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Introduction The distributional hypothesis

Meaning & distribution

I “Die Bedeutung eines Wortes ist sein Gebrauch

“

in der Sprache.”
— Ludwig Wittgenstein

I “You shall know a word by the company it keeps!”
— J. R. Firth (1957)

I Distributional hypothesis (Zellig Harris 1954)

Stefan Evert (U Osnabrück) Making Sense of DSM wordspace.collocations.de 4 / 115



Introduction The distributional hypothesis

What is the meaning of “bardiwac”?

I He handed her her glass of bardiwac.
I Beef dishes are made to complement the bardiwacs.
I Nigel staggered to his feet, face flushed from too much

bardiwac.
I Malbec, one of the lesser-known bardiwac grapes, responds

well to Australia’s sunshine.
I I dined off bread and cheese and this excellent bardiwac.
I The drinks were delicious: blood-red bardiwac as well as light,

sweet Rhenish.
+ bardiwac is a heavy red alcoholic beverage made from grapes

The examples above are handpicked, of course. But in a corpus like the
BNC, you will find at least as many informative sentences.
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Introduction The distributional hypothesis

A thought experiment: deciphering hieroglyphs

get sij ius hir iit kil
(knife) naif 51 20 84 0 3 0
(cat) ket 52 58 4 4 6 26
??? dog 115 83 10 42 33 17
(boat) beut 59 39 23 4 0 0
(cup) kap 98 14 6 2 1 0
(pig) pigij 12 17 3 2 9 27
(banana) nana 11 2 2 0 18 0
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Introduction The distributional hypothesis

English as seen by the computer . . .

get see use hear eat kill
get sij ius hir iit kil

knife naif 51 20 84 0 3 0
cat ket 52 58 4 4 6 26
dog dog 115 83 10 42 33 17
boat beut 59 39 23 4 0 0
cup kap 98 14 6 2 1 0
pig pigij 12 17 3 2 9 27
banana nana 11 2 2 0 18 0

verb-object counts from British National Corpus
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Introduction The distributional hypothesis

Geometric interpretation

I row vector xdog
describes usage of
word dog in the
corpus

I can be seen as
coordinates of point
in n-dimensional
Euclidean space Rn

get see use hear eat kill
knife 51 20 84 0 3 0
cat 52 58 4 4 6 26
dog 115 83 10 42 33 17
boat 59 39 23 4 0 0
cup 98 14 6 2 1 0
pig 12 17 3 2 9 27

banana 11 2 2 0 18 0

co-occurrence matrix M
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Introduction The distributional hypothesis

Geometric interpretation

I row vector xdog
describes usage of
word dog in the
corpus

I can be seen as
coordinates of point
in n-dimensional
Euclidean space Rn

I illustrated for two
dimensions:
get and use
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Introduction The distributional hypothesis

Geometric interpretation

I similarity = spatial
proximity
(Euclidean dist.)

I location depends on
frequency of noun
(fdog ≈ 2.7 · fcat)
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Introduction The distributional hypothesis

Semantic distances

I main result of distributional
analysis are “semantic”
distances between words

I typical applications
I nearest neighbours
I clustering of related words
I construct semantic map po
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Introduction The distributional hypothesis

A very brief history of DSM

I Introduced to computational linguistics in early 1990s
following the probabilistic revolution (Schütze 1992, 1998)

I Other early work in psychology (Landauer and Dumais 1997;
Lund and Burgess 1996)

+ influenced by Latent Semantic Indexing (Dumais et al. 1988)
and efficient software implementations (Berry 1992)

I Renewed interest in recent years
I 2007: CoSMo Workshop (at Context ’07)
I 2008: ESSLLI Lexical Semantics Workshop & Shared Task,

Special Issue of the Italian Journal of Linguistics
I 2009: GeMS Workshop (EACL 2009), DiSCo Workshop

(CogSci 2009), ESSLLI Advanced Course on DSM
I 2010: 2nd GeMS Workshop (ACL 2010), ESSLLI Workhsop on

Compositionality & DSM, Special Issue of JNLE (in prep.),
Computational Neurolinguistics Workshop and DSM tutorial
(NAACL-HLT 2010)
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Introduction The distributional hypothesis

Some applications in computational linguistics

I Unsupervised part-of-speech induction (Schütze 1995)
I Word sense disambiguation (Schütze 1998)
I Query expansion in information retrieval (Grefenstette 1994)
I Synonym tasks & other language tests

(Landauer and Dumais 1997; Turney et al. 2003)
I Thesaurus compilation (Lin 1998a; Rapp 2004)
I Ontology & wordnet expansion (Pantel et al. 2009)
I Attachment disambiguation (Pantel 2000)
I Probabilistic language models (Bengio et al. 2003)
I Subsymbolic input representation for neural networks
I Many other tasks in computational semantics:

entailment detection, noun compound interpretation,
identification of noncompositional expressions, . . .
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Introduction Three famous DSM examples

Latent Semantic Analysis (Landauer and Dumais 1997)

I Corpus: 30,473 articles from Grolier’s Academic American
Encyclopedia (4.6 million words in total)

+ articles were limited to first 2,000 characters
I Word-article frequency matrix for 60,768 words

I row vector shows frequency of word in each article
I Logarithmic frequencies scaled by word entropy
I Reduced to 300 dim. by singular value decomposition (SVD)

I borrowed from LSI (Dumais et al. 1988)
+ central claim: SVD reveals latent semantic features,

not just a data reduction technique
I Evaluated on TOEFL synonym test (80 items)

I LSA model achieved 64.4% correct answers
I also simulation of learning rate based on TOEFL results
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Introduction Three famous DSM examples

Word Space (Schütze 1992, 1993, 1998)

I Corpus: ≈ 60 million words of news messages (New York
Times News Service)

I Word-word co-occurrence matrix
I 20,000 target words & 2,000 context words as features
I row vector records how often each context word occurs close

to the target word (co-occurrence)
I co-occurrence window: left/right 50 words (Schütze 1998)

or ≈ 1000 characters (Schütze 1992)
I Rows weighted by inverse document frequency (tf.idf)
I Context vector = centroid of word vectors (bag-of-words)

+ goal: determine “meaning” of a context
I Reduced to 100 SVD dimensions (mainly for efficiency)
I Evaluated on unsupervised word sense induction by clustering

of context vectors (for an ambiguous word)
I induced word senses improve information retrieval performance
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Introduction Three famous DSM examples

HAL (Lund and Burgess 1996)

I HAL = Hyperspace Analogue to Language
I Corpus: 160 million words from newsgroup postings
I Word-word co-occurrence matrix

I same 70,000 words used as targets and features
I co-occurrence window of 1 – 10 words

I Separate counts for left and right co-occurrence
I i.e. the context is structured

I In later work, co-occurrences are weighted by (inverse)
distance (Li et al. 2000)

I Applications include construction of semantic vocabulary
maps by multidimensional scaling to 2 dimensions
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Introduction Three famous DSM examples

Many parameters . . .

