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Abstract: The careful treatment of the kinematics of the MRM in the central region leads to 
an increase of the structure function towards its asymptotic value like a + bMx/~where 
is the transverse mass of the produced particle. This is m good agreement with experimen- 
tal data on zr+p ~ ~r- + . .  from 3.7 to 18.5 GeV/c and pp ~ 7r +- + . at primary momen- 
ta from 22 to 1500 GeV/c. 

1. Introduction 

Recently a number of  experimental and theoretical investigations on inclusive 
single particle spectra [ 1 - 5 ]  concentrate upon the study of  the approach to the 
scaling limit in the pionization region (x ~ 0). On this question there is some theo- 
retical controversy. 

The experimental data show the following main features of  the structure func- 
tion F(q, s) = E do/dq (here as usual s is the square of  the c.m. total energy and 
E, q the are energy and momentum of the observed particle in the c.m.s.)" 

(i) As a function of  the rapidity y = tanh -1 (qll/E) the distribution develops a 
plateau around y = 0. This central plateau is approached from below. 

(ii) The s.dependence of  the deviation from the scaling limit 

,5 F(q, s) F(q,s) - Fsc 

Fsc(q, s) Fsc 

is still rather unqertain. According to Ferbel [5] the function -cons t .  s - "  gives a 
good fit for A F(x,s)/Fsc(X ) at x = 0 where x = 2q Jx/~is  the Feynman scaling 
variable [6]. Meyer and Struczinski [7] have concluded that const, s - [  gives a more 
suitable description for the approach to scaling. We have found that the data re- 
viewed by Lillethun [8] do not allow one to decide between these possibilities. 

(ih) At fixed energies the magnitude of  the deviation from the scaling limit in- 
creases with growing mass o f  the observed particle. This is observed especially com 
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paring the reactions pp -+ p- + anything, pp ~ K-  + anything, pp ~ ~r- + anything 
[9]. For a particular observed particle the deviations from the scaling limit increase 
with transverse momentum q± as the data from the reaction pp ~ zr +- + anything 
[8] show. These two points s u ~ h a t  the function AF/Fsc at fixed s increases 
with the transverse mass/~ = ~/m z + qL z of the observed particle. 

Concerning these three features of the approach to scaling in the central region 
various models for inclusive reactions make different predictions. The thermodyna- 
mic model [10] with the strong bootstrap solution [11] and a slight energy depen- 
dent fireball velocity weight function gives scaling behaviour and a central plateau 
in the rapidity [1, 11 ]. In the central region the scaling limit is approached from be- 
low due to the increasing mass of the fireballs with the primary energy. The pre- 
dicted approach is in quantitative agreement with experimental data [ 1,2]. The de- 
viation from the scaling limit IAF/Fsol at fixed s increases with the transverse mass 
t~[l]. 

In the work by Amati, Caneschi and Testa [12] the approach to scaling in the 
pionization region has been considered explicitely for large q±. Using the multiperi- 
pheral model in its original version [ 13] the authors find the approach to scaling 
from below. 

The usual Mueller-Regge analysis based on the generalized optical theorem [ 14] 
gives scaling from above as s-  1 m the central region if the pomeron (P) and meson 
(M) trajectories are included. In the work of Chan et al. [3] it has been shown that 
the approach to scaling from below necessitates the introduction of a further 
singularity Q with negative residue. 

The various inclusive multi-Regge models differ with regard (i) to the phase-space 
approximations and (it) to the number of different trajectories which are included 
in the multi-Regge chain. In a one-channel model only one sort of trajectory is ex- 
changed reside the Regge chain. A two-channel model contains two sorts of trajec- 
tories, e.g. P- and M.trajectories, where usually a zero PP -coupling is assumed. The 
simple Chew-Pignotti model [ 15] is a one-channel model, which uses a rather sim- 
plified phase space in the strong ordering limit [ 16] and ignores transverse momen- 
ta. This model gives a central plateau in y and an exact scaling behaviour already at 
finite energies [ 17]. 

More recently Pignotti and Ripa [ 18] have also considered the multi-Regge mo- 
del for the central region using the same kinematic approximations, but they in- 
cluded P. and M-exchange. The calculated single particle distribution approaches a 
limiting rapidity plateau from above. 

