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1 Introduction: Symbolic and connectionist
approaches to cognition 

Symbolic paradigm 

(A) The basic units of cognition are (discrete) symbols handled by

rule-based processes. 

(B) Internal knowledge is represented by rules, principles,

algorithms, and other symbol-like means.

(C) The computation performed by the system in transforming

input representations to output representations is typically serial

and digital in nature.

Problems:

� Scalability (as the domain grows larger, a system's

performance degrades drastically)

� Robustness 

� Flexibility

� Gradedness (graded factors determine discrete solutions)

� Self-organisation
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Subsymbolic (connectionist) paradigm 

(A') The basic units of cognition are activations of neuronlike

elements that interact to produce collectively emerging effects.

(B') Internal knowledge is represented by a matrix of real

numbers (connection matrix).

(C') The computation performed by the system in transforming

the input pattern of activity to the output pattern is massively

parallel and continously in nature.

The proper treatment of connectionism 

1. Eliminativist position 

Most concepts from symbolic theory are misguided or

superfluous. This concerns, first at all, symbolically structured

representations and rules. Such concepts may be eliminated by

connectionism. This position represents the mainstream

connectionist approach.

2. Implementationalist position 

The theses (A) and (B) are basically correct. Replace (C) by the

following: The computation performed by the system can be

implemented by connectionist aids.

This position is taken by Fodor & Pylyshyn. It aims to eliminate

connectionism as a substantive cognitive paradigm. 
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3. Hybrid Systems

Link a current connectionist system with a  current (physical)

symbol system (exploiting the strengths of each)

4. Integrative connectionism

Unification of the symbolic and the connectionist paradigm.

Symbolism as a  high level description of the properties of neural

nets.

Main thesis of this talk: Certain activities of

connectionist networks can be interpreted  as

nonmonotonic inferences. In particular, there  is a strict

correspondence between Hopfield networks and

weight-annotated Poole systems. 

/ Nonmonotonic logic  and algebraic semantics  as

descriptive and analytic tools  for  analyzing emerging

properties of connectionist networks 

/ Connectionist methods (randomised optimisation: simulated

annealing)  for performing  nonmonotonic inferences

/ Certain logical systems are singled out by giving them a

"deeper justification".

cf.  Balkenius, C. & Gaerdenfors, P. (1991)



2 A concise introduction to neural networks

2.1   General description

A neural network N can be defined as a quadruple
<S,F,W,G>:

S Space of all possible states
W Set of possible configurations. w∈W describes for each

pair i,j of "neurons" the connection wij between i and j
F Set of activation functions. For a given configuration

w∈W a function fw∈F describes how the neuron activities
spread through that network  (fast dynamics)

G Set of learning functions (slow dynamics)

Hopfield networks
Let the interval [-1,+1]
be the working range of
each neuron

+1: maximal firing rate

0: resting

-1 : minimal firing rate

S = [-1, 1] n

wij = wji , wii = 0

Aynchronous Updating:

s i(t+1)  = Θ (Σj wij×sj(t),
    if i = random(1,n)

s i(t+1)  = si(t), otherwise

Step 3 Step 4

Step 98651 Step 98652

Step 1 Step 2
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2.2 Hopfield networks as resonance systems

Let us consider Hopfield networks as dynamical systems
(development of activation in time)

Definition 2.1: 
A state s�S is called a resonance of a dynamic system [S, f] iff

1. f(s) = s (equilibrium)

2. For each J>0  there exists a 0<
�J such that for all n� 1

|f  (s1)-s| < J  whenever |s1-s| < 
 (stability)n

3. For each J>0 there exists a 0<
�J such that 

lim  (s1) = s whenever |s1-s| < 
 (asymptotic stabil.)n��

The existence of resonan-

ces is an emergent collect-

ive effect. Intuitively,

resonances are the stable

states of the network.They

attract other states. When

each  state develops into a

resonance, then the system

produces a content-

addressable memory. Such

memories have emergent collective properties (capacity, error

correction, familiarit y recognition.) 
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Definition 2.2 
A neural network [S,W,F] is called a resonance system iff 

lim  (f  (s)) exists and is a resonance for each s�S and f�W. n��
n

Theorem 2.1 (Cohen & Großberg 1983):

Hopfield networks are resonance systems.