I Enormous range of DSM parameters and applications
I Examples showed three entirely different models, each tuned

to its particular application
å We need to . . .

. . . get an overview of available DSM parameters

. . . learn about the effects of parameter settings

. . . understand what aspects of meaning are encoded in DSM
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Taxonomy of DSM parameters Definition of DSM & parameter overview
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Taxonomy of DSM parameters Definition of DSM & parameter overview

General definition of DSMs

A distributional semantic model (DSM) is a scaled and/or
transformed co-occurrence matrix M, such that each row x
represents the distribution of a target term across contexts.

get see use hear eat kill
knife 0.027 -0.024 0.206 -0.022 -0.044 -0.042
cat 0.031 0.143 -0.243 -0.015 -0.009 0.131
dog -0.026 0.021 -0.212 0.064 0.013 0.014
boat -0.022 0.009 -0.044 -0.040 -0.074 -0.042
cup -0.014 -0.173 -0.249 -0.099 -0.119 -0.042
pig -0.069 0.094 -0.158 0.000 0.094 0.265

banana 0.047 -0.139 -0.104 -0.022 0.267 -0.042

Term = word form, lemma, phrase, morpheme, word pair, . . .
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Taxonomy of DSM parameters Definition of DSM & parameter overview

General definition of DSMs

Mathematical notation:
I m × n co-occurrence matrix M (example: 7× 6 matrix)

I m rows = target terms
I n columns = features or dimensions

M =


x11 x12 · · · x1n
x21 x22 · · · x2n
...

...
...

xm1 xm2 · · · xmn


I distribution vector xi = i-th row of M, e.g. x3 = xdog
I components xi = (xi1, xi2, . . . , xin) = features of i-th term:

x3 = (−0.026, 0.021,−0.212, 0.064, 0.013, 0.014)
= (x31, x32, x33, x34, x35, x36)
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Taxonomy of DSM parameters Definition of DSM & parameter overview

Overview of DSM parameters

Linguistic pre-processing (annotation, definition of terms)

⇓
Term-context vs. term-term matrix

⇓
Size & type of context / structured vs. unstructered

⇓
Geometric vs. probabilistic interpretation

⇓
Feature scaling

⇓
Similarity / distance measure & normalisation

⇓
Dimensionality reduction
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Taxonomy of DSM parameters Definition of DSM & parameter overview

Corpus pre-processing

I Linguistic analysis & annotation
I minimally, corpus must be tokenised (Ü identify terms)
I part-of-speech tagging
I lemmatisation / stemming
I word sense disambiguation (rare)
I shallow syntactic patterns
I dependency parsing

I Generalisation of terms
I often lemmatised to reduce data sparseness:

go, goes, went, gone, going Ü go
I POS disambiguation (light/N vs. light/A vs. light/V)
I word sense disambiguation (bankriver vs. bankfinance)

I Trade-off between deeper linguistic analysis and
I need for language-specific resources
I possible errors introduced at each stage of the analysis
I even more parameters to optimise / cognitive plausibility
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Effects of pre-processing

Nearest neighbours of walk (BNC)

word forms
I stroll
I walking
I walked
I go
I path
I drive
I ride
I wander
I sprinted
I sauntered

lemmatised corpus

I hurry
I stroll
I stride
I trudge
I amble
I wander
I walk-nn
I walking
I retrace
I scuttle
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Effects of pre-processing

Nearest neighbours of arrivare (Repubblica)

word forms
I giungere
I raggiungere
I arrivi
I raggiungimento
I raggiunto
I trovare
I raggiunge
I arrivasse
I arriverà
I concludere

lemmatised corpus

I giungere
I aspettare
I attendere
I arrivo-nn
I ricevere
I accontentare
I approdare
I pervenire
I venire
I piombare
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Taxonomy of DSM parameters Definition of DSM & parameter overview

Term-context vs. term-term matrix

Term-context matrix records frequency of term in each individual
context (typically a sentence or document)

doc1 doc2 doc3 · · ·
boat 1 3 0 · · ·
cat 0 0 2 · · ·
dog 1 0 1 · · ·

I Appropriate contexts are non-overlapping textual units
(Web page, encyclopaedia article, paragraph, sentence, . . . )

I Can also be generalised to context types, e.g.
I bag of content words
I specific pattern of POS tags
I subcategorisation pattern of target verb

I Term-context matrix is usually very sparse
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Term-context vs. term-term matrix

Term-term matrix records co-occurrence frequencies of context
terms for each target term (often target terms 6= context terms)

see use hear · · ·
boat 39 23 4 · · ·
cat 58 4 4 · · ·
dog 83 10 42 · · ·

I Different types of contexts (Evert 2008)
I surface context (word or character window)
I textual context (non-overlapping segments)
I syntactic contxt (specific syntagmatic relation)

I Can be seen as smoothing of term-context matrix
I average over similar contexts (with same context terms)
I data sparseness reduced, except for small windows
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Surface context

Context term occurs within a window of k words around target.

The silhouette of the sun beyond a wide-open bay on the lake; the
sun still glitters although evening has arrived in Kuhmo. It’s
midsummer; the living room has its instruments and other objects
in each of its corners.

Parameters:
I window size (in words or characters)
I symmetric vs. one-sided window
I uniform or “triangular” (distance-based) weighting
I window clamped to sentences or other textual units?