Tan [19] has discussed cluster formation in a two-channel model with the same 
phase-space approximation as used by Chew and Pignotti [ 15]. It is shown that the 
scaling limit is approached from below if the external particle-reggeon couplings are 
suitably chosen. 

For one-channel Regge dynamics Chew et al. [20] have treated the phase space 
in an exact way. It is possible to express the structure function by the solution of 
the Chew-Goldberger-Low (CGL)-integral equation. Based on this concept Caneschi 
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Fig. l(a) Multl-Regge graph. (b) Notation of momenta used in the text for the double Regge 
graph. 

and Pignotti [21] and later Silverman and Tan [22] have derived expressions for 
the structure function in the pionization region suitable for numerical calculations. 

Caneschi [23] has argued that a model with exponential cut-off in the momen- 
tum transfers leads to an increase of the structure function from s = 60 GeV 2 to 
s = 2000 GeV 2. A physical understanding can be obtained by the complete harmo- 
nic analysis of the multi-peripheral inclusive distribution given by Bassetto and 
Toiler [24]. In their expression for the incluswe distribution extra singularities 
occur besides the Lorentz poles that determine the absorptive part. As discussed 
by Caneschi [25] the negative sign of the residue of the first extra singularity arises 
from the exponential cut-off in the momentum transfers and leads to an approach 
to scaling from below with s -  ~ for x = 0. 

In this work we use the multi-Regge model by Caneschi and Pignotti [21 ] with 
exact phase space, and give a quantitative discussion of the expression for the de- 
viation from scaling that is due to these extra singularities mentioned by Bassetto 
and Toiler [24]. Using results of Silverman and Tan [22] we give in sect. 2 the ex- 
pression for the one-particle distribution in the pionization region. In sect. 3 we 
derive the zeroth order term in the expansion of the structure function in powers 
of s -  } and discuss the scaling limit. In sect. 4 we present our analytically calcu- 
lated deviations from the scaling limit at x = 0 (first order ter.m) and discuss them. 
In sect. 5 we compare our numerical results with data on 7r+-p -+ n-++.. ,  from 22 
to 1500 GeV/c [81. 

2. Single particle spectrum f r o m  t h e  multi-Regge model 

The inclusive single-particle spectrum of the reaction a + b ~ c + anything is the 
sum over all exclusive multi-Regge contributions. We assume that in all multi-Regge 
diagrams (fig. la) on the left (right) of particle c, only trajectories al  (a2) are ex- 
changed. According to Silverman and Tan [22] the resulting single-particle spectrum 
in the pionization region is then given in terms of the solution to the CGL integral 
equation for the auxiliary function B: 
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F(q ,  s) = 1 d 4 p' d 4 k' 64 (19' + k' + q) Ba(-k' , p', p) 
2X[ (s, m2a' m2) 

x I~(p '2, co, k '2)12 Bb(--p', k', k), (I) 

(for the notation see fig. lb). 
Here X(x, y ,  z) is the triangle function 

X(x,y ,z)  = x 2 +y2 + z 2 _ 2 (xy  + xz  +yz) .  (2) 

In the following we assume that the reggeon-reggeon coupling/~ does not depend on 
the Toller angle co and has the simple form 

/3(p '2, 03, k '2) = e cl t l  e c2t2, (3) 

with 

p,2 = t l  ' k,2 = t2" 

Using the strong ordering approximation in the Regge amplitude (not in the phase 
space) one obtains the solutions B a and B b of the CGL equation: 

, , ( S l12a l ( t 1 )  
B a ( - k  ,p  , p ) = \  Sl / 

c-:/~ (p,, p), 

(4) 
8b(_p',k',k) :(s,  k), 

\s2/ 

where 

s 1 = ( - k '  + p)2, s2 = (_p, + k)2, 
(5) 

t t Sl = (/9, +p)2, S 2 = (k '  + k) 2. 

C~a (c~ b) is the reggeon-particle absorptive part for the reaction 

a+ct  1 ~ a + o t  1, ( b + c t 2 - + b + a 2 ) .  