(The same holds for a large class of other systems: The

McCulloch-Pitts model (1943), Cohen-Grossberg models (1983),

Rumelhart's Interactive Activation model (1986), Smolensky's

Harmony networks (1986), etc.)

Theorem 2.2 (Hopfield 1982)

The function E(s) = -*  w #s #s  is a Ljapunov-function of thei>j ij i j
system in the case of asynchronous updates. I.e., when the

activation state of the network changes, E can either decrease or

remain the same. The output states lim  (f  (s)) can be char-n��
n

acterized as the local minima of

the Ljapunov-function.

Theorem 2.3 (Hopfield 1982)

The output states lim  (f  (s))n��
n

can be characterized as the

global minima of the Ljapunov-

function if certain stochastic

update functions f are considered ("simulated annealing").
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3 Information states in Hopfield networks

Activation states can be partially ordered in accordance with
their informational content

+1: maximal firing rate indicating maximal
- 1: minimal firing rate $ specification
  0: resting indicating underspecification

Definition 3.1
<S, �>is a poset of activation states iff
(i) S = [-1, +1]    (set of activation states)n

(ii) s,t�S:  s�t  iff  s�t �0 or s�t �0, for all 1�i�n.i i i i

s�t can be read as s is at least as informative as t, or s is at least
as specific as t.

Poset of information states 
for n=2. 
This poset doesn't form a
lattice.
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However, it can be extended
to a lattice by introducing
impossible activation states.
Write "nil" for the impos-
sible activation of an
element.  

Definition 3.2
<SF], �> is the extended
poset of activation states iff

(i) S = [-1, 1]  n

(the set of proper activ-
ation states)

(ii) ] =  ([-1, 1]F{nil})   -  [-1, 1]   n n

(the set of impossible activation states).
(iii) for each s,t �S: s�t  iff s =nil or s�t �0 or s�t �0, for alli i i i i

1�i�n. 

Fact 3.1
The extended poset of activation states <SF], �> forms a
DeMorgan lattice. The operation sup{s,t} = s�t (CONJUNCTION)
can be interpreted as the simultaneous realization  of two
activation states; the operation  inf{s,t} = sUt (DISJUNCTION) can
be interpreted as some kind of generalization of two instances of
activation states; the COMPLEMENT s* reflects a lack of
information. The operations come out as follows: 
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max(s , t ), if s ,t�0i i i i
(s�t)  = min(s , t ), if s ,t�0i i i i i

 � nil,  elswhere

min(s , t ), if s ,t�0i i i i
max(s , t ), if s ,t�0i i i i

(sUt)  = s , if t =nili i i
t , if s =nili i

 � 0,  elsewhere'

1-s , if s >0i i
-1-s , if s <0i i

(s*)  = nil, if s =0i i� 0, if s =nili

The fact that the extended poset of activation states forms a

DeMorgan lattice gives the opportunity to interpret these states as

propositional objects ("information states").
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4 Asymtotic updates of information states

4.1 Asymptotiv updates with clambing

In general, updating an information state s may result in a

information state f...f(s) that doesn't include the information of s.

However, for the following is is important to interpret updating as

specification. If we want s to be informationally included in the

resulting update, we have to "clamp" s somehow in the network.