Stefan Evert (U Osnabrück) Making Sense of DSM wordspace.collocations.de 33 / 115



Taxonomy of DSM parameters Definition of DSM & parameter overview

Effect of different window sizes

Nearest neighbours of dog (BNC)

2-word window
I cat
I horse
I fox
I pet
I rabbit
I pig
I animal
I mongrel
I sheep
I pigeon

30-word window
I kennel
I puppy
I pet
I bitch
I terrier
I rottweiler
I canine
I cat
I to bark
I Alsatian
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Textual context

Context term is in the same linguistic unit as target.

The silhouette of the sun beyond a wide-open bay on the lake; the
sun still glitters although evening has arrived in Kuhmo. It’s
midsummer; the living room has its instruments and other objects
in each of its corners.

Parameters:
I type of linguistic unit

I sentence
I paragraph
I turn in a conversation
I Web page
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Syntactic context

Context term is linked to target by a syntactic dependency
(e.g. subject, modifier, . . . ).

The silhouette of the sun beyond a wide-open bay on the lake; the
sun still glitters although evening has arrived in Kuhmo. It’s
midsummer; the living room has its instruments and other objects
in each of its corners.

Parameters:
I types of syntactic dependency (Padó and Lapata 2007)
I direct vs. indirect dependency paths
I homogeneous data (e.g. only verb-object) vs.

heterogeneous data (e.g. all children and parents of the verb)
I maximal length of dependency path
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“Knowledge pattern” context

Context term is linked to target by a lexico-syntactic pattern
(text mining, cf. Hearst 1992, Pantel & Pennacchiotti 2008, etc.).

In Provence, Van Gogh painted with bright colors such as red and
yellow. These colors produce incredible effects on anybody looking
at his paintings.

Parameters:
I inventory of lexical patterns

I lots of research to identify semantically interesting patterns
(cf. Almuhareb & Poesio 2004, Veale & Hao 2008, etc.)

I fixed vs. flexible patterns
I patterns are mined from large corpora and automatically

generalised (optional elements, POS tags or semantic classes)
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Structured vs. unstructured context

I In unstructered models, context specification acts as a filter
I determines whether context tokens counts as co-occurrence
I e.g. linked by specific syntactic relation such as verb-object

I In structured models, context words are subtyped
I depending on their position in the context
I e.g. left vs. right context, type of syntactic relation, etc.
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Structured vs. unstructured surface context

A dog bites a man. The man’s dog bites a dog. A dog bites a man.

unstructured bite
dog 4
man 3

A dog bites a man. The man’s dog bites a dog. A dog bites a man.

structured bite-l bite-r
dog 3 1
man 1 2
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Structured vs. unstructured dependency context

A dog bites a man. The man’s dog bites a dog. A dog bites a man.

unstructured bite
dog 4
man 2

A dog bites a man. The man’s dog bites a dog. A dog bites a man.

structured bite-subj bite-obj
dog 3 1
man 0 2
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Comparison

I Unstructured context
I data less sparse (e.g. man kills and kills man both map to the

kill dimension of the vector xman)

I Structured context
I more sensitive to semantic distinctions

(kill-subj and kill-obj are rather different things!)
I dependency relations provide a form of syntactic “typing” of

the DSM dimensions (the “subject” dimensions, the
“recipient” dimensions, etc.)

I important to account for word-order and compositionality
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Overview of DSM parameters

Linguistic pre-processing (annotation, definition of terms)
⇓

Term-context vs. term-term matrix
⇓

Size & type of context / structured vs. unstructered
⇓

Geometric vs. probabilistic interpretation
⇓

Feature scaling
⇓

Similarity / distance measure & normalisation
⇓

Dimensionality reduction
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Geometric vs. probabilistic interpretation

I Geometric interpretation
I row vectors as points or arrows in n-dim. space
I very intuitive, good for visualisation
I use techniques from geometry and linear algebra

I Probabilistic interpretation
I co-occurrence matrix as observed sample statistic
I “explained” by generative probabilistic model
I recent work focuses on hierarchical Bayesian models
I probabilistic LSA (Hoffmann 1999), Latent Semantic

Clustering (Rooth et al. 1999), Latent Dirichlet Allocation
(Blei et al. 2003), etc.

I explicitly accounts for random variation of frequency counts
I intuitive and plausible as topic model

+ focus exclusively on geometric interpretation in this talk
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Feature scaling

Feature scaling is used to compress wide magnitude range of
frequency counts and to “discount” less informative features

I Logarithmic scaling: x ′ = log(x + 1)
(cf. Weber-Fechner law for human perception)

I Relevance weighting, e.g. tf.idf (information retrieval)

I Statistical association measures (Evert 2004, 2008) take
frequency of target word and context feature into account

I the less frequent the target word and (more importantly) the
context feature are, the higher the weight given to their
observed co-occurrence count should be (because their
expected chance co-occurrence frequency is low)

I different measures – e.g., mutual information, log-likelihood
ratio – differ in how they balance observed and expected
co-occurrence frequencies
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Association measures: Mutual Information (MI)

word1 word2 fobs f1 f2
dog small 855 33,338 490,580
dog domesticated 29 33,338 918

Expected co-occurrence frequency:

fexp =
f1 · f2

N

Mutual Information compares observed vs. expected frequency:

MI(w1,w2) = log2
fobs
fexp

= log2
N · fobs
f1 · f2

Disadvantage: MI overrates combinations of rare terms.
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Other association measures

Log-likelihood ratio (Dunning 1993) has more complex form, but
its “core” is known as local MI (Evert 2004).

local-MI(w1,w2) = fobs ·MI(w1,w2)

word1 word2 fobs MI local-MI
dog small 855 3.96 3382.87
dog domesticated 29 6.85 198.76
dog sgjkj 1 10.31 10.31

The t-score measure (Church and Hanks 1990) is popular in
lexicography:

t-score(w1,w2) =
fobs − fexp√

fobs
Details & many more measures: http://www.collocations.de/
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Geometric distance

I Distance between vectors
u, v ∈ Rn Ü (dis)similarity

I u = (u1, . . . , un)
I v = (v1, . . . , vn)

