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a b s t r a c t

The concept of temporal nonlocality is used to refer to states of a (classical) system that are not sharply
localized in time but extend over a time interval of non-zero duration. We investigate the question
whether, and how, such a temporal nonlocality can be tested in mental processes. For this purpose
we exploit the empirically supported Necker–Zeno model for bistable perception, which uses formal
elements of quantum theory but does not refer to anything like quantum physics of the brain. We derive
so-called temporal Bell inequalities and demonstrate how they can be violated in this model. We propose
an experimental realization of such a violation anddiscuss someof its consequences for our understanding
of mental processes.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

The behavior of any system – no matter whether physical or
mental – is generically described in terms of the evolution of its
state (or its associated properties) as a function of time. Such a
description is typically based on the assumption that the state
of the system is precisely specified by a set of parameters fixing
any possible measurable property of the system. However, it is
known that this assumption is not always justified. In particular,
in quantum mechanics the superposition principle implies the
existence of states which do not have precisely specified features
with respect to all properties. In other words, superposition states
entail quantum nonlocality.
The fundamental idea to test such non-classical behavior in

quantum physical situations is due to John Bell (Bell, 1966) who
derived what are now known as Bell inequalities. Whenever Bell
inequalities are violated, this is a key indication for non-classical
behavior typical for quantum systems. In this way Bell inequalities
have turned out to play a fundamental role in the interpretation
of quantum theory. A temporal variant of them was proposed
by Leggett and Garg in the mid 1980s (Leggett & Garg, 1985),
again applied to quantum systems. The violation of temporal Bell
inequalitites, not experimentally observed so far, would imply
that events cannot be uniquely fixed in time. This is sometimes
referred to as ‘‘nonlocality in time’’ (Mahler, 1997) or ‘‘temporal
nonlocality’’ (Atmanspacher & Amann, 1998).
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This general and very basic feature has inspired scientists to
speculate whether non-classical behavior might also contribute
to our understanding of puzzles outside the quantum domain,
and maybe even outside the domain of physics. Actually, Bohr
insisted since the 1920s, when he imported the concept of
complementarity from psychology into quantum physics, that its
significance extends over all fields of human knowledge, even into
philosophical topics (Favrholdt, 1999; Holton, 1970). However,
Bohr himself did not work out any concrete example in detail, and
this has been the state of affairs for quite a while.
Since the 1970s some attempts can be witnessed to stretch

the idea of quantum-like behavior in terms of time operators in
stochastic systems (Gustafson &Misra, 1976; Tjøstheim, 1976) and
of entropy production or information flow in dynamical systems
(Atmanspacher & Scheingraber, 1987; Misra, 1978). Although
stochastic and dynamical systems are clearly not quantum systems
in the conventional sense, it became evident that particular
features of the formal treatment of quantum systems can be
properly applied to classical systems as well.
However, it was not before the 1990s when Bohr’s original

intuition of non-classical features even far beyond physics
started to become investigated for concrete empirically accessible
situations. To our knowledge, first pioneering work in this
direction was carried out by Aerts and his group in Brussels (Aerts
& Aerts, 1994), from which a long record of publications emerged
that has recently been reviewed by Aerts (2009). Aerts and
collaborators studied various kinds of problems in psychology and
cognitive science, mainly from the viewpoint of quantum logic and
quantum probabilities. A focus of applications of their work has
been the formation and processing of concepts. Aspects of game
theory (e.g., Eisert, Wilkens, & Lewenstein, 1999), context effects
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(e.g., Bruza & Cole, 2005), and decision making (e.g., Busemeyer,
Wang, & Townsend, 2006) were later elaborated in detail by other
groups.
Beginning in 2000, we developed an alternative approach,

mainly embedded in the formal framework of algebraic quantum
theory (Atmanspacher, Römer, & Walach, 2002). It was first
referred to as ‘‘weak quantum theory’’, but later this was replaced
by ‘‘generalized quantum theory’’ (GQT).1 Different from the
approach by Aerts, it is explicitly based on the non-commutative
structure of the available set (algebra) of properties (observables).
A key project demonstrating the viability of GQT refers to
the bistable perception of ambiguous stimuli (Atmanspacher,
Bach, Filk, Kornmeier, & Römer, 2008; Atmanspacher, Filk, &
Römer, 2004, 2008), other applications have been indicated by
Atmanspacher, Filk, and Römer (2006).
Remarkably, the various studies mentioned so far refrained

from claiming premature relations to brain activity and aimed at
genuinely psychological and cognitive descriptions of genuinely
psychological and cognitive phenomena. We advocate the discus-
sion of phenomena at the level at which their occurrence is ob-
served since this avoids all kinds of unclear assumptions about
interlevel relations. Of course, it is interesting to talk about neu-
ral correlates of cognition or consciousness as well, but this may
not be the best choice to begin with.
In this spirit, our work, and that of other literature mentioned