For large s 1 (s2) it has the form 

c0[ a (p', p) cc S'l~'l(0), 

CtRb(k', k) cc s2~  (0) ' (6) 

where a'l (0) and ~'2(0) are the intercepts of the output trajectories. 
Inserting eqs. (3 -6)  in eq. (1) we obtain: 
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F(q, s ) -  g 
2~} (s' m2a' mb2 ) 

X f d 4 p  ' d4k' 84 07 ' +k' +q)s~l~l(°)(S~llal(tl) \ T  / e a 1 tl (7) 

X S2 ~'2(0) ( s2 )a2(t2) \~/-2 / e a2 t2, 

where g, a 1 , a 2 are constants. According to Silverman and Tan [22] we introduce 
new integration variables (Sl, s2, t l ,  t2). The Jacobian for this change of  variables 
is given by 

, - ^  dt 1 dt 2 
f d  4 p'  d 4 k' 8407 ' + k' + q ) = f f d  s' 1 d s2J j 16 -x/-~4 0 (--A4)" (8) 

A 4 is the Gram determinant of the four-momenta p + p', k + k', p, k. This change of 
variables leads to 

F(q , s )  = g 
2 m 2 2~(S,  ma' b)  

x f f d  s' 1 f dtl  dt 2 
16 X/-Z-&~ 0 ( -A4)  

X \S'l / e a l t l ~ 2 J  e"2"2 1 • (9) 

The expression in the bracket is analogous to the exclusive cross section do/ds 1 ds 2 
for a three-body reaction (with masses X/~l, m, x/~2 in the final state) according to 
Chan et al. [26] as shown in ref. [27]. 

Instead of  the momentum q of  particle c we introduce invariant variables 

Ul = 0 7 _  q)2, u 2 = ( k -  q)2, (10) 

and use the approximation 

S l m  Sl -- Ul'  $2 ~ S~ - u 2 (11) 

in the amplitude. Furthermore, we assume linear trajectories 
I 

a l ( t l )  = al(O) + ~1 t l  ' 
¢ 

a2(t2) = c~2(0 ) + a 2 t 2. (12) 
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Then the structure function can be expressed as the following integral 

F(q,s) = - -  g ffds'l C 2 2 32X ~ (s, m a , m b ) 
f t 

Sl Ul )2al(O) (s2 -- u2)2a2(O, , , 

with 

(13) 

, , / ' / ' d t l  dt 2 
I(Sl,S 2) =J J ~ O(-A4 )es21tles22t2, 

, ( 1 4 )  

, (Sl~Ul 1 
~1 = ql + 2al In - - - - - ~ 1  / , 

t 

~2  = a 2 + 2 c~ 2 In - -  . 
\ s 2 / 

Chan et al. [26] have evaluated the integral (14) (eqs. (3.15) and (3.16) in ref. [26]): 

f ? [(Sl, s2) = 47r e -b  e dl S'l/M2 e d2s'2/M2 
t P [ ( Sl 

× 1 sinh c X ½ 1, , - ~-~, 
c 

with 

M2--(P+k-q)2=S+Ul +U2-m2-a mb2--m 2, 

/ b=~-I a l ( M  2 . u 2 _ m  2)+a2(M2_u l _ m  2) 

dl =21 ~ l ( M 2 + u 2 _ m 2 ) + ~ 2 2 ( M 2 _ U l  + m 2 ) ]  

m2) + [22(M2 +u  1 m2)} ,  d2=2_1 ~ I ( M  2 _ u 2 +  

1 1~22.,M2 m 2 +~2 2 m 2 
c=~- I 1A[ ,u 2, a ) ?t(M ,u 1, b ) 

+ 2~  1[22 [M2(M 2 - u 1 - u 2 - m  2 _  m 2 _ 2m 2 

- ( u  1 - m 2 ) ( u 2 - m 2 ) ] }  ½ 

The region of the integration in (13) is given by 

(15) 

(16) 
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~ 1 / >  (ml)min '  G >~ (m3)min' (17) 

)k( l ,  s] /M 2, s2/M 2) >/O. 

For our analytical calculations we assume for simpliticty (ml)mi  n = (m3)mi n = 0. In- 
tegrating (13) Silverman and Tan [22] performed the change of variables 

I 

s 1 s 2 
M 2 - z ( l - x ) ,  ~ = x ( 1 - z ) ,  (18) 

with the Jacobian 

t 
d s  1 ds2 =M4 l1 - x - z I d x d z  

and 
t ! , (  s, 

X ~ 1 ,M2,  = l1 - x  --zl .  

From eqs. (12) and (15) one obtains an integral over the unit square in (x, z). 