I Euclidean distance d2 (u, v)
I “City block” Manhattan

distance d1 (u, v)
I Both are special cases of the
Minkowski p-distance dp (u, v)
(for p ∈ [1,∞])

x1

v

x2

1 2 3 4 5

1

2

3

4

5

6

6 u

d2 (!u,!v) = 3.6

d1 (!u,!v) = 5
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Geometric distance

I Distance between vectors
u, v ∈ Rn Ü (dis)similarity

I u = (u1, . . . , un)
I v = (v1, . . . , vn)

I Euclidean distance d2 (u, v)
I “City block” Manhattan

distance d1 (u, v)
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d1 (u, v) := |u1 − v1|+ · · ·+ |un − vn|
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Geometric distance

I Distance between vectors
u, v ∈ Rn Ü (dis)similarity

I u = (u1, . . . , un)
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6 u

d2 (!u,!v) = 3.6

d1 (!u,!v) = 5

dp (u, v) :=
(
|u1 − v1|p + · · ·+ |un − vn|p

)1/p

d∞ (u, v) = max
{
|u1 − v1|, . . . , |un − vn|

}
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Other distance measures

I Information theory: Kullback-Leibler (KL) divergence for
probability vectors (non-negative, ‖x‖1 = 1)

D(u‖v) =
n∑

i=1
ui · log2

ui
vi

I Properties of KL divergence
I most appropriate in a probabilistic interpretation of M
I not symmetric, unlike all other measures
I alternatives: skew divergence, Jensen-Shannon divergence
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Similarity measures

I angle α between two
vectors u, v is given by

cosα =

∑n
i=1 ui · vi√∑

i u2
i ·
√∑

i v2
i

=
〈u, v〉

‖u‖2 · ‖v‖2

I cosine measure of
similarity: cosα

I cosα = 1 Ü collinear
I cosα = 0 Ü orthogonal
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Taxonomy of DSM parameters Definition of DSM & parameter overview

Similarity measures
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Taxonomy of DSM parameters Definition of DSM & parameter overview

Normalisation of row vectors

I geometric distances only
make sense if vectors are
normalised to unit length

I divide vector by its length:

x/‖x‖

I normalisation depends on
distance measure!

I special case: scale to
relative frequencies with
‖x‖1 = |x1|+ · · ·+ |xn|
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Taxonomy of DSM parameters Definition of DSM & parameter overview

Scaling of column vectors (standardisation)

I In statistical analysis and machine learning, features are
usually centred and scaled so that

mean µ = 0
variance σ2 = 1

I In DSM research, this step is less common for columns of M
I centring is a prerequisite for certain dimensionality reduction

and data analysis techniques (esp. PCA)
I scaling may give too much weight to rare features

I It does not make sense to combine column-standardisation
with row-normalisation! (Do you see why?)

I but variance scaling without centring may be applied
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Taxonomy of DSM parameters Definition of DSM & parameter overview

Overview of DSM parameters

Linguistic pre-processing (annotation, definition of terms)
⇓

Term-context vs. term-term matrix
⇓

Size & type of context / structured vs. unstructered
⇓

Geometric vs. probabilistic interpretation
⇓

Feature scaling
⇓

Similarity / distance measure & normalisation
⇓

Dimensionality reduction
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Taxonomy of DSM parameters Definition of DSM & parameter overview

Dimensionality reduction = data compression

I Co-occurrence matrix M is often unmanageably large
and can be extremely sparse

I Google Web1T5: 1M × 1M matrix with one trillion cells, of
which less than 0.05% contain nonzero counts (Evert 2010)

å Compress matrix by reducing dimensionality (= columns)

I Feature selection: columns with high frequency & variance
I measured by entropy, chi-squared test, . . .
I may select correlated (Ü uninformative) dimensions
I joint selection of multiple features is expensive

I Projection into (linear) subspace
I principal component analysis (PCA)
I independent component analysis (ICA)
I random indexing (RI)

+ intuition: preserve distances between data points
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Taxonomy of DSM parameters Definition of DSM & parameter overview

Dimensionality reduction & latent dimensions

Landauer and Dumais (1997) claim that LSA dimensionality
reduction (and related PCA technique) uncovers latent
dimensions by exploiting correlations between features.

I Example: term-term matrix
I V-Obj cooc’s extracted from BNC

I targets = noun lemmas
I features = verb lemmas

I feature scaling: association scores
(modified log Dice coefficient)

I k = 111 nouns with f ≥ 20
(must have non-zero row vectors)

I n = 2 dimensions: buy and sell

noun buy sell
bond 0.28 0.77
cigarette -0.52 0.44
dress 0.51 -1.30
freehold -0.01 -0.08
land 1.13 1.54
number -1.05 -1.02
per -0.35 -0.16
pub -0.08 -1.30
share 1.92 1.99
system -1.63 -0.70
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Taxonomy of DSM parameters Definition of DSM & parameter overview

Dimensionality reduction & latent dimensions
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Taxonomy of DSM parameters Definition of DSM & parameter overview

Motivating latent dimensions & subspace projection

I The latent property of being a commodity is “expressed”
through associations with several verbs: sell, buy, acquire, . . .

I Consequence: these DSM dimensions will be correlated

I Identify latent dimension by looking for strong correlations
(or weaker correlations between large sets of features)

I Projection into subspace V of k < n latent dimensions
as a “noise reduction” technique Ü LSA

I Assumptions of this approach:
I “latent” distances in V are semantically meaningful
I other “residual” dimensions represent chance co-occurrence

patterns, often particular to the corpus underlying the DSM
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Taxonomy of DSM parameters Definition of DSM & parameter overview

The latent “commodity” dimension
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Taxonomy of DSM parameters Examples

Outline

Introduction
The distributional hypothesis
Three famous DSM examples

Taxonomy of DSM parameters
Definition of DSM & parameter overview
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Usage and evaluation of DSM
Using & interpreting DSM distances
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Singular Value Decomposition
Which distance measure?
Dimensionality reduction and SVD
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Taxonomy of DSM parameters Examples

Some well-known DSM examples
Latent Semantic Analysis (Landauer and Dumais 1997)