so far, is delineated from a number of quite popular proposals to
address mind-brain issues in terms of quantum physics proper.
The main representatives of such proposals (Wigner–Stapp,
Umezawa–Vitiello, Beck–Eccles, Penrose–Hameroff) were
reviewed by Atmanspacher (2004), and we do not discuss them
here. A common ground of all of them is that, in one way or an-
other, they try to invoke quantum physical brain mechanisms to
describe or explain mental states and processes.
In Section 2 we introduce the formal framework of GQT

and argue in favor of intralevel descriptions without interlevel
assumptions. Then, in Section 3, we sketch a GQT-based model
for bistable perception, the Necker–Zeno model, and show how it
accounts properly for a number of empirical results. In Section 4
we introduce the idea of Bell inequalities and present a simple
derivation of a temporal version of them. Section 5 shows how a
temporal Bell inequality can be violated in theNecker–Zenomodel,
and Section 6 discusses how this can be interpreted. Section 7
summarizes our arguments and results.

2. Generalized quantum theory for cognitive systems

In 2002 it was proposed (Atmanspacher et al., 2002) to gener-
alize quantum theory in such a way that some of its formal core
features can be used for the description of systems outside quan-
tum physics and even outside physics. The resulting generalized
quantum theory (GQT) is a formal framework that specifies a set
of mathematical conditions providing a mathematical description
of any system which matches these conditions. In this sense, GQT
is a general systems theory, and it is important to emphasize that
it has (usually) nothing to do with a detailed quantummechanical
treatment of the system considered.
The elementary objects of GQT are states and observables. Ob-

servables can act on states and thereby not only yield results but
also change states. Successive observations are related to a product
of observables. This product on the set of observables leads to the
concept of compatibility for commuting observables and incom-
patibility (or complementarity, respectively) for non-commuting
observables (see Atmanspacher et al., 2006). Under general

1 One equally supportive and critical remark concerning the notion of weak
quantum theory was expressed by Marlan Scully at a conference in 2005: ‘‘Why
do you call it weak if it is so strong?’’

Fig. 1. The Necker cube (left) and the two perspectives under which it can be
perceived (right).

assumptions this leads to the concept of entanglement. The com-
plementarity of observables is an essential prerequisite for obser-
vations which violate classical concepts of reality and causation.
This minimal set of conditions of GQT does not include

dynamical laws, specific observables, invariances, decomposition
rules, and other ingredients that are needed for a detailed
description. These ingredients depend on the system considered
and must be deliberately chosen. Since there is no universal
language for descriptions of all systems, the corresponding choices
are guided by a ‘‘descriptive level’’ which seems to be best suited
for the system considered.
Descriptive levels can refer to various areas of physics (high-

energy physics, statistical physics, thermodynamics, etc.), of
chemistry (physical chemistry, organic chemistry, etc.), biology
(biochemistry, genetics, etc.), of psychology (cognitive psychology,
social psychology, etc.), of sociology, cultural studies and so on. It
is obvious that there is no universal approach on which all these
areas of science are founded. Yet it is interesting, and often useful,
to look for relations between different descriptive levels, so-called
interlevel relations (see, e.g. Bishop & Atmanspacher, 2006).
GQT offers an approach that can be applied to the descriptive

level specifically relevant for cognitive processes. Using formal
tools of quantum theory, the framework of GQT can be refined
as to describe specific cognitive systems (rather than physical
systems) in considerable detail. A number of interesting examples
for corresponding applications have been worked out so far, some
ofwhich are reviewedbyAtmanspacher et al. (2006). A particularly
successful one among them addresses the perception of bistable
stimuli, briefly bistable perception. It has been developed so
far that experimental observations could be compared with
predictions of a concrete model called the Necker–Zeno model
(Atmanspacher et al., 2008).

3. The Necker–Zeno model

The Necker–Zeno model is a mathematical model describing
the effective dynamics of switching mental states during the
perception of ambiguous figures like the Necker cube (Fig. 1, left).
The Necker cube is a two-dimensional projection of a cube

which does not fix the perspective under which it can be perceived
(Necker, 1832). Two possible three-dimensional perspectives are
consistent with the Necker cube, and usually one of them is
perceived at a time (Fig. 1, right). Under continuing observation
of an ambiguous figure the perceived perspective switches
spontaneously, in an unforced fashion. For reviews see Blake and
Logothetis (2002) and Long and Toppino (2004).
In experiments under controlled conditions, human subjects

are requested to focus at a fixation cross in the center of the cube
and indicate (e.g., by pressing a button) when a perspective switch
occurred. This way, one obtains a sequence of switches as sketched
in Fig. 2. From these data one can determine a distribution of dwell
times T (or reversal rates 1/T ) for a perceptual state together with
itsmoments, and one can determine the (cumulative) probabilities
for a switch to occur. The observed distributions of T typically
resemble a gamma distribution (see Brascamp, van Ee, Pestman,
& van den Berg, 2005) with a power-law increase for small T and
an exponential decrease for large T .
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Fig. 2. Schematic representation of the bistable switching between two states 1
and 2 as a function of time t .