1 1 
lr g (M 2) 2+~1 (0) + ~'2 (0) t ' t "  

F(q,s)= J J  dx dz 
16 X-~ (s, m 2 2 a' mb ) 0 0 

e-b  
X ( 1 - x - z )  ~-- [z(1 - x ) ]  3",(0) [x(1 - z ) ]  3"z (0) 

(19) 

(20) 

r 1 2al(O) r 2 E,+ I -,,°, 
(21) 

× eC(1-x-z) edlz(1-x) ed2X(1-z), 

with 

u 1 u 2 
r 1 - M2 ' r 2 - M2 • 

Eq. (21) can be rewritten in the form 

rr (M2) 2+aq(°)+~(°) 1 1 
F(q,s) = g -~- ~ . . . .  

~(s, m2, m2) f o 

eC-b 
× (1 - x - z ) - -  e -(c-dl)z-(c-dz)x-(dl +d2)xz 

c 
x [z(1 -x)]  ~ ,(o) [x( 1-z)l a'~(o) 

(22) 

(23) 
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r 1 r 2 ] 2a2 (0) 

In the following sections this expression is expanded in powers of l/x/7 in the pioni- 
zation region. We identify the zeroth order term with the scaling limit of the distri- 
bution and consider the first order term being proportional to 1/x/s'as the main 
part of the deviation from the scaling distribution. 

3. The scaling term 

For the derivation of the scaling term we express all kinematic variables in eq. 
(23) by c.m. energy E and c.m. momentum (q II, q.l.) of particle c in the leading order 
in v~. In the pionization region q II, qx remain finite at s ~ oo. We have 

M 2 ~S, 

- u  1 ~ X,/}-(E-qll), - u  2 ~ V'7(E + qll), (24) 

E - q ,  E + q II 

r l  ~ x / ~  ' r2 ~ 7 

UlU 2 
_ _ ~ m 2 +  2-gt2 

M 2 q±- , 

~Q,I ~-2 c - b  ~ - - -  q2,  

~1+~2 

C - d l  ~ ~21x/S-(E + qll), 

d 1 +d  2 ~ ( ~ 1 + ~ 2 2 ) s .  

c ~ ~ s ( aa+a2)  , 

c - d 2 ~ 2 2 x / ~ ( E - q l l )  , 

According to the assumed multiperipheral exponential behaviour in the momentum 
transfers t l ,  t 2 the integrand of eq. (23) is strongly damped by the factor 

exp { -  (C-dl)  z - ( c - d 2 ) x  - (all+ d 2 ) x z  } for large s. 

Therefore we can extend the integrations limits in eq. (23) to infinity. Substituting 

z '  = ( C - d l ) Z  , x '  = ( c - d 2 ) x  , (25) 

and using eq. (24) we can write the exponential term in eq. (23) in the s- indepen- 
dent form 
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_ f~1~2 2/ ' ~1+f22 'Z'} 

~ q ± /  {--Z' ~21 ~2/'t 
exp exp --x -- - .~-x . 

We perform the same substitution in the rest of the integrand and expand it in 
powers of  1/x/~. We find the leading term 

rr s_[~'l(O) + ~ 3"2(0)-1 FCq,s) = g 
122 

c o  o o  

xf f  d 'exp -a +a 
o o 

(26) 

X 
(1 + ~lla2 /z') 2a1(0) (1 + f~21a2 /X') 2c.2(0) 

rlr2(r 1 + r2 ) [ri( E + qll) ] ~1(0) [f22(E_ q ll)]~r2 (0) 

X exp [ - z ' - x '  ~21 + ~22 

We notice that the factor 

x'z') z '~1(0) x '~r2(O). 

s~ i = ~; = % C28) 

Setting ~'t(0) = ~'2C0) = 1 we find that the resulting inclusive cross section C26) is in- 
dependent of  s and q in this approximation which gives the limiting scaling distri- 
bution. 

For ~1 (0) = 1, ~'2C0) = ~ and vice versa F(q,s) behaves as F = s -  ¼ ; for a 1 (0) = 
~'2C0) = ~ as Fcx s-½. These expressions correspond to the dynamically non-scaling 
contributions in the language of  Mueller-Regge-phenomenology [3, 14]. In the 
following we assume the intercepts of  the output poles to be ~'i(0) = ~'2(0) = 1 and 
treat the kinematical deviations from scaling. 

