy correctly account for the learning data.

However, using  as the initial hierarchy is not required by CD.  In fact,,0

convergence is obtained no matter what initial hierarchy is used; this is proven in section 6.4.

Because the data observed must all be consistent with some total ranking, there is at least one

constraint never assessing an uncancelled winner mark: the constraint top-ranked in the total

ranking.  It is possible to have more than one such constraint (there are three for ); there

will always be at least one.  These constraints will never be demoted for any loser/winner pair,

because only constraints assessing uncancelled winner marks for some loser/winner pair get

demoted.  Therefore, these constraints will stay put, no matter where they are in the initial

hierarchy.  If  is used, these constraints start at the top and stay there. For other initial,0
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hierarchies, these constraints stay put, and the other constraints eventually get demoted below

them.  This may leave some ‘empty strata’ at the top, but that is of no consequence; all that

matters is the relative position of the strata containing constraints.

This is not all there is to be said about the initial hierarchy; the issue is discussed

further in section 4.3.

3.  Selecting Competing Descriptions: Error-Driven Constraint Demotion

Having developed the basic principle of Constraint Demotion, we now show how it can be

incorporated into a procedure for learning a grammar from correct structural descriptions.

3.1  Parsing Identifies Informative Competitors

CD operates on loser/winner pairs, deducing consequences for the grammar from the fact that

the winner must be more harmonic than the loser.  The winner is a positive example provided

externally to the grammar learner: a parse of some input (e.g., an underlying lexical form in

phonology; a predicate/argument structure in syntax), a parse taken to be optimal according

to the target grammar.  The loser is an alternative parse of the same input, which must be

suboptimal with respect to the target grammar (unless it happens to have exactly the same

marks as the winner).  Presumably, such a loser must be generated by the grammar learner.

Whether the loser/winner pair is informative depends both on the winner and on the loser.

An antagonistic learning environment can of course always deny the learner necessary

informative examples, making learning the target grammar impossible.  We consider this

uninteresting and assume that as long as there remain potentially informative positive

examples, these are not maliciously withheld from the learner (but see section 4.3 for a

discussion of the possibility of languages underdetermined by positive evidence).  This still

leaves a challenging problem, however.  Having received a potentially informative positive

example, a winner, the learner needs to find a corresponding loser which forms an informative
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loser/winner pair.  In principle, if the winner is a parse of an input I, then any of the competing

parses in Gen(I) can be chosen as the loser; typically, there are an infinity of choices, not all

of which will lead to an informative loser/winner pair.  What is needed is a procedure for

chosing a loser which is guaranteed to be informative, as long as any such competitor exists.

The idea (Tesar, in press) is simple.  Consider a learner in the midst of learning, with

current constraint hierarchy ,.  A positive example p is received: the target parse of an input

I.  It is natural for the learner to compute her own parse pN for I, optimal with respect to her

current hierarchy ,.  If the learner’s parse pN is different from the target parse p, learning

should be possible; otherwise, it isn’t.  For if the target parse p equals the learner’s parse pN,

then p is already optimal according to ,; no demotion occurs, and no learning is possible.

On the other hand, if the target parse p is not the learner’s parse pN, then p is suboptimal

according to ,, and the hierarchy needs to be modified so that p becomes optimal.  In order

for a loser to be informative when paired with the winner p, the Harmony of the loser

(according to the current ,) must be greater than the Harmony of p: only then will demotion

occur to render p more harmonic than the loser.  The obvious choice for this loser is pN: it is

of maximum Harmony according to ,, and if any competitor to the winner has higher

Harmony according to ,, then pN must.  The type of parsing responsible for computing pN

is production-directed parsing, as defined in (16):  given an input I and a stratified hierarchy

,, compute the optimal parse(s) of I.  This is the problem solved in a number of general cases

by Tesar (1995b), as discussed in section 1.2.

If the optimal parse given the current ,, loser, should happen to equal the correct

parse winner, the execution of CD will produce no change in ,: no learning can occur.  In

fact, CD need be executed only when there is a mismatch between the correct parse and the

optimal parse assigned by the current ranking.  This is an error-driven learning algorithm

(Wexler and Culicover 1980).  Each observed parse is compared with a computed parse of
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the input.  If the two parses match, no error occurs, and so no learning takes place.  If the two

parses differ, the error is attributed to the current hypothesized ranking, and so CD is used

to adjust the hypothesized ranking.  The resulting algorithm is called Error-Driven Constraint

Demotion (EDCD).

(38) The Error-Driven Constraint Demotion Algorithm (EDCD)

Given: a hierarchy , and a set PositiveData of grammatical structural descriptions.

For each description winner in PositiveData:

Set loser to be the optimal description assigned by , to I, the underlying form of

winner.

If loser is identical to winner, keep ,;

Else:

! apply Mark Cancellation, getting (marksN(loser), marksN(winner))

! apply Constraint Demotion to (marksN(loser), marksN(winner)) and ,

! adopt the new hierarchy resulting from demotion as the current hierarchy

This algorithm demonstrates that using the familiar strategy of error-driven learning does not

require inviolable constraints or independently evaluable parameters.  Because Optimality

Theory is defined by means of optimization, errors are defined with respect to the relative

Harmony of several entire structural descriptions, rather than particular diagnostic criteria

applied to an isolated parse.  Constraint Demotion accomplishes learning precisely on the

basis of the comparison of entire structural descriptions.5

3.2  Data Complexity: The Amount of Data Required to Learn the Grammar

The data complexity of a learning algorithm is the amount of data that needs to be

supplied to the algorithm in order to ensure that it learns the correct grammar.  For EDCD,

an opportunity for progress towards the correct grammar is presented every time an error
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occurs (a mismatch between a positive datum and the corresponding parse which is optimal

with respect to the current hypothesized grammar).  Any such error results in a demotion, and

the convergence results ensure that each demotion brings the hypothesized grammar ever

closer to the correct grammar.  Therefore, it is convenient to measure data complexity in

terms of the maximum number of errors that could occur before the correct grammar is

reached.

With EDCD, an error can result in the demotion of one or several constraints, each

being demoted down one or more strata. The minimum amount of progress resulting from a

single error is the demotion of one constraint down one stratum.  The worst-case data

complexity thus amounts to the maximum distance between a possible starting hierarchy and

a possible target hierarchy to be learned, where the distance between the two hierarchies is

measured in terms of one-stratum demotions of constraints.  The maximum possible distance

between two stratified hierarchies is N(N&1), where N is the number of constraints in the

grammar; this then is the maximum number of errors made prior to learning the correct

hierarchy.  This result is proved in the appendix as (74):

(39)  Theorem:  Computational complexity of Constraint Demotion

Starting with an arbitrary initial hierarchy, the number of informative loser/winner

pairs required for learning is at most N(N&1), where N = number of constraints in

Con.