3.1. Mathematical formulation

The mathematical framework of the Necker–Zeno model is
inspired by the mathematics of a two-state quantum Zeno effect
(Misra & Sudarshan, 1977). However, we emphasize that we do
not consider a phenomenon in the sense of quantum physics to
be responsible for the switching dynamics. Our formal description
exclusively refers to mental states and mental observables and
their dynamics. It does not even address potential candidates for
underlying brain activity.2
The details of the Necker–Zeno model have been described

elsewhere (Atmanspacher et al., 2008, 2004). Here we restrict
ourselves to a brief review of those features relevant for the
purpose of this paper: the violation of temporal Bell inequalities.
We first summarize the ingredients of the quantum Zeno model
and then transform the concepts to the Necker–Zeno model.
The quantum Zeno model describes a two-state system with

two complementary processes:
(D1) a continuous ‘‘rotation’’ in a 2-dimensional state space

generated by a Hamiltonian H = gσ1, where

σ1 =

(
0 1
1 0

)
and g is a coupling parameter determining the time scale of
the rotation. Hence, the unitary operator of the free evolution
of the system without external influence is represented by

U(t) = eiHt =
(
cos gt i sin gt
i sin gt cos gt

)
and yields a simple description of spontaneous switches
between the two states of the system.

(D2) a discontinuous ‘‘reduction’’ process onto one of the two
‘‘eigenstates’’ |+〉 =

(
1
0

)
or |−〉 =

(
0
1

)
of the matrix

σ3 =

(
1 0
0 −1

)
as the result of an ‘‘observation’’. Thus, the twoσ3-eigenstates
may be represented by the projections

P+ =
(
1 0
0 0

)
and P− =

(
0 0
0 1

)
.

The eigenstates of σ3 are stable under the ‘‘observation’’ process,
but they are unstable under the dynamics according to σ1. The
corresponding two processes in (D1) and (D2) are complementary
because the two matrices

σ1 =

(
0 1
1 0

)
and σ3 =

(
1 0
0 −1

)
(1)

2 This exemplifies our insistence in Section 2 that phenomena should primarily
be discussed at the level of description at which they are established. The rationale
behind this is that their reduction to lower levels may be problematic if lower
levels provide necessary but not sufficient conditions for higher-level phenomena.
Of course, it remains entirely legitimate and even useful to look for correlations
between higher-level phenomena and lower-level descriptions.

do not commute:

σ1σ3 6= σ3σ1. (2)

Now we are interested in two different types of probabilities:

(P1) The conditional probabilityw1(t) that the system ismeasured
in state |+〉 at time t under the condition that it was in state
|+〉 at time t = 0 and no measurement has been performed
in between. This probability is given by:

w1(t) = |〈+|U(t)|+〉|2 = cos2(gt). (3)

After t0 := 1/g the probability w1 has decreased to
approximately 1/3. In this sense, t0 characterizes the ‘‘decay’’
time of a state without external influence.

(P2) The conditional probability wN(t) that the system is mea-
sured in state |+〉 at time t under the condition that it was
in state |+〉 at time t = 0 and under the condition that in
N time intervals1T further observations were performed by
which the system was always found to be in state |+〉. This
probability is given by:

wN(t) =
∣∣〈+|(P+U(1T )P+)N |+〉∣∣2 = (cos2(g1T ))N (4)

with t = N · 1T . The condition 1T � t0 leads to the
approximation:

wN(t) ≈ exp(−g21T 2 · N) = exp
(
−
1T
t20
t
)
. (5)

Eq. (5) provides a relation for the average time 〈T 〉 for the
‘‘decay’’ of the systemunder repeated observations at intervals1T ,
expressed in terms of the characteristic time t0 of the unobserved
system:

〈T 〉 =
t20
1T

or t0 =
√
〈T 〉 ·1T . (6)

This relation between time scales pertains to the quantum Zeno
effect. The smaller the observation intervals 1T , the larger the
average time 〈T 〉 for the system to undergo a transition from |+〉
to |−〉.

3.2. Application to bistable perception

Now we summarize the essential results of the Necker–Zeno
model by associating mental states and observables to the
mathematical structures of the (physical) quantum Zeno effect.
First, we interpret the two dynamical processes of the quantum
Zeno model in terms of cognitive processes:

(D1′) We assume a ‘‘decay’’ of a perceptual state if a subject does
not observe the ambiguous stimulus, i.e. if the stimulus is
turned off. The probability that the mental state still refers
to the perspective perceived before the stimulus was turned
off is (for small t) given by:

w0(t) = 1−
t2

t20
+ O(t4)+ · · · (7)

This is the short-time approximation of Eq. (3). The
characteristic time t0 is of the order of 300ms, in accordance
with the electrophysiological P300 component in event-
related potentials. (For more details of this interpretation
see Atmanspacher et al., 2004.)

