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General Motivation 
 
Compare: Tossing a coin which is known to be fair 
    Tossing a coin which is not known to be fair 
 

In both cases, we assign a probability of 0.5 to the proposition 
that the result is heads. In the first case this assignment is 
based on probabilistic knowledge, in the second case it is 
based on the absence of such knowledge. 
 

 Generalizations of probability theory which do allow the 
representation of ignorance.  

 E.g., there can be a medical test whose positive outcome 
supports some hypothesis h to degree 0.7 and to degree 0.3 
it is ignorant (confirming h∪∼h rather than confirming ∼h) 
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1  Overview – Generalizations of PT 
 

 

 
Capacities 

 
Sets of probability functions  
(upper & lower probability) 

 
Dempster-Shafer Theory 

 
Inner & outer measure 

 
Probability measure 
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Additivity 
 
 For disjoint U, V: μ(U∪V) = μ(U) + μ(V). 

 

 “Experts” very often seem to use non-additive 
measures of degrees of belief. 

 
 

 The Dutch book argument requires that degrees of 
belief are additive; thus, we have to reconsider this 
argument: Give up the unique breaking point! 
 

 Skip Additivity and look for generalized measures. 
Consider finite sample spaces only! 
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Capacities 
 
Definition: Let W be a sample space. A real-valued 
function F on all subsets of W is called a capacity iff the 
following conditions are satisfied: 
 

1. F(∅) = 0 (normalization) 
2. F(Ω) = 1 (normalization) 
3. For all U, V ⊆ W, U ⊆ V ⇒ F(U) ≤ F(V) 
 

Exercise: Show that the upper (lower) measure is a 
capacity! 
 
Remark: General definitions of the dual on the basis of capacities! 
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Dual 
 
Definition: Let G and F be functions on 2W.  
G is the dual of F iff for every U ⊆ W, F(U) = 1–G(∼U) 
 
 The dual of a capacity is also a capacity 

 If G is the dual of F then F is the dual of G 

 A probability function is its own dual 



 7 

Sub- and superaddidivity 
 
Definition: Let F be a capacity over Ω. Let be U, V 
disjoint, F is subadditive iff F(U∪V) ≤ F(U) + F(V) for 
all disjoint events U,V ⊆ W. F is superadditive iff 
F(U∪V) ≥ F(U) + F(V) for all disjoint events U, V ⊆ W. 
 

 In the exercises we have shown that lower (and inner) 
measures are superadditive and upper (and outer) measures 
are subadditive. 

 

 Upper (lower) measures can be characterized as subadditive 
(superadditive) capacities (+ a continuity property, cf. Halpern p. 
31)  
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The inclusion-exclusion rule 
 
How to characterize inner and outer measure? 
 

For probabilities we have the following inclusion-exclusion 
rules (assuming Ui ⊆ W) 
 

μ(U1∪U2)          =  μ(U1) + μ(U2) - μ(U1∩U2) 
μ(U1∪U2∪U3) = μ(U1) + μ(U2) + μ(U3) - μ(U1∩U2) – 

  μ(U1∩U3) - μ(U2∩U3) + μ(U1∩U2∩U3) 
 … 

 

Replacing = by ≥ we get an inclusion-exclusion rule that is 
necessary (but not sufficient) for inner measures μ*. From 
duality it follows a corresponding condition necessary for 
outer measures μ*. (cf. Halpern, p. 30 ff.)   
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 Summary 
      
          Capacities 
 
Sets of probability functions  
 (upper & lower probability) 
 
  Dempster-Shafer Theory             
 
   Inner & outer measure  (see later) 
   
     Probability measure 

inclusion-exclusion rule (with ≥; 
resp. dual)

inclusion-exclusion rule with   = 

sub / superadditivity 
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2  Dempster-Shafer Belief Functions 
 

A general (abstract) formulization sees Belief functions as a 
special case of upper probabilities:  
 

Definition: A belief function Bel defined on a space W 
satisfies the following three properties: 
 

B1. Bel(∅) = 0   (normalization) 
B2. Bel(W) = 1   (normalization) 
B3. Bel(U1∪U2)    ≥ Bel(U1) + Bel(U2) - Bel(U1∩U2) 

 Bel(U1∪U2∪U2) ≥ Bel(U1) + Bel(U2) + Bel(U3)  -  
 Bel(U1∩U2)-Bel(U1∩U3)-Bel(U2∩U3)+Bel(U1∩U2∩U3) 

 

… (inclusion-exclusion rule) 
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 Dempster’s scenario 
 
Suppose one is interested in the question whether 
the valve is closed or open. The only information 
about the state of the valve is provided by a 
sensor. It is known that the sensor is unreliable 
in exactly 20 % of the cases (represented by a 
variable r - hidden parameter). Suppose the 
sensor indicates “valve open”. 
 