The significance of this result is perhaps best illustrated by comparing it to the number

of possible grammars.  Given that any target grammar is consistent with at least one total

ranking of the constraints, the number of possible grammars is the number of possible total

rankings, N!.  This number grows very quickly as a function of the number of constraints N,

and if the amount of data required for learning scaled with the number of possible total
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rankings, it would be cause for concern indeed.  Fortunately, the data complexity just given

for EDCD is quite reasonable in its scaling.  In fact, it does not take many universal

constraints to give a drastic difference between the data complexity of EDCD and the number

of total rankings: when N=10, the EDCD data complexity is 90, while the number of total

rankings is over 3.6 million.  With 20 constraints, the EDCD data complexity is 380, while

the number of total rankings is over 2 billion billion (2.43 × 10 ).  This reveals the18

restrictiveness of the structure imposed by Optimality Theory on the space of grammars: a

learner can efficiently home in on any target grammar, managing an explosively-sized

grammar space with quite modest data requirements by fully exploiting the inherent structure

provided by strict domination.

The power provided by strict domination for learning  can be further underscored by

considering that CD uses as its working hypothesis space not the space of total rankings, but

the space of all stratified hierarchies, which is much larger and contains all total rankings as

a subset.  The disparity between the size of the working hypothesis space and the actual data

requirements is that much greater.

4.  Issues for the Constraint Demotion Approach

We close by considering a number of implications and open questions arising from the

learnability results of the preceding two sections.

4.1  Learnability and Total Ranking

The discussion in this paper assumes that the learning data are generated by a UG-

allowed grammar, which, by (14), is a totally-ranked hierarchy.  When learning is successful,

the learned stratified hierarchy, even if not totally ranked, is completely consistent with at

least one total ranking.  The empirical basis for (14) is the broad finding that correct

typologies of adult languages do not seem to result when constraints are permitted to form
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stratified hierarchies.  Generally speaking, allowing constraints to have equal ranking

produces empirically problematic constraint interactions.

From the learnability perspective, the formal results given for Error-Driven Constraint

Demotion depend critically on the assumption that the target language is given by a totally-

ranked hierarchy.  This is a consequence of a principle implicit in EDCD.  This principle states

that the learner should assume that the observed description is optimal for the corresponding

input, and that it is the only optimal description.  This principle resembles other proposed

learning principles, such as Clark’s Principle of Contrast (E. Clark 1987) and Wexler’s

Uniqueness Principle (Wexler 1981).  EDCD makes vigorous use of this learning principle.

In fact, it is possible for the algorithm to run endlessly when presented data from a

non-totally-ranked stratified hierarchy.  For the minimal illustration, suppose that there are

two constraints ÷ and ÷N, and two candidate parses p and pN, where p violates only ÷ and pN

violates only ÷N.  Suppose ÷ and ÷N are both initially top-ranked.  Assume the target

hierarchy also ranks ÷ and ÷N in the same stratum, and that the two candidates tie for

optimality.  Both p and pN will therefore be separately observed as positive evidence.  When

p is observed, EDCD will assume the competitor pN to be suboptimal, since its marks are not

identical to those of p. EDCD will therefore demote ÷, the constraint violated by the observed

optimal parse p, below ÷N.  Later, when the other optimal candidate pN is observed, EDCD

will reverse the rankings of the constraints.  This will continue endlessly, and learning will fail

to converge.  Notice that this instability occurs even though the initial hierarchy correctly had

the constraints in the same stratum.  Not only does the algorithm fail to converge on the non-

fully-ranked target hierarchy: when given the correct hierarchy, in time EDCD rejects it.

In understanding this somewhat unusual state of affairs, it is important to carefully

distinguish the space of target grammars being learned from the space of hypotheses being

explored during learning.  It is often assumed in learnability theory that language acquisition
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operates within the limits imposed by UG: that hypothesized grammars are always fully-

specified grammars admitted by UG.  This has the advantage that learning can never terminate

in a UG-disallowed state; such a learning process makes it obvious why adult grammars lie

in the UG-allowed space.  The learning approach presented here provides a different kind of

answer: UG-disallowed grammars contained in the working hypothesis space cannot be

learned by the learning algorithm.  Consistent with a theme of recent work in Computational

Learning Theory (e.g., Pitt and Valiant 1988, Kearns and Vazirani 1994; for a tutorial, see

Haussler 1996), learning a member of the target space is greatly aided by allowing a learning

algorithm to search within a larger space: the space of stratified hierarchies.

How does the learner get to a totally-ranked hierarchy?  At the endpoint of learning,

the hierarchy may not be fully ranked.  The result is a stratified hierarchy with the property

that it could be further refined into typically several fully-ranked hierarchies, each consistent

with all the learning data.  Lacking any evidence on which to do so, the learning algorithm

does not commit to any such refinement; it is error-driven, and no further errors are made.

In human terms, one could suppose that by adulthood, a learner has taken the learned

stratified hierarchy and refined it to a fully-ranked hierarchy.  It is not clear that anything

depends upon which fully-ranked hierarchy is chosen.

It is currently an open question whether the Constraint Demotion approach can be

extended to learn languages generated by stratified hierarchies in general, including those

which are inconsistent with any total ranking.  In such languages, some inputs may have

multiple optimal outputs that do not earn identical sets of marks.  In such a setting, the

learner’s primary data might consist of a set of underlying forms, and for each, all its optimal

structural descriptions, should there be more than one.  Much of the analysis might extend to

this setting, but the algorithm would need to be extended with an additional step to handle

pairs opt  - opt  of tying optima.  In this step, each mark in marksN(opt ) must be placed in1 2 1
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the same stratum as a corresponding mark in marksN(opt ): a somewhat delicate business.2

Indeed, achieving ties for optimality between forms which incur different marks is always a

delicate matter.  It appears likely to us that learning languages which do not derive from a

totally-ranked hierarchy is in general much more difficult than the totally-ranked case.  If this

is indeed true, demands of learnability could ultimately explain a fundamental principle of OT:

UG admits only (adult) grammars defined by totally-ranked hierarchies.

While learnability appears to be problematic in the face of ties for optimality between

outputs with different marks (impossible given a totally-ranked hierarchy), recall that EDCD

has no problems whatever coping with ties for optimality between outputs with the same

marks (possible given a totally-ranked hierarchy).