I term-context matrix with document context
I weighting: log term frequency and term entropy
I distance measure: cosine
I dimensionality reduction: SVD

Hyperspace Analogue to Language (Lund and Burgess 1996)

I term-term matrix with surface context
I structured (left/right) and distance-weighted frequency counts
I distance measure: Minkowski metric (1 ≤ p ≤ 2)
I dimensionality reduction: feature selection (high variance)
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Taxonomy of DSM parameters Examples

Some well-known DSM examples
Infomap NLP (Widdows 2004)

I term-term matrix with unstructured surface context
I weighting: none
I distance measure: cosine
I dimensionality reduction: SVD

Random Indexing (Karlgren & Sahlgren 2001)

I term-term matrix with unstructured surface context
I weighting: various methods
I distance measure: various methods
I dimensonality reduction: random indexing (RI)
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Taxonomy of DSM parameters Examples

Some well-known DSM examples
Dependency Vectors (Padó and Lapata 2007)

I term-term matrix with unstructured dependency context
I weighting: log-likelihood ratio
I distance measure: information-theoretic (Lin 1998b)
I dimensionality reduction: none

Distributional Memory (Baroni & Lenci 2009)

I both term-context and term-term matrices
I context: structured dependency context
I weighting: local-MI association measure
I distance measure: cosine
I dimensionality reduction: none
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Usage and evaluation of DSM Using & interpreting DSM distances
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Usage and evaluation of DSM Using & interpreting DSM distances

Nearest neighbours
DSM based on verb-object relations from BNC, reduced to 100 dim. with SVD

Neighbours of dog (cosine angle):
+ girl (45.5), boy (46.7), horse(47.0), wife (48.8), baby (51.9),

daughter (53.1), side (54.9), mother (55.6), boat (55.7), rest
(56.3), night (56.7), cat (56.8), son (57.0), man (58.2), place
(58.4), husband (58.5), thing (58.8), friend (59.6), . . .

Neighbours of school:
+ country (49.3), church (52.1), hospital (53.1), house (54.4),

hotel (55.1), industry (57.0), company (57.0), home (57.7),
family (58.4), university (59.0), party (59.4), group (59.5),
building (59.8), market (60.3), bank (60.4), business (60.9),
area (61.4), department (61.6), club (62.7), town (63.3),
library (63.3), room (63.6), service (64.4), police (64.7), . . .
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Usage and evaluation of DSM Using & interpreting DSM distances

Nearest neighbours
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Usage and evaluation of DSM Using & interpreting DSM distances

Clustering
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Usage and evaluation of DSM Using & interpreting DSM distances

Semantic maps
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Usage and evaluation of DSM Using & interpreting DSM distances

Latent dimensions
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Usage and evaluation of DSM Using & interpreting DSM distances

Semantic similarity graph (topological structure)
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Usage and evaluation of DSM Using & interpreting DSM distances

Semantic similarity graph (topological structure)
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Usage and evaluation of DSM Using & interpreting DSM distances

Distributional similarity as semantic similarity

I DSMs interpret semantic similarity as a quantitative notion
I if xA is closer to xB than to xC in the distributional vector

space, then A is more semantically similar to B than to C

rhino fall rock
woodpecker rise lava
rhinoceros increase sand
swan fluctuation boulder
whale drop ice
ivory decrease jazz
plover reduction slab
elephant logarithm cliff
bear decline pop
satin cut basalt
sweatshirt hike crevice
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Usage and evaluation of DSM Using & interpreting DSM distances

Types of semantic relations in DSMs

I Neighbors in DSMs have different types of semantic relations
car (InfomapNLP on BNC; n = 2)

I van co-hyponym
I vehicle hyperonym
I truck co-hyponym
I motorcycle co-hyponym
I driver related entity
I motor part
I lorry co-hyponym
I motorist related entity
I cavalier hyponym
I bike co-hyponym

car (InfomapNLP on BNC; n = 30)

I drive function
I park typical action
I bonnet part
I windscreen part
I hatchback part
I headlight part
I jaguar hyponym
I garage location
I cavalier hyponym
I tyre part
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Usage and evaluation of DSM Using & interpreting DSM distances

Semantic similarity and relatedness

I Semantic similarity - two words sharing a high number of
salient features (attributes)

I synonymy (car/automobile)
I hyperonymy (car/vehicle)
I co-hyponymy (car/van/truck)

I Semantic relatedness (Budanitsky & Hirst 2006) - two words
semantically associated without being necessarily similar

I meronymy (car/tyre)
I function (car/drive)
I attribute (car/fast)
I location (car/road)
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Usage and evaluation of DSM Evaluation: attributional similarity
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Usage and evaluation of DSM Evaluation: attributional similarity

DSMs and semantic similarity

I Most DSM models emphasize paradigmatic similarity
I words that tend to occur in the same contexts

I Words that share many contexts will correspond to concepts
that share many attributes (attributional similarity), i.e.
concepts that are taxonomically/ontologically similar

I synonyms (rhino/rhinoceros)
I antonyms and values on a scale (good/bad)
I co-hyponyms (rock/jazz)
I hyper- and hyponyms (rock/basalt)

I Taxonomic similarity is seen as the fundamental semantic
relation, allowing categorization, generalization, inheritance
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Usage and evaluation of DSM Evaluation: attributional similarity

Evaluation of attributional similarity

I Synonym identification
I TOEFL test

I Modeling semantic similarity judgments
I the Rubenstein/Goodenough norms

I Noun categorization
I the ESSLLI 2008 dataset

I Semantic priming
I the Hodgson dataset
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Usage and evaluation of DSM Evaluation: attributional similarity

The TOEFL synonym task

I The TOEFL dataset
I 80 items
I Target: levied

Candidates: imposed, believed, requested, correlated

I DSMs and TOEFL
1. take vectors of the target (t) and of the candidates (c1 . . . cn)
2. measure the distance between t and ci , with 1 ≤ i ≤ n
3. select ci with the shortest distance in space from t
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Usage and evaluation of DSM Evaluation: attributional similarity