(D2′) We assume a cognitive ‘‘update’’ process which takes place
whenever a subject actually watches the stimulus. The
mental statewith its perspective of the cube is not stationary
during the observation period, but it is updated in short
time intervals1T . This update interval1T can be associated
with the time scale at which the sequence of successive
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Fig. 3. Experimentally obtained mean dwell times 〈T 〉 (inverse reversal rates)
for the bistable perception of a discontinuously presented Necker cube. Crosses
mark results from Kornmeier et al. (2007); for each off-time, 〈T 〉 (including
standard errors) is plotted for three on-times of 0.05 s, 0.1 s, and 0.4 s. Squares
mark results from Orbach et al. (1966, no errors indicated) for an on-time of
0.3 s. The plotted curve shows 〈T 〉 as a function of off-times toff according to
Eq. (6) with1T ≈ 70 ms and toff ≈ t0 .
© 2004, Reproduced from Atmanspacher,Filk, and Römer (2004) with permission,
Springer-Verlag, Heidelberg.

stimuli can be cognitively resolved,1T ≈ 30 ms. (See again
Atmanspacher et al., 2004, for further details.3)

With this mental interpretation of the quantum Zeno effect in
terms of the dynamics and time scales relevant for the perception
of ambiguous stimuli, we can now interpret Eq. (6) with respect to
bistable perception. Eq. (6) turns then into a relation between the
average dwell time 〈T 〉 of a perceived perspective (of the order of
some seconds) and the time scales t0 and1T as introduced above.
Relation (6) is clearly satisfied for these three cognitive time

scales. Moreover, the predictive power of the model has been
convincingly demonstrated with empirical results obtained under
discontinuous stimulus presentation if it is possible to vary one
of the time scales (t0) as an independent variable and measure
another one (〈T 〉) as a function of t0. Assuming that 1T remains
constant, Eq. (6) predicts a quadratic dependence of 〈T 〉 on t0.
Under certain conditions, the time scale t0 can be approximated

by the off-time in discontinuous presentation, so it is indeed
possible to test the model with experimental data. A comparison
of observations by Kornmeier, Ehm, Bigalke, and Bach (2007) and
Orbach, Zucker, and Olson (1966) with the predictions of the
Necker–Zeno model is shown in Fig. 3. The plotted symbols show
observed values of 〈T 〉 as a function of off-times. In addition to and
independent of the quadratic dependence that the model predicts
Eq. (6), the best polynomial fit to the data (solid line) is also
quadratic and yields1T ≈ 70 ms.
Note that the lowest off-time toff = 200 ms in Fig. 3 has the

largest relative deviation from the predicted curve. This is due to
the fact that for off-times smaller than 300 ms, toff can no longer
be used to mimic t0 but still has an influence on 〈T 〉. In order to
investigate this influence, we used data obtained from Kornmeier
et al. (2007) for small off-times. The details of the analysis have
been described by Atmanspacher et al. (2008), and Fig. 4 shows the
results.
As can be seen in Fig. 4, the Necker–Zeno model describes a

decrease of reversal rates, corresponding to an increase of 〈T 〉, for

3 Recent work by vanRullen, Reddy, and Koch (2005) suggests another empirical
demonstration of 1T of the same order of magnitude as an update interval: the
‘‘wagon wheel’’ illusion. There is evidence for an attention-dependence of 1T in
this scenario.

Fig. 4. Reversal rates versus small off-times toff: (a) Experimental observations
(crosses) from Kornmeier et al. (2007), with standard error of the mean; (b) best
fit of reversal rates to experimental data according to the Necker–Zeno model
(asterisks); (c) results (squares) for assumed parameters 1T = 30 ms and t0 =
300ms. The reversal rate for toff = 390ms is disregarded in the fit since it is outside
the scope of small off-times.

decreasingly short off-times. This effect indicates opposing trends
for long and short off-times, separated by a critical time scale of the
order of 300 ms. To our knowledge there is no other model that
predicts this non-trivial behavior of reversal rates (dwell times)
correctly.
To conclude this section with one more reference to empirical

data, the Necker–Zeno model in its original form (Atmanspacher
et al., 2004) gives an inappropriate description of the distribution
of small dwell times. Introducing a natural refinement of the
model, in which either t0 or 1T (or both) are time-dependent
and serve to describe the initial phase of the process, we achieved
a distribution (Atmanspacher et al., 2008) consistent with the
observed gamma distribution of dwell times (see, e.g., Brascamp
et al., 2005).
As shown by Atmanspacher et al. (2008), the resulting refined

Necker–Zenomodel describes an exponential decay for large dwell
times T (as in Eq. (5)) and a power-law increase for small values of
T (different from Eq. (5)). Since the predicted behavior for small
values of T depends on the way in which the initial phase of the
process is taken into account, there is the option to distinguish
between the two. Some kind of attention relaxation could be a
significant factor for a cognitive interpretation of the competing
kinds of initial behavior. Indeed, vanRullen (2009), studying the
paradigm of the wagon-wheel illusion, found that a corresponding
updating interval1T can increase from 70ms up to approximately
120 ms under split attention.