4.2  Iterative Approaches to Learning Hidden Structure

The learner can’t deduce the hidden structure for overt structures until she has learned

the grammar; but she can’t learn the grammar until she has the hidden structure.  This feature

of the language learning problem is challenging, but not at all special to language, as it turns

out.  Even in such mundane contexts as a computer learning to recognize handwritten digits,

this same problem arises.  This problem has been extensively studied in the learning theory

literature (often under the name ‘unsupervised learning,’ e.g., Hinton 1989).  Much of the

work has addressed automatic speech recognition (mostly under the name ‘Hidden Markov

Models,’ e.g., Baum and Petrie 1966, Bahl, Jelinek and Mercer 1983, Brown et al. 1990);

these speech systems are simultaneously learning (i) when the acoustic data they are ‘hearing’

is an example of, say, the phone [f], and (ii) what makes for a good acoustic realization of [f].

This problem has been addressed, in theory and practice, with a fair degree of success.

The formulation is approximately as follows.  A parametrized system is assumed which, given

the values of hidden variables, produces the probabilities that overt variables will have various

values: this is the model of the relation between hidden and overt variables.  Given the hidden
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variables constituting [f] within a sequence of phones, such a model would specify the

probabilities of different acoustic values in the portion of the acoustic stream corresponding

to the hidden [f].  The learning system needs to learn the correct model parameters so that

hidden [f]s will be associated with the correct acoustic values, at the same time as it is

learning to classify all acoustic tokens of [f] as being of type [f].

(40) The Problem of Learning Hidden Structure

Given: a set of overt learning data (e.g., acoustic data)

a parametrized model which relates overt information to hidden structure

(e.g., abstract phones)

Find: a set of model parameters such that the hidden structure assigned to the data

by the model makes the overt data most probable (this model ‘best

explains’ the data)

There is a class of algorithms for solving this type of problem, the Expectation-Maximization

or EM algorithms (Dempster, Laird and Rubin 1977; for recent tutorial introductions, see

Nádas and Mercer 1996, Smolensky 1996a).  The basic idea common to this class of

algorithms may be characterized as in (41).

(41) EM-type solution to the Problem of Learning Hidden Structure

0.  Adopt some initial model of the relation between hidden and overt structure; this

can be a random set of parameter values, or a more informed initial guess.

1. Given this initial model, and given some overt learning data, find the hidden

structure that makes the observed data most probable according to the model.

Hypothesizing this hidden structure provides the best explanation of the overt

data, assuming the current (generally poor) model. 

2. Using the hidden structure assigned to the overt data, find new model parameter
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values that make the complete (hidden and overt) data most probable.

3. Now that the model has been changed, it will assign different (generally more

correct) hidden structure to the original overt data.  The algorithm executes

steps 1 and 2 repeatedly, until the values of the model and the hidden

structure converge (stop changing).

This kind of algorithm can be proven to converge for a number of classes of statistical

learning problems.

In Optimality Theory, the Harmony of structural descriptions is computed from the

grammar non-numerically, and there is no probabilistic interpretation of Harmony.  But the

approach in (41) could still be applied.  Whether this iterative algorithm can be proven to

converge, whether it converges in a reasonable time—these and other issues are all open

research problems at the moment.  But initial positive experimental results learning stress

systems  (Tesar, in preparation b) and extensive previous experience with EM-type algorithms

in related applications suggests that there are reasonable prospects for good performance, as

long as algorithms can be devised for the subproblems in steps 1 and 2 of (41) which satisfy

a ‘correctness’ criterion: they give the respective correct answers when given the correct

respective input.  In other words, given the correct model, the correct hidden structure is

assigned the overt data, and vice-versa.  The corresponding OT subproblems are precisely

those addressed by the three processes in (16): production-directed parsing, robust

interpretive parsing, and grammar learning.  Significant progress has already been made on

parsing algorithms.  The work in this paper completely satisfies this criterion for learning the

grammar: EDCD finds the correct ranking, given the correct full descriptions (including the

hidden structure).

4.3  Implications of Richness of the Base

A relevant central principle of Optimality Theory not yet considered is this:
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(42)  Richness of the base:  The set of possible inputs to the grammars of all languages is the

same.  The grammatical inventories of languages are defined as the forms appearing

in the descriptions which emerge from the grammar when it is fed the universal set of

all possible inputs.

Thus, systematic differences in inventories arise from different constraint rankings, not

different inputs.  The lexicon of a language is a sample from the inventory of possible inputs;

all properties of the lexicon arise indirectly from the grammar, which delimits the inventory

from which the lexicon is drawn.  There are no morpheme structure constraints on

phonological inputs; no lexical parameter which determines whether a language has pro.

As pointed out to us by Alan Prince (1993), richness of the base has significant

implications for the explanatory role of the grammar, in particular the relationship between

the faithfulness constraints (e.g., PARSE and FILL ) and the structural constraints.  Recall that

the faithfulness constraints require the overt structure of a description to match the underlying

form.  In order for marked structures to appear in overt structures, one or more of the

faithfulness constraints must dominate the structural constraints violated by the marked

structure.  Conversely, a language in which a marked structure never appears is properly

explained by having the relevant structural constraints dominate the faithfulness constraints.

Consider CVT.  A language like , all of whose lexical items surface as sequences

.CV. syllables, has a systematic property.  This cannot be explained by stipulating special

structure in the lexicon, namely, a lexicon of underlying forms consisting only of CV

sequences.  It is not sufficient that the grammar yield .CV. outputs when given only CV

inputs: it must give .CV. outputs even when the input is, say, /VCVC/, as shown in (6).  This

can only be achieved by rankings in which faithfulness constraints are dominated by the

structural constraints.  (8) is such a ranking.
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What kind of evidence could lead the learner to select the correct hierarchy?  One

possibility is grammatical alternations.  Alternations occur precisely because the underlying

form of an item is altered in some environments in order to satisfy high-ranked structural

constraints, at the expense of faithfulness.  When learning the underlying forms, the learner

could use the alternations as evidence that faithfulness constraints are dominated.

Another proposal, suggested by Prince, is that the initial ranking has the faithfulness

constraints lower-ranked than the structural constraints.  The idea is that structural constraints

will only be demoted below the faithfulness constraints in response to the appearance of

marked forms in observed overt structures.  This proposal is similar in spirit to the Subset

Principle (Angluin 1978, Berwick 1986, Pinker 1986, Wexler and Manzini 1987).  Because

.CV. syllables are unmarked, i.e., they violate no structural constraints, all languages include

them in their syllable structure inventory; other, marked, syllable structures may or may not

appear in the inventory.  Starting the faithfulness constraints below syllable structure

constraints means starting with the smallest syllable inventory: only the unmarked syllable.