Humans vs. DSMs on the synonym task

I Humans (Landauer and Dumais 1997; Rapp 2004)
I Foreign test takers: 64.5%
I Macquarie non-natives: 86.75%
I Macquarie natives: 97.75%

I Machines
I Classic LSA (Landauer and Dumais 1997): 64.4%
I Padó and Lapata’s (2007) dependency-based model: 73%
I Rapp’s (2003) SVD model on lemmatized BNC: 92.5%

Stefan Evert (U Osnabrück) Making Sense of DSM wordspace.collocations.de 78 / 115



Usage and evaluation of DSM Evaluation: attributional similarity

Semantic similarity judgments

Dataset Rubenstein and Goodenough (1965) (R&G) of
65 noun pairs rated by 51 subjects on a 0-4 scale

car automobile 3.9
food fruit 2.7
cord smile 0.0

I DSMs vs. Rubenstein & Goodenough
1. for each test pair (w1,w2), take vectors w1 and w2
2. measure the distance (e.g. cosine) between w1 and w2
3. measure (Pearson) correlation between vector distances and

R&G average judgments (Padó and Lapata 2007)

model r
dep-filtered+SVD 0.8
dep-filtered 0.7
dep-linked (DM) 0.64
window 0.63
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Usage and evaluation of DSM Evaluation: attributional similarity

Categorization

I In categorization tasks, subjects are typically asked to assign
experimental items – objects, images, words – to a given
category or group items belonging to the same category

I categorization requires an understanding of the relationship
between the items in a category

I Categorization is a basic cognitive operation presupposed by
further semantic tasks

I inference
F if X is a CAR then X is a VEHICLE

I compositionality
F λy : FOOD λx : ANIMATE; eat(x , y)

I “Chicken-and-egg” problem for relationship of categorization
and similarity (cf. Goodman 1972, Medin et al. 1993)
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Usage and evaluation of DSM Evaluation: attributional similarity

Noun categorization

Dataset 44 concrete nouns (ESSLLI 2008 Shared Task)
I 24 natural entities

I 15 animals:
7 birds (eagle), 8 ground animals (lion)

I 9 plants: 4 fruits (banana), 5 greens (onion)
I 20 artifacts

I 13 tools (hammer), 7 vehicles (car)

I DSMs and noun categorization
I categorization can be operationalized as a clustering task

1. for each noun wi in the dataset, take its vector wi
2. apply a clustering method to the set of vectors wi
3. evaluate whether clusters correspond to gold-standard

semantic classes (purity, entropy, . . . )
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Usage and evaluation of DSM Evaluation: attributional similarity

Noun categorization

I Clustering experiments with CLUTO (Karypis 2003)
I repeated bisection algorithm
I 6-way (birds, ground animals, fruits, greens, tools and

vehicles), 3-way (animals, plants and artifacts) and 2-way
(natural and artificial entities) clusterings

I Clusters evaluation
I entropy – whether words from different classes are represented

in the same cluster (best = 0)
I purity – degree to which a cluster contains words from one

class only (best = 1)
I global score across the three clustering experiments

3∑
i=1

Purityi −
3∑

i=1
Entropyi
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Usage and evaluation of DSM Evaluation: attributional similarity

Noun categorization: results

model 6-way 3-way 2-way global
P E P E P E

Katrenko 89 13 100 0 80 59 197
Peirsman+ 82 23 84 34 86 55 140
dep-typed (DM) 77 24 79 38 59 97 56
dep-filtered 80 28 75 51 61 95 42
window 75 27 68 51 68 89 44
Peirsman− 73 28 71 54 61 96 27
Shaoul 41 77 52 84 55 93 -106

Katrenko, Peirsman+/-, Shaoul: ESSLLI 2008 Shared Task
DM: Baroni & Lenci (2009)
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Usage and evaluation of DSM Evaluation: attributional similarity

Semantic priming

I Hearing/reading a “related” prime facilitates access to a target
in various lexical tasks (naming, lexical decision, reading)

I the word pear is recognized/accessed faster if it is heard/read
after apple

I Hodgson (1991) single word lexical decision task, 136
prime-target pairs (cf. Padó and Lapata 2007)

I similar amounts of priming for different semantic relations
between primes and targets (approx. 23 pairs per relation):

F synonyms (synonym): to dread/to fear
F antonyms (antonym): short/tall
F coordinates (coord): train/truck
F super- and subordinate pairs (supersub): container/bottle
F free association pairs (freeass): dove/peace
F phrasal associates (phrasacc): vacant/building
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Usage and evaluation of DSM Evaluation: attributional similarity

Simulating semantic priming
McDonald & Brew (2004), Padó & Lapata (2007)

I DSMs and semantic priming
1. for each related prime-target pair, measure cosine-based

similarity between pair items (e.g., to dread/to fear)
2. to estimate unrelated primes, take average of cosine-based

similarity of target with other primes from same relation
data-set (e.g., value/to fear)

3. similarity between related items should be significantly higher
than average similarity between unrelated items

I Significant effects (p < .01) for all semantic relations
I strongest effects for synonyms, antonyms & coordinates
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Singular Value Decomposition Which distance measure?

Outline

Introduction
The distributional hypothesis
Three famous DSM examples

Taxonomy of DSM parameters
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Examples

Usage and evaluation of DSM
Using & interpreting DSM distances
Evaluation: attributional similarity

Singular Value Decomposition
Which distance measure?
Dimensionality reduction and SVD

Discussion

Stefan Evert (U Osnabrück) Making Sense of DSM wordspace.collocations.de 86 / 115



Singular Value Decomposition Which distance measure?

Distance vs. norm

I Intuitively, geometric
distance d (u, v)
corresponds to length
‖u− v‖ of displacement
vector u− v

I d (u, v) is a metric
I ‖u− v‖ is a norm
I ‖u‖ = d

(
u, 0
)

I Such a metric is always
translation-invariant

I dp (u, v) = ‖v− u‖p

x1

origin

v

x2

1 2 3 4 5

1

2

3

4

5

6

6 u‖!u‖ = d
(
!u,!0

)

d (!u,!v) = ‖!u − !v‖

‖!v‖ = d
(
!v,!0

)

I Minkowski p-norm for p ∈ [1,∞]:

‖u‖p :=
(
|u1|p + · · ·+ |un|p

)1/p
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Singular Value Decomposition Which distance measure?