A technical way to do that is as follows:

Definition 4.1
Let f be a (stochastic) update function. Define the following

update function with clamping (cf. Balkenius & Gaerdenfors):

f(s) = f(s)�s; f (s) = f(f (s))�s n+1 n

Definition 4.2
Let <S,W,F> be a resonance system with connection matrix w

and an asynchronous (stochastic) update functions f. The

asymptotic updates of s (with clamping) are defined as follows:

ASUP (s) = {t: t = lim  f (s)}w n��
n

4.2 Energy-minimal specifications of activation states

From another perspective, we can consider specifications of s

which minimize some  cost function E.
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0 0.2 0.1
w = 0.2  0 -1

  k 0.1  -1  0 r

Definition 4.3
Let <S, �> be a poset of activation states, E a real function on S.

The E-minimal specifications of s are defined as follows:

min [s] = {t: t�s and there is no t1�s such that E(t1)<E(t)}E

Fact 4.1 (Consequence of theorem 2.3):

Consider Hopfield nets with asynchronous (stochastic) updates.

Let E(s) = -*  w #s #s  be the Ljapunov-function of  the system.i>j ij i j
Then it holds:    ASUP (s) = min (s) w E

Example

  

   E

<1 0 0>   � <1 0 0>  0

 <1 0 1> -0.1

<1 1 0> -0.2

<1 1 1>  0.7
<1 1-1> -1.1   �

ASUP (<1 0 0>) =  min (s)  =  <1 1-1>w E
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4.3  Asymptotic  updates and nonmonotonic inference

The propositional objects called information states  are related by

the partial ordering �. It is obvious that this relation can be

interpreted as a strict entailment relation. In any case it satisfies

the  Tarskian restrictions for such an relation:

s � s (REFLEXIVITY )

if s � t and s�t � u, then s � u (CUT)

if s � u, then s�t � u (MONOTONICITY)

More interesting, Balkenius & Gaerdenfors (1991) have made

clear that it is possible to define a nonmonotonic inference

relation that reflects  asymptotic updating of information states.

Let <S, �> be a poset of activation states, w the connection matrix

and E the energy function. I consider two possibilities to define a

nonmonotonic inferential relation (NIR) u�: 

Definition 4.4
(A) s u�  t  iff  s' � t  for each  s' � ASUP (s)  w w

(NIR based upon asymptotic updates)

(B) s u�  t  iff  s' � t  for each  s' � min (s)  E E
(NIR based upon E-minimal specifications)

As an immediate consequence of  fact 4.1 we find that both

possibilities define the same relation, i.e.  s u�  t  iff  s u�  t. w  E
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Furthermore, it is not difficult to prove the following facts:

Facts 4.2 
(i) if s � t, then s u�  t  SUPRACLASSICALITY E
(ii) s u�  s REFLEXIVITY E
(iii) if s u�  t and s�t u�  u, then s u�  u CUT E  E  E
(iv) if s u�  t and s u�  u, then s�t u�  u CAUTIOUS E  E  E

 MONOTONICITY

Proof
I will only treat CUT and CAUTIOUS MONOTONICITY.

For CUT, suppose all E-minimal specifications of s are specifications of t and

all E-minimal specifications of  s�t are specifications of u. Suppose any E-minimal

specification s' of s. s'  specifies both s as t, and, consequently, it specifies s�t. 

Since s�t � s, it results that s' is also a E-minimal specification of s�t. Consequently,

it is a specification of u.

For CAUTIOUS MONOTONICITY, suppose all E-minimal specifications of s are

specifications of t and u. We have to prove  v�u for each E-minimal specification v of

s�t. Assume any E-minimal specification  v of s�t.Of course, �  is a specification of

s. We shall prove now that � is a E-minimal specification of s. If this were wrong,

there would be a E-minimal specification v' of s such that E(v1)<E(v). But all E-

minimal specifications of s are specifications of t, therefore v1�t and v1�s�t. This

contradicts the E-minimality of v with respect to the specifications of s�t.  Therefore

v must be  a E-minimal specification of s. Since all E-minimal specifications of s are

specifications of u, one concludes that v�u. r

Gabbay, Makinson, Gärdenfors, Kraus, Lehmann, Magidor, and

others call such nonmonotonic consequence relations  cumulative.