If positive evidence is presented showing that marked syllables must also be allowed, the

constraint violations of the marked syllables will force demotions of structural constraints

below faithfulness so that underlying structures like /CVC/ can surface as .CVC.  But if no

positive evidence is provided for admitting marked syllables into the inventory, the initial,

smallest, inventory will remain.

One notable advantage of the latter proposal is that it accords well with recent work

in child phonological aquisition (Demuth 1995, Gnanadesikan 1995, Levelt 1995).  This work

has argued that a range of empirical generalizations concerning phonological acquisition can

be modelled by constraint reranking.  This work proceeds from two assumptions:  (a) the

child’s input is the correct adult form; (b) the initial ranking is one in which the faithfulness

constraints are dominated by the structural constraints. (For further discussion of the relation
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of these assumptions to the learnability theory developed here, see Smolensky 1996bc.)

4.4  Learning Underlying Forms

One aspect of acquisition not yet discussed is acquisition of the underlying forms

contained in the lexical entries.  According to the principle of richness of the base (42), the

set of possible underlying forms is universal; since we are assuming here that knowledge of

universals need not be learned, in a sense there is no learning problem for possible underlying

forms.  For interesting aspects of syntax, this is pretty much all that need be said.  In OT

analyses of grammatical voice systems (Legendre, Raymond and Smolensky 1993), inversion

(Grimshaw 1993, to appear), wh-questions (Billings and Rudin 1994; Legendre et al. 1995,

Ackema and Neeleman, in press; Legendre, Smolensky and Wilson, in press), and null

subjects (Grimshaw and Samek-Lodovici 1995, Samek-Lodovici 1995, Grimshaw and

Samek-Lodovici 1996), the set of underlying forms is universal, and all cross-linguistic

variation arises from the grammar: the constraint ranking is all that need be learned.  The

inputs in these syntactic analyses are all some kind of predicate/argument structure, the kind

of semantic structure that has often been taken as available to the syntactic learner

independently of the overt data (e.g., Hamburger and Wexler 1973).

In phonology, however, there is nearly always an additional layer to the question of

the underlying forms.  While it is as true of phonology as of syntax that richness of the base

entails a universal input set, there is the further question of which of the universally available

inputs is paired with particular morphemes: the problem of learning the language-dependent

underlying forms of morphemes.6

This problem was addressed in P&S:§9, where the following principle was developed:

(43)  Lexicon Optimization:  Suppose given an overt structure n and a grammar.  Consider

all structural descriptions (of all inputs) with overt part equal to n; let the one with
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maximal Harmony be p, a parse of some input I.  Then I is assigned as the underlying

form of n.7

The principle of Lexicion Optimization casts the learning of underlying forms as an

optimization problem.  This permits the problem to be approached with optimization

strategies similar to those already proposed here for the learning of the constraint rankings.

An iterative approach would involve an algorithm which computes the optimal underlying

forms given the current ranking, and then uses those hypothesized underlying forms when

computing the hypothesized interpretive parses of overt learning data; these parses are then

used to determine a new ranking, and the process repeats until convergence.

4.5  Parametric Independence and Linguistic Explanation

It can be instructive to compare the learning approach presented here with recent

learnability work conducted within the Principles and Parameters (P&P) framework.  In the

P&P framework, cross-linguistic variation is accounted for by a set of parameters, where a

specific grammar is determined by fixing each parameter to one of its possible values.

Because OT and P&P both use a finite space of possible grammars, the correct grammar in

either framework can be found, in principle, by brute-force enumeration of the space of

possible grammars.8

Two types of learnability research within P&P are useful as contrasts.  The first is the

Cue Learning approach. This is exemplified by Dresher and Kaye (1990), which adopts a

well-defined parametrized space of grammars for a limited part of linguistic phenomena,

metrical stress, and analyzes it in great detail.  The goal of the analysis is to identify, for each

setting of each parameter, some surface pattern, a ‘cue’,  that is diagnostic for that parameter

setting.  The learner then monitors overt data looking for these cues, sometimes in a particular

order.  Dresher and Kaye’s cues are entirely specific to their particular parametric system.

A modification to the parameter system could invalidate some of the proposed cues, requiring
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that new ones be sought.  Any attempt to apply cue learning to other areas of linguistic

phenomena essentially start from scratch; the effort will be dictated entirely by the details of

the chosen particular analysis of the phenomena.

A quite different tack is represented in the work of Gibson and Wexler (1994).  They

propose a learning algorithm, the Triggering Learning Algorithm (TLA) which can be applied

to any instance of the general class of P&P theories.  TLA is a form of error-driven random

search.  In response to an error, a parameter is selected at random and its value is changed;

if the change renders the input analyzable, the new parameter setting is kept.  The possible

success of the algorithm is analyzed in terms of the existence of “triggers.”  A trigger is a

datum which indicates the appropriate value for a specific parameter.  The learner is not

assumed to be endowed with prior knowledge of the triggers, as is assumed with cues;

success depends upon the learner occasionally guessing the right parameter in response to an

error on a trigger, so that the parameter is set properly.  This approach uses a hypothesized

grammar as a kind of black box, issuing accept/reject judgements on overt structures, but

nothing more.

A related algorithm makes even less use of the grammar.  The algorithm of Niyogi and

Berwick (1993) responds to errors by flipping parameters randomly, regardless of the

resulting (un)analyzability.  The algorithm uses the grammar only to detect errors.  It is of

course possible to apply algorithms resembling these to OT grammar spaces (in fact,

Pulleyblank and Turkel (in press) have already formulated and studied a ‘Constraint-Ranking

Triggering Learning Algorithm’).  Indeed, any of a number of generic search algorithms could

be applied to the space of OT grammars (e.g., Pulleyblank and Turkel 1995 have also applied

a genetic algorithm to learning OT grammars).

These approaches to learnability analysis within the P&P theory either: (i) use the

structure of a particular substantive theory, or (ii) make no use of the structure of the theory
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beyond its ability to accept/reject overt structures.  The approach advocated in this paper falls

in between these two extremes, taking advantage of structure (strict domination of violable

constraints) provided by the grammatical theory, but not restricted to any particular set of

linguistic phenomena (e.g., metrical stress, or even phonology).