{ ~ 1 ~ 2  } 
exp I ~1+ ~22 q2 

provides a sharp dropp off in q2 : 

F(q,s) oc exp - q2 . (27) 
f21+ ~2 2 

~t  denotes the effective values of ~2i from eq. (14). In the case of vanishing slope 
of  trajectories a'i = 0 one has 
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4. Kinematieally non-scaling contributions 

To obtain kinematically non-scaling terms we take into consideration one term 
more than in eq. (24) at the expansion of the kinematical terms of eq. (23). The ex- 
pansion of the structure function of  eq. (23) leads to 

F = c 1 + c2/x/~+ . . . .  

The expression 

AF c2 

Pso clv7 
is the deviation from the scaling limit which we sought for. To demonstrate this we 
consider the approach to scaling in a special case. 

4.1. Special case 

Assuming ~'1(0) = ~'2(0) = 1 we set 

qll=O, q±=O,  m = O ,  

m a = mb,  ~21 = ~22 = ~2, al(O ) = ct2(0 ) = 0. (29) 

Most of  the kinematical variables of  eq. (23) can be calculated exactly. From eqs. 
(10), (16) and (22) it follows 

u 1 =u  2 = m  2 M 2 = s ,  r 1 = r  2 = - m ~ / s ,  a'  

b = ~2s - 2~2 m2a' d l  = d2 = ~2s, 

c 2 = ~22(s 2 - 4m 2 s), (30) 

= ~2s - 2~2ma 2 + O (l/s), C 

( C - d l )  = ( c - d 2 )  = -2~ma2  + O (l /s) ,  

( c - b )  = 0 + O(1/s) ,  (d I +d2 )  = 2f~s. 

Substituting 

x '  = x/ffl + d 2 x = 2 x / ~ - - ~ x '  (31) 

z' =x /~  1 + d  2 z = 2x/TdT'z, 

and using eqs. (29), (30) we get from eq. (23) 
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" f f F(O,s )=g~- fSo  0 ~22 (32) 

× e -x'z '  x z (1 -x ) (1 - z ) (1 -x - z ) .  

We replace x,z in the integrand by x' ,  z '  according to eq. (31) and expand the inte- 
grand in powers of 1/x/~. 

F(O, s) = g ~ ~ x'z' ~ - ~  - V'~ m2a . (33) 

With an effective value ~ for ~2 it follows for AF/Fsc, 

For ~ < 1/m2a we find negative deviations from scaling. For intercepts % (0 )>  (0) 
the upper limit for ~ to produce negative deviations from scaling is shifted to the 
fight with increasing %(0). 

4.2. General case 

We choose a ' l (0)  = ot~2(0 ) = l to have scaling in the zeroth order and set qJI = 0. Then 
we carry out a procedure similar to sect. 4.1. and obtain the following expression 
for not too large transverse mass/a (~ < ma): 

~ w _  b 1 +(3 +b2)/a 
V7 (35) 

Typical values of the parameters b 1 and b 2 are b 1 ~ 1 . . .  3 GeV and b 2 ~ -1  . . .  0 
(see sect. 5). The functions b 1 and b 2 strongly depend on the parameters a I and a 2 
of the residue function; b 1 is an increasing function with % b 2 is a decreasing func- 
tion with a i. Eq. (35) implies that for fixed q± the deviation from scaling increases 
with growing mass of the observed particle. This agrees with the results of the ther- 
modynamical model [1 ]. Humble [4] has proposed a model for inclusive distribu- 
tions near x = 0 in terms of a product of triple Regge couplings. In agreement with 
data for pp -~ lr- + anything, pp -~ K -  + anything and pp -~ p + anything at 1500 
GeV/c and 24 GeV/c for fixed transverse momentum q± = 0.4 GeV/c it is shown 
that the deviation from scaling depends on the mass of the observed particle. 
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X 
Fig. 2. The distribution 

f l  do G(x) = E - -  2 dq~ 
dq lldq ± 

for the reaction ~r+p ~ ~r- + anything at 3.7, 7.0 and 18.5 GeV/c computed from the multi- 
Regge model in comparison with the data of Alston - Garnjost et al. [28]. 