Which distance measure should I use?

I Choice of metric or norm is one of the parameters of a DSM

I Measures of distance between points:
I intuitive Euclidean norm ‖·‖2
I “city-block” Manhattan distance ‖·‖1
I maximum distance ‖·‖∞
I general Minkowski p-norm ‖·‖p
I and many other formulae . . .

I Measures of the similarity of arrows:
I “cosine distance” ∼ u1v1 + · · ·+ unvn
I Dice coefficient (matching non-zero coordinates)
I and, of course, many other formulae . . .

+ these measures determine angles between arrows
I Information-theoretic measures

I KL-divergence, skew divergence, . . .
I most sensible in a probabilistic analysis of the DSM matrix
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Singular Value Decomposition Which distance measure?

The family of Minkowski p-norms

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Unit circle according to p−norm

x1

x 2

p = 1
p = 2
p = 5
p = ∞

I visualisation of norms in
R2 by plotting unit circle
for each norm, i.e. points
u with ‖u‖ = 1

I here: p-norms ‖·‖p for
different values of p

I triangle inequality ⇐⇒
unit circle is convex
⇐⇒ holds for p ≥ 1

I Consequence for DSM: p � 2 “favours” small differences in
many coordinates, p � 2 differences in few coordinates

I Rotation-invariance of Euclidean norm Ü many intuitive and
convenient geometric properties (orthogonality, angles, . . . )
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Singular Value Decomposition Which distance measure?

Euclidean norm & inner product

I The Euclidean norm ‖u‖2 =
√
〈u,u〉 is special because it can

be derived from the inner product:

〈u, v〉 := xTy = x1y1 + · · ·+ xnyn

I Angle φ between vectors u, v ∈ Rn:

cosφ :=
〈u, v〉
‖u‖ · ‖v‖

+ Euclidean norm closely related to cosine similarity cosφ

I u and v are orthogonal iff 〈u, v〉 = 0
I the shortest connection between a point u and a subspace U

is orthogonal to all vectors v ∈ U
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Singular Value Decomposition Which distance measure?

Euclidean distance or cosine similarity?

I Which is better, Euclidean distance or cosine similarity?

I They are equivalent: if vectors are normalised (‖u‖2 = 1),
both lead to the same neighbour ranking

d2 (u, v) =
√
‖u− v‖2

=
√
〈u− v,u− v〉

=
√
〈u,u〉+ 〈v, v〉 − 2 〈u, v〉

=
√
‖u‖2 + ‖v‖2 − 2 〈u, v〉

=
√
2− 2 cosφ
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Singular Value Decomposition Dimensionality reduction and SVD
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Singular Value Decomposition Dimensionality reduction and SVD

Motivating latent dimensions & subspace projection

I The latent property of being a commodity is “expressed”
through associations with several verbs: sell, buy, acquire, . . .

I Consequence: these DSM dimensions will be correlated

I Identify latent dimension by looking for strong correlations
(or weaker correlations between large sets of features)

I Projection into subspace V of k < n latent dimensions
as a “noise reduction” technique Ü LSA

I Assumptions of this approach:
I “latent” distances in V are semantically meaningful
I other “residual” dimensions represent chance co-occurrence

patterns, often particular to the corpus underlying the DSM

Stefan Evert (U Osnabrück) Making Sense of DSM wordspace.collocations.de 93 / 115



Singular Value Decomposition Dimensionality reduction and SVD

The latent “commodity” dimension
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Singular Value Decomposition Dimensionality reduction and SVD

Centering and variance

I Uncentered
data set

I Centered
data set

I Variance of
centered data

σ2 = 1
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m∑
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Singular Value Decomposition Dimensionality reduction and SVD
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Singular Value Decomposition Dimensionality reduction and SVD

Centering and variance

I Uncentered
data set

I Centered
data set

I Variance of
centered data

σ2 = 1
m−1

m∑
i=1
‖xi‖2
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variance = 1.26
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Singular Value Decomposition Dimensionality reduction and SVD

Principal components analysis (PCA)

I We want to project the data points to a lower-dimensional
subspace, but preserve their mutual distances as well as
possible

I Insight 1: variance = average squared distance

1
m(m − 1)

m∑
i=1

m∑
j=1
‖xi − xj‖2 =

2
m − 1

m∑
i=1
‖xi‖2 = 2σ2

I Insight 2: for an orthogonal projection, loss of variance
corresponds to average change in distances between points

I If we reduced the data set to just a single dimension, which
dimension would preserve the most variance?

I Mathematically, we project the points onto a line through the
origin and calculate one-dimensional variance on this line

I we’ll see in a moment how to compute such projections
I but first, let us look at a few examples
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Singular Value Decomposition Dimensionality reduction and SVD

Projection and preserved variance: examples
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Singular Value Decomposition Dimensionality reduction and SVD

Projection and preserved variance: examples
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Singular Value Decomposition Dimensionality reduction and SVD

Projection and preserved variance: examples
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Singular Value Decomposition Dimensionality reduction and SVD

Projection and preserved variance: examples
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Singular Value Decomposition Dimensionality reduction and SVD

Projection and preserved variance: examples
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Singular Value Decomposition Dimensionality reduction and SVD

Projection and preserved variance: examples
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Singular Value Decomposition Dimensionality reduction and SVD

The covariance matrix

I 1-D subspace described
by unit vector ‖v‖ = 1

I Orthogonal projection Pv
onto this line

Pvx = 〈x, v〉 v

I Residual variance given by

.
ϕ

‖!v‖ = 1

!x

!x′ =
!x

‖!x‖
P!v !x = 〈!x, !v〉 !v

σ2v = 1
m−1

m∑
i=1
〈xi , v〉2 = vTCv

where C = 1
m−1M

TM is the covariance matrix of the DSM M
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Singular Value Decomposition Dimensionality reduction and SVD

Maximizing preserved variance

I In our example, we want to find the axis v1 that preserves the
largest amount of variance by maximizing vT1 Cv1

I For higher-dimensional data set, we also want to find the
axis v2 with the second largest amount of variance, etc.