4. Temporal Bell inequalities

When Bell derived the famous Bell inequalities (Bell, 1966) they
were – at least in part – conceived as an attempt to disprove
quantum theory. Bell’s inequalities rely on an assumption of
objective realism and can be violated if reality behaves as predicted
by quantum theory. When the first experimental data indeed
violated the inequalities, Bell himself was among the first to accept
that quantum theory provides a correct picture of reality. After the
precise and convincing measurements of Aspect and collaborators
in the early 1980s (Aspect, Dalibard, & Roger, 1982), only few
mostly skeptical physicists maintained doubts.
In detail, Bell’s inequalities essentially rely on three fundamen-

tal assumptions (compare, e.g. d’Espagnat, 1979).
1. Objective Realism: For any system and any possible measure-
ment which can be performed on this system, it is assumed
that the result which this measurement would yield has a fixed
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albeit unknown value at any moment. (An ‘‘omniscient’’ be-
ing could predict which result any measurement on the sys-
tem would yield.) In other words: The ontic state4 of a system,
unknown to us, carries the information about the sharp value
resulting from any measurement which in principle could be
performed on this system.

2. Locality (Separability): A measurement performed at a particu-
lar spatial location cannot have any influencewhatsoever on the
results of another measurement performed at a different loca-
tion if the second measurement is carried out within the causal
complement (as defined by the relativistic lightcone) of the first
measurement.

3. Experimental Induction: Whenever particular measurements
of systems repeatedly prepared in the same state yield
particular results, these results characterize the system state
even if the measurements are not actually performed.

The first assumption is violated by the experimental results of
Aspect et al. (1982) and many other groups, which are correctly
described by quantum theory. The other two assumptions are
necessary in order to test the violation of Bell’s inequalities in
quantum systems. As most forms of Bell’s inequalities make
statements about the correlations of two measurements, it must
be excluded that one of the measurements has an influence
on the result of the other measurement. (This is the so-
called ‘‘non-invasiveness’’ of a measurement.) In most cases one
performs measurements on a pair of entangled particles in an
Einstein–Podolsky–Rosen (EPR)- or Bell-state. Locality is needed in
order to guarantee that these two measurements do not influence
each other.
The third assumption (induction) is needed to ensure that the

result of onemeasurement performed at one of the particles allows
us to make a statement about the result of a hypothetical (but not
actually performed)measurement on the other particle. (In an EPR-
state, the results of two measurements of the same observable on
the two particles usually would be anticorrelated. This is assumed
to hold true even if different measurements are performed.)
In all cases with violations of Bell’s inequalities, the measure-

ments performed at the two particles refer to non-commuting ob-
servables, e.g. spins in different directions. It can be shown that the
correlation functions for measurements, which occur in Bell’s in-
equalities, will always satisfy Bell’s inequalities as long as all mea-
sured observables commute.
Even though the Necker–Zeno model involves the non-

commuting operators σ1 and σ3, a well-defined measurement
prescription only exists for σ3. For this reason, it is not pos-
sible to test a violation of the standard Bell inequalities in
an experiment which uses only this observable. Furthermore,
Bell’s inequalities are usually tested for entangled quantum sys-
tems, and at present we have no idea of how to prepare en-
tangled cognitive states in the usual sense of entanglement.
However, there is a viable alternative: temporal nonlocality
(see Atmanspacher & Filk, 2003).
In 1985, Leggett and Garg (1985), see also Mahler (1994),

derived a temporal version of Bell’s inequalities which involves
only one observable. The underlying idea is the following: if an
observable (σ3 in our case) does not commute with the dynamics,
i.e. the Hamiltonian of the system (σ1 in our case), then two

4 Sometimes, in particular by proponents of the many-world interpretation of
quantum mechanics (deWitt, 1970; Everett, 1957), objective realism is simply
defined as the ontic existence of a quantum state. We interpret this ontic existence
in the sense of ‘‘elements of reality’’ as discussed by Einstein, Podolsky, and Rosen
(1935). See also d’Espagnat (1979) and Mermin (1990) for further discussion in the
same spirit.

Fig. 5. A classical trajectory assumes at each moment in time a definite state (here
one of two possible states). With respect to three instances t1 , t2 , and t3 it falls into
one of 23 = 8 possible classes (cf. Table 1, left). For the shown history the states are
(−1,+1,+1).

Table 1
A classical trajectory for a two-state system falls into one of eight possible classes
with respect to the states assumed at three different moments of time.

s(t1) s(t2) s(t3) N−(t1, t3) N−(t1, t2) N−(t2, t3)

+1 +1 +1
+1 +1 −1 × ×

+1 −1 +1 × ×

+1 −1 −1 × ×

−1 +1 +1 × ×

−1 +1 −1 × ×

−1 −1 +1 × ×

−1 −1 −1

measurements of the same observable performed at different
times do, in general, not commute.
More technically speaking, if A corresponds to a measurement

of an observable at time t = 0, then A(t) = U(t)AU−1(t)
corresponds to the measurement of the same observable at time
t , where U(t) = exp(iHt) is the time evolution operator. If A does
not commute with U(t) and, therefore, not withH , then A does not
commute with A(t). This makes it possible to formulate temporal
Bell inequalities with only one observable.
We are now going to derive a particular form of temporal