It is significant that a trigger provides information about the value of a single

parameter, rather than relationships between the values of several parameters.   This property9

is further reinforced by a proposed constraint on learning, the Single Value Constraint (R.

Clark 1990, Gibson and Wexler 1994): successive hypotheses considered by a learner may

differ by the value of at most one parameter.  The result is that learnability concerns in the

P&P framework favor parameters which are independent: they interact with each other as

little as possible, so that the effects of each parameter setting can be distinguished from the

effects of the other parameters.  In fact, this property of independence has been proposed as

a principle for grammars (Wexler and Manzini 1987).  Unfortunately, this results in a conflict

between the goals of learnability, which favor independent parameters with restricted effects,

and the goals of linguistic theory, which favor parameters with wide-ranging effects and

greater explanatory power (see Safir 1987 for a discussion of this conflict).

Optimality Theory may provide the opportunity for this conflict to be avoided.  In

Optimality Theory, interaction between constraints is not only possible but explanatorily

crucial.  Cross-linguistic variation is explained not by variation in the substance of individual

constraints, but by variation in the relative ranking of the same constraints.  Cross-linguistic

variation is thus only possible to the extent that constraints interact.  The Constraint

Demotion learning algorithm not only tolerates constraint interaction, but is based entirely

upon it.  Informative data provide information not about one constraint in isolation, but about

the results of interaction between constraints. Constraints which have wide-ranging effects

benefit learnability.  Thus the results presented here provide evidence that in Optimality
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Theory, linguistic explanation and learnability work together: they both favor interacting

constraints with wide-ranging effects and explanatory power.

This attractive feature arises from the fact that Optimality Theory defines

grammaticality in terms of optimization over violable constraints.  This central principle

makes constraint interaction the main explanatory mechanism.  It provides the implicit

negative data used by Constraint Demotion precisely because it defines grammaticality in

terms of the comparison of candidate descriptions, rather than in terms of the structure of

each candidate description in isolation.  Constraint Demotion proceeds by comparing the

constraint violations assessed candidate structural descriptions. This makes constraint

interaction the basis for learning.

By making constraint interaction the foundation of both linguistic explanation and

learning, Optimality Theory creates the opportunity for the full alignment of these two goals.

The discovery of sets of constraints which interact strongly in ways that participate in diverse

linguistic phenomena represents progress for both theoretical explanation and learnability.

Clearly, this is a desirable property for a theoretical framework.

5.  Summary and Conclusions

This paper advocates an approach to language learning in which the grammar and

analyses of the observed data are simultaneously iteratively approximated via optimization.

This approach is motivated in part by similarities to work in statistical and computational

learning theory.  The approach is fundamentally based on the structure of Optimality Theory,

in particular the definition of grammaticality in terms of optimization over violable constraints,

and the resolution of conflicting constraints via strict domination.

The algorithm presented, Error-Driven Constraint Demotion, solves a critical part of

the learning problem as construed by the proposed approach.  EDCD disentangles the

constraint interactions to find a constraint ranking making each of the given structural
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descriptions optimal.  The success of the algorithm on this task is guaranteed; the correctness

is a theorem.  Further, the algorithm succeeds with quite modest time and data requirements,

in the face of the possibly huge number of possible human grammars.  These modest resource

requirements contribute significantly to the overall goal of a learnability account with

requirements realistic for that of a human child.  The formal properties are cause for optimism

that formal results may be obtained for other parts of the overall problem of language

learning, stronger formal results than previously obtained within any linguistic framework.

EDCD succeeds by exploiting the implicit negative evidence made available by the

structure of Optimality Theory.  Because a description is grammatical only in virtue of being

more harmonic than all of its competitors, the learner may select informative competitors for

use as negative evidence.  Because it uses this structure inherent in the Optimality Theory

framework, the algorithm is informed by the linguistic theory, without being parochial to any

proposed substantive theory of a particular grammatical module.  EDCD not only tolerates

but thrives on constraint interaction, the primary explanatory device of the framework.  Thus,

an opportunity is now available for greater theoretical synergy in simultaneously meeting the

demands of language learnability and those of linguistic explanation.

6.  Appendix: Correctness and Data Complexity

The formal analysis of Error-Driven Constraint Demotion learning proceeds as follows.  A

language L is presumed, which is generated by some total ranking.  Section 6.1 sets up the

basic machinery of stratified constraint hierarchies.  Section 6.2 identifies, for any language

L, a distinguished stratified hierarchy which generates it, the target hierarchy.  Section 6.3

defines Constraint Demotion. The case where all constraints are initially top-ranked is

analyzed first, and CD is shown to converge to the target hierarchy.  A distance metric

between hierarchies is defined, and it is shown that CD monotonically reduces the distance

between the working hypothesis hierarchy and the target, decreasing the distance by at least
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one unit for each informative example.  The maximum number of informative examples

needed for learning is thus bounded by the distance between the initial hierarchy and the

target.  Section 6.4 extends the results to arbitrary initial constraint hierarchies.  Section 6.5

demonstrates the adequacy of production-directed parsing for selecting competitors, proving

that Error-Driven Constraint Demotion will converge to a hierarchy consistent with all

positive data presented.

6.1  Stratified Hierarchies

(44)  Def. A stratum is a set of constraints.  A stratified hierarchy is a linearly ordered set of

strata which partition the universal constraints. A hierarchy distinguishes one stratum

as the top stratum. Each stratum other than the top stratum is immediately dominated

by exactly one other stratum.  The top stratum immediately dominates the second

stratum, which immediately dominates the third stratum, and so forth.  

(45)  Def.  A total ranking is a stratified hierarchy where each stratum contains precisely one

constraint. 

÷1 ÷2 ÷1 ÷2(46)  Def.  A constraint  is said to dominate constraint , denoted  >> , in hierarchy

, if the stratum containing  dominates the stratum containing  in hierarchy ,.÷1 ÷2

(47)  Def.  The offset of a constraint ÷ in a hierarchy , is the number of strata that dominate

the stratum containing ÷.  ÷ is in a lower stratum in  than in  if the offset of ÷,1 ,2

in  is greater than in .  ÷ is in the same stratum in  and  if it has the same,1 ,2 ,1 ,2

offset in both.

,1 ,2(48)  Def.  A constraint hierarchy  h-dominates  if every constraint is in the same or a

lower stratum in  than in .,2 ,1

,2 ,1(49)  Def.  A constraint hierarchy  is called a refinement of  if every domination relation
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÷ >> ÷N of  is preserved in .,1 ,2

,0(50)  Def.   denotes the stratified hierarchy with all of the constraints in the top stratum.