W={+o, −o}; H={+r, −r} 
μ({+r}) = 0.8, μ({-r}) = 0.2 
Mapping Γ: H => 2W-{∅}; Γ(+r)={o}, Γ(−r)={+o, −o} 
 
 

Bel(U) =def μ({h∈H: Γ(h) ⊆ U}) 
Pl(U) =def μ({h∈H: Γ(h)∩U≠∅}) 

 Bel Pl 
{+o} 0.8 1 
{−o} 0 0.2 
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Shafer’s interpretation 
 
 

 In Dempster’s scenario belief functions are constructed by 
means of multi-valued mappings.  

 

 Bel and its dual, Pl (plausibility), are special kind of 
lower/upper probability functions: You can see it by 
defining    PBel = {μ: μ(U) ≥ Bel(U) for all U ⊆ W}  
and showing that Bel = (PBel)* and Pl = (PBel)* 

 

 Shafer gave a somewhat different interpretation of these 
ideas (given in the book A Mathematical Theory of 
Evidence). In his theory, belief functions are part of a theory 
of evidence. 
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Shafer’s interpretation: Example 
 
 

 W={+o, −o}    Frame of discernment 
 

 m({+o}) = 0.8, m({+o, −o}) = 0.2, m({−o}) = 0, m(∅) = 0. 
Mass function or basic probability assignment. Intuitively, 
m(U) describes the extent to which the evidence supports U. 

 

 Bel(U) = ΣU' ⊆ U m(U');  Pl(U) = ΣU'∩U≠∅ m(U') 
 
Sensor says “valve open” (100 events) 

 
        80                            20 
  
 really open  {+o}   don’t know {+o, -o} 

 Bel Pl 
{+o} 0.8 1 
{−o} 0 0.2 
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General Definitions 
 
Definition (mass function) 
A mass function on W is a function m: 2W → [0, 1] such 
that the following two conditions hold: 
 

m(∅) = 0. 
ΣU⊆W m(U) = 1 

 

Definition (belief/plausibility function based on m) 
Let m be a mass function on W. Then for every U ⊆ W: 
 

Bel(U) =def ΣU' ⊆ U m(U')  
Pl(U) =def ΣU'∩U≠∅ m(U') 
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 Facts 
 
 Bel and Pl are dual.  

  ΣU' ⊆ ∼U  m(U') + ΣU'∩U≠∅  m(U') = 
 ΣU'∩U=∅  m(U') + ΣU'∩U≠∅  m(U') = 1 

 
 If Bel is a belief function on W, then there is a unique 

mass function m over Ω such that Bel is the belief 
function based on m. This mass function is given by 
the following equation: 

 

For all U ⊆ W, m(U) = ΣU'⊆U (-1)| U\U' | Bel(U') 
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Comments 
 
 

 The complete information about the measure of belief in U 
can be represented by the interval [Bel(U), Pl(U)], where 
Pl(U) - Bel(U) is a natural expression of the ignorance 
concerning U 

 

 It is tempting to consider Bel(U) resp. Pl(U), as lower, resp. 
upper, bound of the “true” probability of U.  

 

 Not every belief function over W is an inner measure 
extension over  W. This follows from the fact that for inner 
measure extensions the focal elements are pairwise disjoint. 
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Safecracker example 
 
Important documents were stolen from a safe. Sherlock 
Holmes comes with the following two clues: 
 

1. Examination of the safe suggests, with a 70% degree of 
certainty, that the safecracker was left-handed (and with 
30% we don’t know) 
[finding a hanky on the left hand site of the safe] 

 

2. Since the door giving entrance to the room with the safe has 
not been forced, it can be concluded, with a certainty of 
80%, that it was an inside job (with 20% we don’t know) 

 

What is the belief function (concerning possible thieves) in 
case of using clue 1 only? 
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Safecracker example 
 
Answer: W is the set of possible safecrackers (exactly one of 
them is the actual safecracker); L is the subset of left-handed 
persons in W. 
m1(L) =0.7, m1(W) = 0.3 
 

   1   if U = W 
Bel1(U) =  0.7  if L ⊆ U ≠ W 
   0 otherwise 
 
Remark: If m1 had been an ordinary probability distribution then you would have 
expected m1(R) = 0.3, which would have meant, with a 30% degree of certainty, 
that the thief was right-handed. So DS probability assignments distribute the 
remaining belief over the universal hypothesis, whereas classical probability 
distributions distribute it over the complement of the current hypothesis. 
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 Bayesian belief function 
 
 A belief function Bel is called Bayesian if Bel is a 

probability function. 
 