Bell inequality inspired by an argument of Kochen and Specker
(d’Espagnat, 1979; Kochen & Specker, 1967;Mermin, 1990), before
we show how they are violated in the Necker–Zeno model
(Section 5) and discuss possible interpretations of such a violation
(Section 6). As in the Necker–Zeno model of Section 3, we refer to
a simple two-state system, i.e., a system which can only assume
two different states. (Generalizations to systems with an arbitrary
number of states are possible.) The assumption of ‘‘reality’’ (as
described above) implies that at each moment t the system is in
one of the two states. The ‘‘history’’ of the system is then given by
a classical trajectory which, at each moment, assumes one of two
possible values.
If we now specify three different moments t1, t2 and t3 (as in

Fig. 5) and define s(t1) to be the state of the system at time t1 (and
similarly s(t2) and s(t3)), we can say that any classical trajectory
falls into one of 23 = 8 possible classes summarized in Table 1
(left).
Let us now consider an ensemble of classical trajectories and

denote by N−(t1, t3) the number of cases in which the system
is in different states at t1 and t3 (i.e., where the product of the
state values is −1). Similarly, we define N−(t1, t2) and N−(t2, t3).
From Table 1 (right) it is obvious that any of the four possibilities
contained in N−(t1, t3) is also contained in either N−(t1, t2)
or N−(t2, t3). Therefore, simple set-theoretical considerations
provide the inequality:

N−(t1, t3) ≤ N−(t1, t2)+ N−(t2, t3). (8)

This is what we are looking for. The standard formulation
of Bell’s inequalities refers to two observations at two different
(but entangled) particles and evaluates the correlations between
the two particles. By contrast, the derived temporal version of
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a Bell inequality refers to successive measurements of the same
observable at different times.
Dividing Eq. (8) by the total number of trajectories we obtain an

inequality for the corresponding probabilities:

p−(t1, t3) ≤ p−(t1, t2)+ p−(t2, t3). (9)
Assuming time-translation invariance, i.e. these probabilities do
not depend on absolute times but only on time differences, leads
to:
p−(t3 − t1) ≤ p−(t2 − t1)+ p−(t3 − t2). (10)
As we shall see in the next section, this inequality can be violated
in the Necker–Zeno model.

5. Violating temporal Bell inequalities in the Necker–Zeno
model

The Necker–Zeno model is based on a mathematical formalism
which involves two complementary features: (i) the Hamiltonian
generating the dynamics of unperturbed evolution and (ii) the
observable leading to the ‘‘reduction’’ of the perceived stimulus
into one of its two alternative perspectival representations. Since
(i) and (ii) can be represented by non-commuting operators, the
model suggests the possibility of violating the temporal version of
Bell’s inequalities.
According to Eq. (3) the conditional probability for a system to

be in state |+〉 at time t1 and to be measured in state |+〉 at time t2
is given by

w++(t1, t2) = cos2(g(t2 − t1)). (11)
Therefore, the conditional probability of being in state |+〉 at time
t1 and being measured in state |−〉 at time t2 is given by

w+−(t1, t2) = sin2(g(t2 − t1)), (12)
and for the reverse transition we obtain the same probability:

w−+(t1, t2) = sin2(g(t2 − t1)). (13)
In all these conditional probabilities the condition refers to the
state at t1. Furthermore, the probabilities involved in the temporal
version of Bell’s inequalities are probabilities p−(t1, t2) for anti-
correlated observations, referring to the case that the perception at
time t1 differs from the perception at time t2. In the Necker–Zeno
model we obtain:

p−(t1, t2) =
1
2
(w+−(t1, t2)+ w−+(t1, t2)) = sin2 g(t2 − t1). (14)

We now have to find differences between times t1, t2 and t3 for
which these probabilities violate inequality (10). We consider the
special case for which τ := t3− t2 = t2− t1, i.e., for which the time
intervals on the right hand side of the inequality are equal. In this
case we obtain
p−(2τ) ≤ 2p−(τ ). (15)
In the Necker–Zeno model this inequality is maximally violated if:

gτ =
π

6
, (16)

which yields

sin2(g · 2τ) =
3
4
and sin2(gτ) =

1
4
. (17)

For t0 = 1/g ≈ 300 ms we obtain

τ =
π

6
· t0 ≈ 157ms. (18)

A possible experimental set-up to measure the violation of
the temporal Bell’s inequality could be as follows: An ambiguous
(Necker cube) stimulus is presented up to time t1 = 0 and
then turned off. At this point, the subject has to remember the
perspective perceived most recently. At time t2 ≈ 157 ms or t3 ≈