+ Should not include variance that has already been accounted
for: v2 must be orthogonal to v1, i.e. 〈v1, v2〉 = 0

I Orthogonal dimensions v1, v2, . . . partition variance:

σ2 = σ2v1 + σ2v2 + . . .

I Useful result from linear algebra: every symmetric matrix
C = CT has an eigenvalue decomposition with orthogonal
eigenvectors a1, a2, . . . , an and corresponding eigenvalues
λ1 ≥ λ2 ≥ · · · ≥ λn
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Singular Value Decomposition Dimensionality reduction and SVD

Eigenvalue decomposition

I The eigenvalue decomposition of C can be written in the form

C = U ·D ·UT

where U is an orthogonal matrix of eigenvectors (columns)
and D = Diag(λ1, . . . , λn) a diagonal matrix of eigenvalues

U =



...
...

...
...

...
...

a1 a2 · · · an
...

...
...

...
...

...


D =


λ1

λ2
. . .

. . .
λn



I note that both U and D are n × n square matrices
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Singular Value Decomposition Dimensionality reduction and SVD

An aside: orthogonal matrices

I A n × n matrix U with orthonormal columns ai , i.e.

〈ai , aj〉 = δij =

{
1 i = j
0 i 6= j

is called an orthogonal matrix

I The inverse of an orthogonal matrix is simply its transpose:

U−1 = UT if U is orthogonal

i.e. we have UTU = UUT = I (the identity matrix)

I Multiplication with an orthogonal matrix preserves Euclidean
norm and inner product (i.e. angle):

‖Ux‖2 = ‖x‖2 and 〈Ux,Uy〉 = 〈x, y〉
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Singular Value Decomposition Dimensionality reduction and SVD

The PCA algorithm

I The eigenvectors ai of the covariance matrix C are called the
principal components of the data set

I The amount of variance preserved (or “explained”) by the i-th
principal component is given by the eigenvalue λi

I Since λ1 ≥ λ2 ≥ · · · ≥ λn, the first principal component
accounts for the largest amount of variance etc.

I Coordinates of a point x in PCA space are given by UTx
(note: these are the projections on the principal components)

I For the purpose of “noise reduction”, only the first k � n
principal components (with highest variance) are retained, and
the other dimensions in PCA space are dropped

+ i.e. data points are projected into the subspace V spanned by
the first k column vectors of U
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Singular Value Decomposition Dimensionality reduction and SVD

PCA example
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Singular Value Decomposition Dimensionality reduction and SVD

PCA example
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Singular Value Decomposition Dimensionality reduction and SVD

Singular value decomposition (SVD)

I The idea of eigenvalue decomposition can be generalised to
an arbitrary (non-symmetric, non-square) matrix A

+ such a matrix need not have any eigenvalues

I Singular value decomposition (SVD) factorises A into

A = U ·Σ · VT

where U and V are orthogonal coordinate transformations and
Σ is a rectangular-diagonal matrix of singular values
(with customary ordering σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0)

I SVD is an important tool in linear algebra and statistics
+ in particular, PCA can be computed from SVD decomposition
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Singular Value Decomposition Dimensionality reduction and SVD

SVD illustration



n

m A


=



m

m U


·



σ1 n
. . .

σn
m Σ


·


n

n VT



(This illustration assumes m > n, i.e. A has more rows than columns. For
m < n, Σ is a horizontal rectangle with diagonal elements σ1, . . . , σm.)
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Singular Value Decomposition Dimensionality reduction and SVD

PCA by singular value decomposition

I PCA needs to find an eigenvalue decomposition of the
covariance matrix C = 1

m−1M
TM, or equivalently of MTM

I Like every matrix, M has a singular value decomposition

M = UΣVT

I By inserting the SVD, we obtain

MTM =
(
UΣVT )TUΣVT

= (VT )TΣT UTU︸ ︷︷ ︸
I

ΣVT

= V
(
ΣTΣ︸ ︷︷ ︸
Σ2

)
VT
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Singular Value Decomposition Dimensionality reduction and SVD

PCA by singular value decomposition

I We have found the eigenvalue decomposition

MTM = VΣ2VT

with

Σ2 = ΣTΣ =


(σ1)

2 n
n . . .

(σn)
2



I The column vectors of V are latent dimensions
I The corresponding squared singular values partition variance:

(σ1)
2/
∑

i(σi)
2 = proportion along first latent dimension

+ intuitively, singular value shows importance of latent dimension
I Interpretation of U is less intuitive (latent families of words?)
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Singular Value Decomposition Dimensionality reduction and SVD

Transforming the DSM matrix

I We can directly transform the columns of M into PCA space:

MV = UΣ(VTV) = UΣ

I For “noise reduction”, project into m-dimensional subspace
by dropping all but the first k � n columns of UΣ

å Sufficient to calculate the first m singular values σ1, . . . , σm
and left singular vectors a1, . . . , am (columns of U)

I What is the difference between SVD and PCA?
I we forgot to center and rescale the data!
I if M contains only non-negative values, first latent dimension

points from origin towards positive sector Ü “uninteresting”
I for a sparse cooccurrence matrix M, direct SVD application

(as used in LSA) may be more sensible than standard PCA
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Discussion

Time for discussion

I Mathematical insights (based on SVD and other arguments)
I LSA is a topic model Ü probabilistic topic models
I term-document DSM = first-order association,

term-term DSM = second-order association
I term-document + SVD vs. term-term vs. higher-order models
I context types: between term-term and term-context models

I Visualisation of high-dimensional spaces
I How to explore DSM parameters
I Kernel PCA, Isomap, and other nonlinear methods
I Compositionality & holographic memory
I Word senses, polysemy and context-dependence
I Beyond matrices: multi-way relations
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Discussion

Further information

I DSM tutorial & other materials available from
http://wordspace.collocations.de/

+ will be extended during the next few months

I Ongoing work on R package for a DSM toy laboratory:
http://r-forge.r-project.org/projects/wordspace/

I Compact DSM textbook in preparation for Synthesis Lectures
on Human Language Technologies (Morgan & Claypool)
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