5. Comparison with experimental data 

For a comparison with experimental data we perform computer calculations. 
Starting from eqs. (13) and (15) with the kinematical region given by eq. (17) we 
numerically integrate over this region. The resulting distribution 

do d q2 

for the reaction Ir+p -~ rr- + anything at primary momenta 3.7, 7.0, 18.5 GeV/c  
is given in fig. 2 in comparison with experimental data [28]. For ~1 and ~'2 we have 
assumed the pomeron (~'1(0) = ~'2(0) = 1), for a I and ~2 we have chosen M-trajec- 
tories with ai(ti) = 0.5 + 0.85 t i. The residue parameters a i are fitted by a 1 = 3 
(GeV/c)-  2 and a 2 = 1.2 (GeV/c) -2 .  For this reaction the pionization contribution 
(eq. (1)) describes the data [28] well in the interval - 0 . 5  ~ x  ~< 0.5. Especially the 
approach to the scaling limit from below is in quantitative agreement with the data. 
Furthermore we notice that the asymmetry of  the x-distribution is reproduced by 
our calculations, especially the maximum at x = 0.05. This fact arises not only from 
the mass asymmetry of  the initial state but also from the difference o f  the parameters 
a 1 and a 2. 
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Fig. 3. The invariant product ion cross section E dao/dq for the reaction pp --* 7r- + anything at 
x = 0 as function of  the c.m. energy x/~, computed from the multi-Regge model in comparison 
with the data reviewed by Lillethun [8]. The cross sections are given for transverse momenta  
q± = 0.3, 0.5, 0.7 and 0.9 GeV/c. The data are taken from the work of  the Saclay-Strasbourg 
group [29] (V), the British-Scandinavian ISR Collaboration [30] (o), and MiJck et al. [31] ( ' 1  
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Fig. 4. The invariant production cross section E d3a/d3q for the reaction pp ~ rr + + anything 
at x = 0 as function of  the c.m. energy x/~, computed from the multi-Regge model in compari- 
son with the data reviewed by Lillethun [8]. The cross sections are given for transverse momen- 
ta q.L = 0.3, 0.5, 0.7 and 0.9 GeV/c. The symbols are defined in fig. caption 3. 
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a 

P P----.qT%.. I S ' ~  pp--~-Tf-+... 

1÷ ° 

e × Z ~  NODEt. 

I ~ T A  

I I I I I O.J7 I 

O.a 0.5 0.7 O.g 0.3 0.5 0.9 
p (CeVlc) 

Fig. 5. Theoretical results from the multi-Regge model and experimental data [8] for the param- 
eter b defined by: 

F-Fsc  - b  d3o 
- F = E - -  

Fsc  x/s  ' d3q ' 

for the reactions pp --+ ~r + + anything and pp ~ ~r- + anything. The function b is plotted over 
the transverse mass p of the observed pions. 

Table 1 
Choice of the Regge parameters for the calculation of the invariant distribution in the central 
region according to the multi-Regge model 

pp-~ l r -  + . . .  p p . . n + + . . .  

a 1 3.0 1.0 

a 2 3.0 1.0 

a l ( t l )  0.5 + 0.85 t 1 0.5 + t 1 

c~2(t 2) 0.5 + 0.85 t 2 0.5 + t 2 
~'1(0) 1.0 1.0 

~'2 (0) 1.0 1.0 

The chosen parameters  for the reactions p p ~ r r  + + anything and pp-+rr- + anyth ing  
are given in table 1. Fig. 3 and fig. 4 compare  our numerical  calculat ions for this 

reactions at x = 0 wi th  exper imenta l  data [8] at pr imary m o m e n t a  f rom 22 to 1500 

GeV/c  for various q i .  F r o m  these data and numerical  calculations,  respectively,  we 

have de termined  the parameter  b for the  deviat ion f rom scaling 

z3a w b 
- ( 3 6 )  
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In fig. 5 the p-dependence of this parameter is plotted. In agreement with the analy 
tical results of sect. 4.2 b is a linear function of p. With the parametrization of eq. 
(35) we obtain b, = 1 GeV, b,= -0.1 for rr+ and b, = 2.26 GeV, b, = -1 for n-. 
In our model the stronger deviations from the scaling limit for the reaction pp + 
7~~ + anything compared with pp + rr + + anything for not too large q1 are due to 
the larger value of the residue parameters ai. The smaller value of b, is also ex- 
plained by this choice of the residue parameters. 
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