,0(51) Lemma   h-dominates all hierarchies.

 Proof  h-dominates itself, because h-domination is reflexive (h-domination is satisfied by,0

constraints that are in the same stratum in both hierarchies).  Consider some constraint

÷ in some hierarchy ,.  ÷ is either in the top stratum of ,, and thus in the same

stratum as in , or it is in some lower stratum of ,, and thus in a lower stratum than,0

in .  Therefore,  h-dominates all hierarchies.  �,0 ,0

6.2  The Target Stratified Hierarchy

(52) Def.  The h-dominant target stratified hierarchy, or simply the ‘target,’ for a language

L generated by a total ranking, is denoted , and is defined as follows.  The top,L

stratum of the target contains precisely those constraints which never assess

uncancelled marks to any optimal structural description in L.  The second stratum

consists of precisely those constraints which assess uncancelled marks only to optimal

parses relative to competitors which are assessed at least one uncancelled mark by a

constraint in the top stratum.  Each stratum consists of precisely those constraints

which (a) cannot occur higher in the target, and (b) only assess uncancelled marks to

optimal parses relative to competitors assessed an uncancelled mark by at least one

constraint ranked higher in the target.

,L(53) Lemma  For any L generated by a total ranking,  exists and is unique.

 Proof Existence follows from the definition, and the assumption that L is generated by at

least one total ranking of the constraints. The top stratum of  is guaranteed to,L

contain at least the constraint ranked highest in the total ranking. Among the

constraints not placed in the top stratum of , one dominates all the remaining,L
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others in the total ranking, and is thus guaranteed to meet the requirements for

placement in the second stratum. The same logic, applied to subsequent strata, shows

that all of the constraints will be placed in a stratum in .,L

Uniqueness is guaranteed because a constraint cannot meet the requirements

for placement in more than one stratum in the hierarchy, because meeting the

requirements for one stratum automatically disqualifies it for any lower strata.  �

,L(54) Lemma Each constraint ÷ with offset n>0 in  for a language generated by a total

ranking has the following property.  There must exist an optimal description winner

with a competing suboptimal description loser such that ÷ assesses an uncancelled

mark to winner, loser is assessed an uncancelled mark by a constraint ÷  with offsetn&1

precisely n&1, and loser is not assessed any uncancelled marks by any constraints with

offset less than n&1.

 Proof Consider some constraint  with offset n>0 in target .  Suppose, to the contrary,÷n ,L

that no such pair loser/winner exists for .  Recall that if  assesses an uncancelled÷n ÷n

mark to an optimal description relative to some suboptimal competitor, it must be

dominated by some other constraint which assesses an uncancelled mark to the

suboptimal competitor, for otherwise the optimal description would not be more

harmonic, and the correct language would not be generated.

One possibility is that  never assesses an uncancelled mark to any optimal÷n

description.  But then it would have offset 0 in , contradicting the assumption that,L

it has offset greater than 0.

The other possibility is that for any winner assessed an uncancelled mark by

relative to some loser, loser is assessed an uncancelled mark by a constraint with÷n

offset smaller than n&1.  But then  could be placed one stratum higher in , with÷n ,L

resulting offset n&1, and the resulting hierarchy would generate the same language,
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contradicting the fact that by definition every constraint is ranked as high as possible

in .,L

Hence the supposition must be false, and an appropriate pair must exist.  �

,L ,L(55) Theorem  For any language L generated by a total ranking,  generates L.  also has

the property that each constraint is ranked as high as possible; that is,  h-dominates,L

every total ranking ,N which generates L.

 Proof Consider some description winner in L, and any competitor loser with non-identical

marks. If winner has no uncancelled marks, it is more harmonic than loser. If winner

has an uncancelled mark, then its corresponding constraint must be dominated in ,L

by some constraint assessing an uncancelled mark to loser, by the definition of .,L

So  generates L.,L

For the second part, consider a total ranking ,N which generates L.

Consider a constraint ÷ with offset 0 in ,N.  ÷ must not assess an uncancelled

mark to any optimal description in the language; otherwise, ,N would not generate

the language.  Therefore, ÷ must have offset 0 in .  It follows that ÷’s offset in ,L ,L

is # ÷’s offset in ,N, as both are 0.

Assume that each constraint with offset # n in ,N is in the same or higher

stratum in .  Consider the constraint ÷  with offset n%1 in ,N.  For any pair of,L n%1

an optimal description winner with a suboptimal competitor loser, if ÷  assesses ann%1

uncancelled mark to winner, loser must be assessed an uncancelled mark by a

constraint ÷ with offset # n in ,N (that is, ÷ >> ÷  in ,N); otherwise, ,N would notn%1

generate the language.  By hypothesis, any constraint with offset # n in ,N has offset

# n in .  Therefore, ÷  has offset # n%1 in .,L ,Ln%1

By mathematical induction, every constraint in ,N is in the same or higher

stratum in .  It follows directly that every constraint is in the same or lower stratum,L
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in ,N than in .  Therefore, target  h-dominates ,N.  �,L ,L

,L(56)  Corollary  Every total ranking which is a refinement of  generates L.

 Proof By the definition of  (52), for every loser/winner pair of L, each uncancelled,L

winner mark is dominated, with respect to , by an uncancelled loser mark.  By the,L

definition of refinement (49), any refinement of  preserves all such domination,L

relations of .  Therefore, any refinement which is a total ranking generates L.  �,L

6.3  Constraint Demotion

(57) Def.  The mark cancellation procedure, MarkCancel(marks(loser), marks(winner)), is:

For each occurrence of *÷ in both marks(loser) and marks(winner)

Remove that occurrence of *÷ from both lists

Return the lists as (marksN(loser), marksN(winner))

(58) Def.  The constraint demotion procedure, CD((marksN(loser), marksN(winner)),,), is:

Set ,N to ,

Find the constraint  with a mark in marksN(loser) ranked highest in ,N÷l

For each  with a mark in marksN(winner)÷w

If  does not dominate  in ,N, ÷l ÷w

demote  to the stratum immediately below ÷w ÷l

Return ,N

(59) Lemma  The hierarchy output by CD is h-dominated by the input hierarchy.

 Proof Because constraint demotion only demotes constraints, each constraint is in either the

same or lower stratum in the output hierarchy than it was in the input hierarchy.  �

,L(60) Lemma  If the input hierarchy h-dominates , so does the output hierarchy.