314 ms the stimulus is turned on again, and the subject has now
to indicate whether the perceived perspective has switched or not.
The ratio of cases with switched perspective over the total number
of cases provides the probabilities p−(τ ) and p−(2τ) needed to
check inequality (10).
So far, we took into account the full probability for a perspective

switch in a time interval τ (Eq. (14)). We cannot expect this
equation to hold for very long time intervals, in particular the
periodicity of the probability may be an artifact of the extension
of our model beyond plausible time scales.
In this context, we note that the approximation for the decay

probability (Eq. (7)) can also beused to check violations of temporal
Bell inequalities. The inequality (15) expresses a ‘‘sublinearity’’ for
the probability p−(τ )which is satisfied whenever p−(τ ) increases
linearly or less than linearly as a function of τ . It is violated if p−(τ )
increases faster than linear. Eq. (7) implies

p−(τ ) ≈ g2τ 2 + O(τ 4), (19)

which indeed increases faster than linear and thus violates the
temporal Bell inequalities.
The experimental scheme described above includes an issue

that is problematic for almost all direct attempts to test temporal
Bell inequalities: the difficulty of ‘‘non-invasive’’ measurements. A
particular history of a system should belong to one of the eight
classes described in Table 1, independent of whether or not an
observation is made at some instant in time. Or, in other words, a
measurement at time t1 or t2 should not change the class to which
the history belongs as compared to the case of no measurement
performed.
For ordinary (non-temporal) Bell inequalities, the non-

invasiveness of the first measurement can be simply secured if
(assuming locality) the second measurement is performed within
the causal complement of the lightcone of the first. For temporal
Bell inequalities this is impossible to do since both measurements
are performed at the same local system. For this reason, one has
to find a way to keep the degree of invasiveness due to the first
measurement as small as possible. Ideally, this would be realized
by an experiment distinguishing between the correlation or anti-
correlation of the two perceptions involved rather than comparing
the two individual perceptions.
However, there is an option for temporal Bell inequalities to

permit an even more direct answer to the question of objective
realism. In general, Bell’s inequalities involve expectation values
of products of non-commuting observables, 〈A · B〉, and any
measurement of A or B is ‘‘invasive’’ in the sense that it leads to
a change of the state of the system. The usual trick to avoid this
‘‘invasiveness’’ (under the assumption of locality) is to replace the
expectation value 〈A · B〉 by 〈A1 · B2〉, where the indices refer to
different particles and, therefore, A1 and B2 commute. For certain
entangled states of such two particles, the strict correlations allow
us to induce the result of a hypothetical measurement of B1 at
particle 1 from the actually performed measurement of B2 at
particle 2 (via the induction hypothesis).
Temporal Bell inequalities involve expectation values of the

type 〈A(t1) · A(t2)〉. From the viewpoint of quantummechanics we
again have the problem that A(t1) and A(t2) do not commute and,
therefore, it is not possible to performnon-invasivemeasurements
of both observables. However, for cognitive systems it may be
the case that, instead of measuring A(t1) and A(t2) separately
(and, therefore, violating the non-invasiveness assumption), one
can get the information about the product A(t1) A(t2) in one
measurement. For the case of bistable perception, one may ask
subjects only to indicate whether or not the perception of the cube
has changed from t1 to t2. This does not necessarily involve explicit
knowledge of the two perspectives themselves. In particular, we
suggest that potential memory and/or response effects due to an
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explicit measurement of A(t1) may be significantly reduced in
an experimental arrangement that is sufficiently subtle to allow
subjects to respond to the product A(t1) A(t2) only after t2.
In this context we should mention that measurements of the

cumulative dwell time distribution (see, e.g., Fig. 3 in Brascamp
et al., 2005) show a power-law behavior p(T ) ∝ T k with k � 1
for small values of T , which obviously does not satisfy Eq. (14).
However, since the distribution is obtained from successive
explicit responses to individual perceptions, this corresponds to
temporally local measurements that are invasive. In other words,
the explicit response to a perception distinguishes an instance
t = 0, and this contradicts the assumption of time-translation
invariance for the derivation of the temporal Bell inequality
equation (10). Therefore, the power-law behavior of small dwell
times does not indicate non-classical behavior of the temporal
evolution of mental states.

6. Discussion

For the historical Bell inequalities and their prehistory, it was
a key question which of the assumptions discussed in Section 4
should be relaxed or even abandoned. The famous articles by
Einstein et al. (1935) and by Bell (1966) both revolved around
this issue. For Einstein, who was convinced that local ‘‘elements
of reality’’ exist, the conclusion from nonlocal correlations was
that quantum theory is not complete. He argued that quantum
theory provides only statistical information about a system, whose
individual states will some day become describable by (so far
‘‘hidden’’) local variables.
Bell’s inequalities are formulated in such a general way that

they hold for any theory based on such hidden local variables
(Bell, 1966). Their violation in quantum systems (Aspect et al.,
1982) indicates that quantum physics is not based on hidden local
variables. Einstein’s ‘‘local elements of reality’’ are thereby refuted.
A most important consequence of this result is that non-

local correlations between subsystems must not be understood in
terms of causal interactions, possibly faster than light, between
those subsystems. Einstein insisted to exclude such ‘‘spooky
actions-at-a-distance’’ because, in his view, they would make any
science impossible. Todaywe know that nonlocal correlations have
nothing to do with ‘‘spookiness’’.
So, a proper understanding of holism and causation is the key

to an appropriate interpretation of systems which violate Bell
inequalities. This also applies to their temporal variant, though in a
slightly different way. While the effects of nonlocality à la Bell and
Aspect are mostly discussed in terms of spatial relations between
spatial subsystems, temporal Bell inequalities refer to relations
between temporal segments of the history of a system.
Violated temporal Bell inequalities entail that a state of a