 The following conditions are equivalent 
− Bel is Bayesian 
− All the focal elements of Bel are singletons  

[U ⊆ W is called a  focal element of Bel iff  
m(U) > 0] 

− For every U ⊆ W, Bel(U) + Bel(∼U) = 1 
 

 The inner measure can be characterized by the condition 
that the focal elements are pairwise disjoint. 
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Summary 
 
      
          Capacities 
 
Sets of probability functions  
 (upper & lower probability) 
 
  Dempster-Shafer Theory  inclusion-exclusion rule (≥)  
 
   Inner & outer measure  focal elements are disjoint 
   
     Probability measure  focal elements are singletons 
 

sub / superadditivity 
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3  Combining the Evidence 
 

 
 Dempster-Shafer Theory as a theory of evidence has 

to account for the combination of different sources of 
evidence  

 

 Dempster & Shafer’s Rule of Combination is a  
essential step in providing such a theory 

 
 This rule is an intuitive axiom that can best be seen 

as a heuristic rule rather than a well-grounded axiom. 
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Safecracker example, combining clues 
 
m1(L) = 0.7, m1(W) = 0.3 
m2(I)  = 0.8, m2(W) = 0.2 
m(L∩I)=0.56, m(L)=0.14, m(I)=0.24, m(W)=0.06 
 
Bel(L) = 0.56 + 0.14 = 0.7 (as before) 
Bel( L∩I) = 0.56 (new!) 
Bel(I) = 0.56 + 0.24 = 0.8 (as before) 
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Mass assignment for combined evidences 
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 Three Problems 
 

 A subset A of W may be the combination of different 
pairs Ai and Bj.  

 There can be focal elements Ai of m1 and Bj of m2 
such that Ai∩Bj = ∅. 

 Mass functions are not always combinable. For 
example, they are not combinable if Ai∩Bj = ∅ for 
each i and j. 
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Dempster’s rule of combination 
 
Suppose m1 and m2 are basic probability functions over 
W. Then m1 ⊕ m2 is given by  

 

The factor [ΣAi∩Bj≠∅ m1(Ai) ⋅ m2(Bj)]-1 is called renorm-
alization constant. 

W 
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 Justification of DS theory 

 
 An important property that in general is not true is 

idempotency: Bel⊕Bel = Bel 
 

 (check it for the safecracker example)  
 
 Main requirement for the proper working of the 

combination rule: 
 

The belief functions to be combined are actually 
based on entirely distinct bodies of evidence. 
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Complexity 
 
 The task of finding all pairs y and z of subsets of θ 

such that y∩z = x is                        . This   is a pain-
fully large number. 

 
 Gordon & Shortliffe (Artificial Intelligence 26) 

describe how you can improve on this complexity by 
compromising with the rule of combination.  
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Dempster’s rule vs. MYCIN 
 
 

Gordon & Shortliffe also compare Dempster's rule with 
some ad hoc rules that they used in the medical expert 
system MYCIN, coming to the following conclusions: 
 

(i) Dempster's rule seems rather cleaner and better 
behaved than their own rules 

(ii) If you have good expert rules then your program 
will behave well even with unclear unprincipled 
rules of combination, if you have poor expert 
rules then your program will behave poorly even 
with clear principled rules of combination. 
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Advantages of DS theory 
 
(i) The difficult problem of specifying priors can be 

avoided 
 

(ii) In addition to uncertainty, also ignorance can be 
expressed 

 

(iii) It is straightforward to express pieces of 
evidence with different levels of abstraction 

 

(iv) Dempster’s combination rule can be used to 
combine pieces of evidence 
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Disadvantages 
 
(i) Potential computational complexity problems 
 

(ii) It lacks a well-established decision theory 
(whereas Bayesian decision theory maximizing 
expected utility is almost universally accepted. 

 

(iii) Experimental comparisons between DS theory 
and probability theory seldom done and rather 
difficult to do; no clear advantage of DS theory 
shown. 