 Proof This holds because CD will never demote a constraint lower than necessary.  Let ÷w
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be some constraint demoted by CD.  Then there is a mark-data pair (marksN(loser),

marksN(winner)) requiring that  be dominated by one of the constraints assessing÷w

uncancelled marks to loser.  Let  be the one with the smallest offset (highest÷l

ranked) in ,, the input hierarchy, and let n denote its offset.  By assumption, , h-

dominates , so  in  has offset $ n.  Thus, every constraint assessing an,L ÷l ,L

uncancelled mark to loser must have offset $ n.  Therefore,  must have offset at÷w

least n%1 in .  CD demotes  to the stratum immediately below the one,L ÷w

containing , so  has offset n%1 in the resulting hierarchy.  Thus,  has offset in÷l ÷w ÷w

the output hierarchy less than or equal to its offset in , guaranteeing that the output,L

hierarchy h-dominates .  �,L

(61) Def.  An informative pair for a hierarchy ,N is a mark-data pair that, when given as

input to CD along with ,N, causes at least one demotion to occur.  The property of

being informative is jointly determined by the mark-data pair and the hierarchy being

evaluated.  

,1 ,2 ,1(62)  Def.    The h-distance between a hierarchy  and a hierarchy  h-dominated by 

is the sum, over all constraints ÷, of the difference between the offset of ÷ in  and,1

in .,2

,L(63)  Lemma  Suppose the input hierarchy h-dominates .  The h-distance between the

output hierarchy and  is decreased by at least one (from the h-distance between the,L

input hierarchy and ) for each demotion.,L

 Proof By lemma (59), the input hierarchy h-dominates the output hierarchy.  Let ÷ be a

constraint that is demoted, with offset n in the input hierarchy, offset m in the output

hierarchy,  and offset t in .  ÷ is demoted, so m>n.  By lemma (60), the output,L

hierarchy h-dominates , so t$m>n.  Therefore, (t& m) < (t& n), so the contribution,L
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of ÷ to h-distance is smaller for the output hierarchy.  Thus, the output hierarchy h-

distance is at least one less for each constraint demoted.  �

,0 ,L(64)  Lemma Let N be the number of constraints.  The h-distance from  to  cannot

exceed ½(N&1)N.

 Proof By lemma (51),  h-dominates every hierarchy, and therefore must h-dominate .,0 ,L

The greatest h-distance will be when  is a totally ranked hierarchy. The furthest,L

constraint from the top stratum will be the one in the bottom stratum, which has offset

(N&1). The next lowest constraint has offset (N&2), and so forth. Thus, the h-distance

will be:

(N&1) % (N&2) % ... % 1 % 0

which is precisely ½(N&1)N.  �

,0(65)  Theorem  Starting with  and repeatedly presenting CD with mark-data pairs, the

target hierarchy  is converged upon after at most ½(N&1)N informative pairs.,L

 Proof By lemma (63), each informative pair reduces the h-distance by at least one. Therefore

the target hierarchy is converged upon after a number of informative pairs that is at

most the h-distance between  and the target.  Lemma (64) guarantees that this,0

distance is at most ½(N&1)N.  �

6.4  Extension to Arbitrary Initial Hierarchies

 here denotes some arbitrary initial hierarchy, and K denotes the maximal offset in ,  (one,0 0

less than the number of strata, since the offset of the top stratum is zero).  A slight elaboration

of CD is made:  if the last constraint in a stratum gets demoted, for bookkeeping purposes the

empty stratum is retained in the hierarchy.  That way, all the constraints which are not

demoted will have their offset (stratum number) unaffected (empty strata can occur when

starting with an arbitrary initial hierarchy, but not when starting with all constraints top-
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ranked).

With an arbitrary initial hierarchy, the target hierarchy  is not the exact goal of,L

learning.  Instead, it is used to define a new hierarchy  which CD approaches and can,
 #

never go beyond.  As before, this bound on demotion makes it possible to compute a limit to

the number of demotions possible before a correct solution is reached.

(66)  Def.  The offset of constraint ÷ in hierarchy , is denoted <(÷,,).

,
 #(67)  Def.  The lower bounding hierarchy for L, , is the stratified hierarchy in which the

first K strata are empty, and then a copy of  runs from the stratum with offset K,L

down.  That is, the offset of any constraint ÷ in  is K more than its offset in :,
 #

,L

<(÷, ) = K % <(÷, ),
 #

,L

(68)  Def.  During  the operation of the CD algorithm, let D denote the h-distance (62)

between the algorithm’s current stratified hierarchy , and the lower bounding

hierarchy :,
 #

D / '  [<(÷, ) & <(÷,,)],
 #

÷

(69)  Lemma  For each loser/winner pair of L in which *÷ is an uncancelled winner mark, ÷

is dominated in  by some ÷N such that *÷N is an uncancelled loser mark. ,L

 Proof  correctly accounts for all the data in L (55) so in any loser/winner pair each,L

uncancelled winner mark must be dominated by an uncancelled loser mark.  �

,
 #(70)  Lemma  The CD algorithm never demotes ÷ below the stratum with offset <(÷, ).

 Proof By induction on <(÷, ), the offset of ÷ in . ,L ,L

 Let ÷ be a constraint in the top stratum of , with <(÷, ) = 0.  Then ÷,L ,L

will never be demoted by CD.  For, by the definition of CD, such demotion would

require that *÷ be an uncancelled mark of a winner, which is impossible for a
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constraint in the top stratum of .  Thus for each constraint ÷ with <(÷, ) = 0, ÷,L ,L

is never demoted by CD, and remains in whatever stratum it happens to occupy in .,0

The lowest stratum in  has offset K, so a constraint ÷ with <(÷, ) = 0 ends up,0 ,L

where it starts, in a stratum with offset at most K % 0 = K % <(÷, ) / <(÷, ). This,L ,
 #

establishes the base case for the induction.

Now for the inductive step we assume that for all constraints ÷ with <(÷, ),L

< k, the CD algorithm never demotes ÷ below offset <(÷, ).  Let ÷ be a constraint,
 #

with <(÷, ) = k. By Lemma (69), for each loser/winner pair in which *÷ is an,L

uncancelled winner mark, ÷ is dominated in  by some ÷N such that *÷N is an,L

uncancelled loser mark.  This implies that ÷N has a lower offset than ÷ in , and it,L

follows that <(÷N, ) < k. Thus, by the inductive hypothesis, ÷N is demoted to a,L

stratum no lower than

<(÷N, ) / K % <(÷N, ) # K % k & 1 = <(÷, ) & 1.,
 #

,L ,
 #

Each time ÷ is demoted (due to an error on a loser/winner pair in which *÷ is an

uncancelled winner mark), it is demoted to just below the highest stratum containing

a ÷N such that *÷N is an uncancelled loser mark.  We are guaranteed by induction that

such a ÷N is to be found among the top <(÷, ) & 1 strata, so ÷ cannot be demoted,
 #

below stratum <(÷, ). And ÷ can’t start below this stratum either, since <(÷, ),
 #

,
 #

$ K, and no constraint starts lower than K.  This completes the inductive step.  �

(71)  Lemma    D can never go negative.  D monotonically decreases during the execution

of CD.