system is nonlocally distributed along the time axis. System states
are improperly described if they are sharply localized at definite
instances of time. They are ‘‘stretched’’ over an extended time
interval that may depend on the specific system considered.
Within this interval, relations such as ‘‘earlier’’ or ‘‘later’’ are
illegitimate designators of the system state. This is just another
way of saying that it is impossible to define causal relationships
within such a time interval (Filk & von Müller, 2009).
In the Necker–Zeno model, this could be interpreted due to

a ‘‘superposition’’ state, actualizing neither one nor the other
perspective, but residing somehow ‘‘in between’’, offering the
potential to actualize either one or the other perspectival state.
Needless to say, this resembles the idea of a ‘‘reduction’’ of a
quantum superposition state very closely. We should indicate that
a similar scenario of mental temporal nonlocality was recently
proposed as characteristic of processes of cognitive decision
making (Busemeyer et al., 2006).
It is tempting to relate this temporal nonlocality to a ‘‘window

of temporal nowness’’, a concept that transcends a sharp boundary

of presence between past and future (Filk & von Müller, 2009;
Pöppel, 1997). Some indications of what this may have to do
with the Necker–Zeno model have been given by Franck and
Atmanspacher (2008), but the idea itself is much older and dates
back at least to James’ notion of the ‘‘specious present’’, a present
mental state extending over a time interval rather than fixed to
an instant of vanishing duration. Acategorial states as discussed by
Atmanspacher and Fach (2005)might be interesting candidates for
temporal nonlocality as a mental feature.
An interesting remark by Sudarshan (1983), one of the

discoverers of the quantum Zeno effect, illustrates how the
phenomenal experience of a temporally holistic state could be
imagined. Sudarshan speculates about a mode of awareness
in which ‘‘sensations, feelings, and insights are not neatly
categorized into chains of thoughts, nor is there a step-by-step
development of a logical-legal argument-to-conclusion. Instead,
patterns appear, interweave, coexist; and sequencing is made
inoperative. Conclusion, premises, feelings, and insights coexist in
a manner defying temporal order.’’
It is a necessary condition for temporally nonlocal correla-

tions that the dynamics of the system considered is governed
by operators that do not commute. This is the case in the
Necker–Zeno model, so that bistable perception may indeed ex-
hibit non-classical behavior although the corresponding cognitive
mechanisms are not treated on the basis of a genuine quantum
physical system. On a more general basis, we argued previously
(Atmanspacher & Filk, 2003) that non-commuting time operators
might be generic features of systems with temporal nonlocality.
It is known that such time operators bear an intimate connec-
tionwith both inconsistent histories and temporal nonlocality (At-
manspacher & Amann, 1998). A thematically related but more
general approach to relate physical andmental time to one another
was recently proposed (Primas, 2007, 2008).

7. Summary

In quantum physics, violations of Bell inequalities are regarded
as themost profound proof of evidence for quantum entanglement
and associated nonlocal correlations. Generalized quantum theory,
a formal framework based on non-commuting observables,
allows us to discuss quantum-like behavior also in non-quantum
systems and even in non-physical systems. Various approaches
have demonstrated this successfully for cognitive processes in
mental systems, such as decision making, context effects, concept
formation, and others.
One particular application, which we have worked out in

detail, refers to the bistable perception of ambiguous stimuli.
The corresponding Necker–Zeno model has been proposed and
refined in recent years and is now supported by several pieces of
experimental evidence. The dynamics of the ambiguous perceptual
states (percepts) can be modeled by non-commuting operators
and, thus, suggests non-classical effects.
One such effect is the potential existence of mental ‘‘superposi-

tion’’ states. In order to detect such states, it is desirable to have a
Bell-type inequality tailored to mental systems, which can be vio-
lated if the system is in a superposition state. We derive a special
variant of such a Bell inequality for temporal histories of systems
rather than for decomposed subsystems.
This temporal Bell inequality, formulated in the spirit of

the Kochen–Specker scheme, can indeed be violated in the
Necker–Zeno model. We determine the parameters of maximal
violation and propose an experimental scheme for tests. A major
obstacle for conclusive results will be the inevitability of invasive
measurements in bistable perception.
If mental superposition states can in fact be established

by violations of temporal Bell inequalities, this has remarkable
consequences. More than a century ago, William James already
pointed out that the concept of a ‘‘stream of consciousness’’ entails
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the necessity of intermediate states in between distinct percepts.
These states can easily be understood as unstable dynamical states.
Superposition states according to the Necker–Zeno model would
suggest a radically non-classical alternative: states extending
over time with non-causal correlations within their window of
nowness.
We emphasize that the Necker–Zeno model refers to cognitive

activity independent of anypossibly underlying brainmechanisms.
Althoughneural correlates of cognitive processes are an interesting
area of research in themselves, we argue that, to begin with,
phenomena should be described at the descriptive level at which
their occurrence is observed. This has the advantage that no
unclear or obscure interlevel relations need to be assumed.
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