CUMULATIVITY : If s u�  t  and   t u�  s, then s u�   u iff t u�  u. E  E  E  E
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5 Weight-annotated Poole systems

Knowledge base in 

(a) connectionist systems:

• connection matrix • energy function

(b) symbol systems

• strong and weak (default-) rules

At least for Hopfield systems there is a strict relationship between

connectionist and symbolic knowledge bases. 

� Symbolic systems can be used to understand connectionist

systems.
� Connectionist systems can be used to perform inferences.

5.1 Basic notions  (cf. Poole 1988, 1994)

Let us consider the  language L  of  propositional logic (referingAt
to the alphabet At of atomic symbols)

Definition 5.1
A triple <At, �, g> is called a weight-annotated Poole system iff

(i) At is a nonempty set (of atomic symbols) 

(ii) � is a set of consistent sentences built on the basis of At (the

possible hypotheses)

(iii) g: � � [0,1]  (the weight function)
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Definition 5.2
Let T = <At, �, g> be a weight-annotated Poole system, and let �

be a consistent formula.

(A) A scenario of � in T is a subset  �1  of  � such that  �1F{�}

is consistent.

(B) The weight of a scenario �1 is 

G(�1) = *  g(
) - *  g(
)
��1 
�(�-�1)

(C)  A maximal scenario of � in  T is a  scenario the weight of

which is not exceeded by any other scenario (of � in T).

Definition 5.3
Let T be a weight-annotated Poole system. Then the following

cumulative consequence relation can be defined:

� §�  � iff � is an ordinary consequence of each maximalT
scenario of � in T.
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An elementary example 

At = {p ,p ,p }1 2 3
�  = {p  �  p , p  �  p , p  �  �p }1 0.2 2 1 0.1 3 2 1.0 3

some (relevant) scenarios of p :   G1
{} -1.3

{p  � p } -0.91 2
{p  � p , p  � p } -0.71 2 1 3
{p  � p , p  � �p }  1.1  �1 2 2 3

{p  � p , p  � �p }  0.91 3 2 3

Consequently, p  §�  p , p  §�  ¬p1 T 2 1 T 3

5.2 The semantics of weight-annotated Poole systems

Let T = <At, �, g> be a weight-annotated Poole system, with

At = {p , ..., p }.  Furthermore, let � denote a (total) interpret-1 n
ation function for the propositional language  L  :At
�: At � {-1,1}.

The usual clauses apply for the evaluation of the formulas of  LAt
relative to �:

e�Y�f  = min(e�f , e�f )� � �

e�Z�f  = max(e�f , e�f )� � �

e��f  = -e�f . � �
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The following defines a function which indicates how strong a

given interpretation � conflicts with the space of hypotheses �:

Definition 5.4
 ×(�) = -*  g(
)# e
f    (the energy of the interpretation)
�� �

Next, the notions of  model and  preferred model  can be defined

as follows:

Definition 5.5
(A) An interpretation � is called a model of � just in case  

e�f  = 1.�

(B) An interpretation � is called a preferred model of � just in

case  it is a model of � with minimal energy (w.r.t. the other

models of �).

For any weight-annotated Poole system T = <At, �, g>, the

following definition associates a scenario sc(�,�) with each

model �: 

Definition 5.6
sc(�,�)  =   {
��: e
f  = 1}def �
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Fact 5.1
With regard to the weight-annotated Poole system T=<At,�,g>

and any model �:

G(sc(�,�)) = - ×(�)

Proof
G(sc(�,�))  =   *    g(
)    -    *   g(
) 


�� & e
f� =1 
�� &  e
f� = -1 

=   *   g(
) # e
f =   - ×(�)    r

�� �    

Fact 5.2
Let T=<At,�,g> be a weight-annotated Poole system, � a

consistent formula, �'  a  maximal scenario of � in T, and � a

model of {�}F�'. Then sc(�,�) = �'.