 Proof That D is never negative now follows immediately since all the terms in the sum

defining it are non-negative, by Lemma (70).  That D monotonically decreases during

the execution of CD is obvious, since CD only demotes constraints, which can only

decrease D. �
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(72)  Theorem  CD converges to a hierarchy generating L after no more than N(N&1)

informative examples.

 Proof By Lemma (71), the number of demotions can’t exceed the initial value of D: each

demotion decreases D by at least 1, and D can never go negative.  How large can the

initial value of D be?  In the worst case, the final hierarchy is totally-ranked and the

initial hierarchy is the exact inverse of the final hierarchy.  In this case, K = N&1, and

the initially-top-ranked constraint must be demoted 2K strata, the constraint below

it must be demoted 2(K&1) strata, and so on, with the initially lowest-ranked

constraint not being demoted at all, and ending up top-ranked.  The total number of

strata passed through, D, in this worst case is thus twice the corresponding sum in the

case where all constraints are initially top-ranked (64):

2K % 2(K&1) % þ % 0 = 2(N&1) % 2(N&2) % þ % 0 

= 2[(N&1) % (N&2) % þ % 0] = 2[N(N&1)/2] = N(N&1)

After the last demotion, at latest after N(N&1) informative examples, the fact

that there are no more demotions means that there are no more remaining informative

examples. If the hierarchy did not generate L, then there would exist further

informative examples, and by assumption the learner would receive them and make

further demotions.  �

6.5  Error-Driven Constraint Demotion

(73) Def.  The Error-Driven Constraint Demotion algorithm EDCD(PositiveData, ,), is:

For each description winner in PositiveData:

Set loser to be the optimal description assigned by , to I, the underlying

form of winner.

If loser is identical to winner, keep ,;
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Else:

! apply Mark Cancellation, getting (marksN(loser), marksN(winner))

! apply Constraint Demotion to (marksN(loser), marksN(winner)) and ,

! adopt the new hierarchy resulting from demotion as the current hierarchy

(74) Theorem Error-Driven Constraint Demotion converges to a hierarchy consistent with

all positive evidence from L, and converges after at most N(N&1) informative

examples.

 Proof The theorem follows directly from theorem (72), and the fact that, for any observed

winner, if the learner’s hypothesized hierarchy does not find the winner optimal,

production-directed parsing will produce a competitor guaranteed to result in at least

one demotion when CD is applied.  �

Theorem (74) states that EDCD converges to “a hierarchy consistent with all positive

evidence from L,” rather than “a hierarchy generating L,” for the following reason: if different

grammars have subset relations, where the language generated by one grammar is a strict

subset of the language generated by another, then EDCD, when given positive evidence from

a subset language, may converge on a superset language, consistent with all the positive

evidence but not generating the same language.  The outcome may depend on the starting

hierarchy, among other factors; see section 4.3.  This subset sensitivity is a consequence of

the error-driven nature of EDCD combined with only positive evidence; if the appropriate

loser/winner pairs were obtained, the Constraint Demotion principle itself, properly applied,

would guarantee convergence to the (correct) subset language.  For further discussion, see

Smolensky 1996c.
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1. Even a UG with only 20 binary parameters admits over a million grammars.

2. The PARSE and FILL constraints defined here constitute the parse/fill model of faithfulness

in OT.  The parse/fill model is used in P&S, and in much of the OT literature. More recently,

an alternative conception of faithfulness has been proposed, the correspondence model

(McCarthy and Prince 1995).  The distinctions between the two are irrelevant to the

learnability work described in this paper; the same results hold for OT grammars adopting the

correspondence model of faithfulness.

3.  If two candidates are assessed exactly the same set of marks by the constraints, then they

are equally harmonic (regardless of the constraint ranking).  If they tie as the most harmonic

candidates for an input, then the two outputs are both optimal, with the interpretation of free
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alternation.  a ~ b denotes that a and b have equal Harmony.  In practice, it is rather rare to

have more than one optimal output for an input.

4. Determining that this candidate is optimal requires demonstrating that it is more harmonic

than any of the infinitely many competing candidates: see P&S:§7.3 for one technique.

5. There is a choice to be made in exactly how to apply this approach to a set of observed,

optimal structural descriptions, resulting in two variations.  Because applying CD to a single

mark-data pair does not ensure that the observed parse (the winner) is yet optimal with

respect to all candidates (not just the loser), the learner could re-parse the input according to

the new constraint ranking.  If the resulting parse is different from the winner,  the new parse

may be used to create a new mark-data pair, to which CD is applied.  This process could be

repeated until the learner’s hierarchy selects the winner as the optimal description.  This

allows the learner to extract more information out of a single winner, at the cost of greater

processing dedicated to each winner.  The decision here is whether or not to repeatedly apply

parsing and CD to a single winner.

6. And future OT work on syntax is likely to take on syntactic properties of lexical items,

such as argument structure, where related acquisition issues may be expected to arise.

7. The formulation of P&S is slightly different: only underlying forms which optimally surface

as n are considered.  In our version, all structures which surface as n are considered, because

we want to use lexicon optimization as part of a learning process; when the current grammar

is incorrect, there may well be no underlying forms which optimally surface as n.  Thus our

formulation of lexicon optimization is ‘robust’ in the same sense as our formulation of

interpretive parsing: when there is no grammatical option, the maximal-Harmony (but

ungrammatical) structure is used nonetheless.

8. This conclusion assumes (for both OT and P&P) that enough information is available to

the learner to permit overt structures to be evaluated against a particular hypothesized
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grammar.  Since the lexicon is unbounded, this enumeration approach is not even in principle

applicable to the acquisition of lexical information such as phonological underlying forms or

syntactic argument structure.

9. Under the normal definitions of trigger, a single datum can be a trigger for more than one

parameter, but is such independently.  In such a case, the datum would not be interpreted as

expressing any relationship between the values of the two parameters.
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