Proof
In order to show that sc(�,�) I �', let's take any 
 � sc(�,�).  In case  that 
 Õ �',

the set {
}F�' would be a scenario of � in T. Because of G( {
}F�') = G(�') +

2G(
), the set �' would be not a maximal scenario. However, this conflicts with the

premises. Consequently, we have shown that 
 � �'.

In order to show that sc(�,�) J �', assume any 
 � �'. It follows e
f  = 1 and
�


 � sc(�,�).  r

The following notion is the semantic counterpart to the syntactic

consequence relation  � §�  �:T

Definition 5.7
� §� � iff each preferent model of � is a model of  �.T 
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There is the following soundness and completeness result:

Theorem 5.1
For all formulas � and � of  L :  � §�  �  iff � §�  �.At T T

Proof
It is sufficient to show that the following clauses are equivalent:

(A) There is a maximal scenario �' of � in T such that {�}F�'F{¬�} is

consistent.

(B) There is a preferent model of � such that e�f =-1.
�

(A) _ (B): Let's assume that �' is a maximal scenario of � in T  and � is a model of

{�}F�'F{¬�}. Show that � is a preferent model of  � in T; i.e.,  show that for any

model �' of  � in T, ×(�') �  ×(�). From fact 5.1 it follows that  ×(�') = -G(sc(�,�')),

and the facts 5.1 & 5.2 necessiate  ×(�) = -G(�'). Since sc(�,�')  is a scenario of �
in T and �' is a maximal scenario, it follows  that ×(�') �  ×(�).

(B) _ (A): Assume a preferent model � of � and assume  e�f =-1. Obviously, the set
�

sc(�,�)F{�}F{¬�} is consistent (� is a model of it). We have  to show now that the

scenario sc(�,�) is a maximal scenario of � in T. Otherwise there would exist a

maximal scenario �' with G(�') > G(sc(�,�).  Because we have  G(�') = -×(�') for

any model  �' of {�}F�' and G(sc(�,�) = -×(�) [facts 5.1 & 5.2], this would

contradict the assumption that � is a preferent model of � in T. r
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6 Integrating Poole systems and Hopfield nets

Bringing about the correspondence between connectionist and

symbolic knowledge bases, we have first to look for a symbolic

representation of information states.

6.1 Symbolic representation of information states

We consider neural networks with n elements and we take the

elementary language  L    (with  At = {p , ..., p })  in order toAt 1 n
speak about the activation states of the net. The symbol p   arei
intended as corresponding to the  node i of the network.

Intuitively, the expressions of the  language L   mayAt
provide  a symbolic means to speak about activation states.

Following usual practice of algebraic semantics, we can grasp

this idea by interpreting  the non-logical symbols of the language

in terms  of activation states. Some  logical  symbols of the

language may be (re)interpreted as certain operations on the

algebra of information states:

Definition 6.1
Let <SF], �> be the extended poset of activation states for a

neural network with n elements. 

(A) The triple <SF], �,�¡> is called  a Hopfield model  (for L )At
iff  �¡  is a function assigning some element of  SF] to each
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atomic symbol and obtaining the following conditions:

��Y�¡ =  ��¡%��¡,  ���¡ =  -��¡.

(B) A Hopfield model is  called local  (for L ) iff it  realizes theAt
following assignments:

�p ¡ = <1 0 ... 0>1
�p ¡ = <0 1 ... 0>2

 ... 

�p ¡ = <0 0 ... 1>n

Definition 6.2
An information state s is said to be represented by a formula � of

L  (relative to a Hopfield model M)  iff   ��¡ = s.At

In our example, the following formulae represent proper

activation states:

p  represents <1 0 0>1
p  represents <0 1 0>2
p  represents <0 0 1>3
p Yp  represents <1 1 0>1 2
�p  represents <-1 0 0>1
p Yp Y�p  represents <1 1 -1>1 2 3
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Note, that in contrast to the complement s* (reflectinga lack of

information),  the inner negation  -s realizes a conversion from

positive into  negative information, and vice versa. 

A state s�S is said to be symbolic (relative to M) iff it can be

represented by some formula � in L . With regard to a localAt
model each state is symbolic, and it can be represented by a

conjunction of literals (atoms or their inner negation).

6.2 Translating Hopfield networks into weight-annotated
Poole systems

Local Hopfield models give the opportunity to relate

connectionist and symbolic knowledge bases in a way that allows

to represent nonmonotonic inferential relation (NIRs)  based upon

asymptotic updates by inferences in weight-annotated Poole

systems. The crucial point is the  translation of  connection

matrixes w into  associated Poole-system T :w

Definition 6.3
Consider a Hopfield system (n neurons) with connection matrix

w, and let At = {p , ..., p } be a set of atomic symbols. Take the1 n
following formulae of L : At

�  = (p  � sign(w ) p ), for 1�i<j�n.ij i ij j
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For each connection matrix w the

associated Poole system is defined

as T  = <At, � , g > where thew w w
following clauses apply:

(i) �  = {� : 1�i<j�n}w ij
(ii) g (� ) = |w |w ij ij

In Section 4 updating information states came out as a kind of

specification. For these systems it is simply to show that each

(partial) information states tends toward completion.I.e., in case

the class of asymptotic updates of s, ASUP (s), contains anyw
partial information state, then it contains one of its total

specifications. Taking some additional condition (no isolated

nodes) it can be shown that ASUP (s)  contains only totalw
information states. In  this case, each  information state is comple-

ted asymptotically. In the following I consider only this case.

As a matter of fact, each total information state t corresponds

to a total propositional interpretation function �/t where �/t (p ) =i
t .  Now the following facts are simply to prove:i

Facts 6.1
(i) ep f   = ti �/t i
(ii e��f  = -e�f  �/t �/t
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(iii) e���f   = e�f  # e�f�/t �/t �/t
(iv) t�� iff e�f  = 1, in case that � is a conjunction of literals�/t
(v)  ×(�/t) = E(t)    (i.e. *  g(�)# e�f  =  *  w #t #t )��� �/t i>j ij i j

here E is the energy function of a Hopfield network with the

connection matrix w and × is the energy function of the

weight-annotated Poole-system T .w

The following theorem states that  NIRs based upon asymptotic

updates can be represented by inferences in weight-annotated

Poole systems. 

Theorem 6.1
Assume that the formulae � and � are conjunctions of literals.

Assume further that the Poole system T is associated to the

connection matrix w. Then 

��¡ u�   ��¡    iff  � §�  �  (iff  � §�  �) w T T

Proof
Exercice (use theorem 5.1, facts 6.1, and the fact that with regard to a  local Hopfield

model each state is symbolic and  can be represented by a conjunction of literals) 
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7 Conclusions

� Weight-annotated Poole systems can be used to understand

connectionist systems. Nonmonotonic inferences ( � §�  �)T
as an analytic tool to understand emerging properties of

connectionist networks.

� Weight-annotated Poole systems are singled out  by giving
them a "deeper justification".

� Connectionist systems can be used to perform  non-
monotonic inferences. Efficiency?

Appendix: A simple example from  phonology

Consider the following fragment of the English vocal system:

 �back +back

 /i/  /u/  +high

 /e/  /o/  �high/�low

 /æ/  /@/

 /a/
 +low

The phonological features may be represented as by the atomic
symbols BACK, LOW, HIGH, ROUND. The generic
knowledge of the phonological agent concerning this fragment
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may be represented as a Hopfield network using exponential
weights with basis 0 < J � 0.5. Furthermore, make use of the
following  Strong Constraints:

LOW � �HIGH;   ROUND � BACK

Assigned Poole-system

VOC �J  BACK; BACK �J  LOW 1 2

LOW �J  �ROUND; BACK �J  �HIGH 4 3

(These default rules are in strict  correspondence to Keane's
markedness conventions)
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