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1  Introduction  

 
• Aristotle was the first to realize that logic based on True or False 

alone was not sufficient. 
• The mathematics of fuzzy set theory and fuzzy logic. 
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General Motivation 
 

• Fuzzy logic handles the concept of partial true, that is true 
values between “completely true” and “completely false”. 

 

• Janet is 65 years old. Is Janet old? In Boolean logic (True or 
False). In fuzzy logic (False, True or degree of oldness). 
Many events or facts have such fuzzy truth values. 

 

• Other Fuzzy Examples 
- How big does a pond have to be to qualify as a lake? 
- How much of an apple do you have to eat for what is left to no longer count as 

an apple? 
- How broken has a ship to be in order to be called a wreck? 
- What amount of hair loss categorizes you as bald?  

 



 

 4 

Sorites Paradox 
       

¬Bald(1000 000),  
¬Bald(n) → ¬Bald(n-1)   
∴ Bald(0) 

 
   or, correspondingly 
 

Bald(0),  
Bald(n) → Bald(n+1)   
∴ Bald(1 000 000) 
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Formal aspects of uncertainty and vagueness 
 

(A) Is uncertainty truth functional? 
(B) Is vagueness truth-functional? 

 

 Truth functional Not truth functional 

Uncertainty 
Possibility measures 
Certainty factors (e.g. 
MYCIN) 

Probability 
P(A∩B) = f(P(A), P(B))? 

Vagueness 
Fuzzy logic 
Super-valuations ?? 
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Two answers 
Question A 
Let be Deg(p) my degree of uncertainty of p 
Assume Deg(p) = Deg(¬p) for some p (e.g. Susi is pregnant) 
If Deg is truth-functional, there is a fixed function F: 
Deg(p&p) = F(Deg(p), Deg(p)) =  F(Deg(p), Deg(¬p)) = 
Deg(p&¬p). 
 

Question B  
Let be Deg(p) my degree of vagueness of p  
Assume Deg(p) = Deg(¬p) for some p (e.g. Peter35 is  old). 
Again: Deg(p&p) = Deg(p&¬p).  Better than before?? 
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Four basic questions 
 

1. How should vagueness of atomic predicates be 
represented mathematically? 

2. How does vagueness of formulas combine under 
logical operations? 

3. How can we determine degrees of vagueness 
empirically? 

4. What can one do in practice with degrees of 
vagueness? 
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Fuzzy sets and Crisp sets 
 

more than 50 years old 
denotes a crisp set  
standard set ≡ characteristic 
function 
 
 
 
old denotes a fuzzy set 
(relative to a certain set A) 
fuzzy set ≡ membership 
function 
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2  Fuzzy sets: mathematical representation 
 

 
Definition:  
Let V be the universe under consideration. A fuzzy set A is 
represented by a function μA: V → [0, 1]. 
- μA is called the membership function 
- μA (x) is called the grad of membership of x w.r.t. A. 
- μA (x) is also called the degree of truth of the proposition 

that x is an element of A. 
- {x∈V: μA (x)>0} is called the support of A 
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Example 1 
  
 
 
 
 
 
 

1

xa c 
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Example 2: Membership functions for Age 
 
it is simple to provide analytic expressions that give a (step-
wise) linear approximation to the three membership functions: 
 
μ young man (x) = ? 
μ old man (x) = ? 
μ middle age man (x) = ? 
 

μ older man (x) = ??? 
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 Linguistic variables (Fuzzy variables) 
 

e.g.: OLD {very young, young , middle aged, old, very old} 
The values of linguistic variables are fuzzy sets. 
 

(The name derives from the circumstance that the values are 
often labeled by natural language expressions) 
 
Other example 
 
Fairly and very are examples of 
fuzzy quantifiers. These 
quantifiers can be used to 
generate linguistic variables. 
 

μvery old (x) = Fvery(μold (x))   
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Quantifiers vs. Modifiers 
 

Quantifiers 
μvery old (x) = Fvery(μold (x)),   e.g. μvery old (x) = (μold (x))2   
However, sometimes μold (x) = 1  but μvery old (x) < 1. 
 
Translation modifiers 
μmod A (x) = [Fmod (μA )](x) 
μ τ A (x) = μA (x-τ) 
  fairly   ≅   -10 years 
  very     ≅   +10 years 
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Where do the numbers come from? 
 

The justification of degrees of truth/membership is a weak point 
of fuzzy logic. 
 

• Justification of degrees of beliefs in terms of betting behavior 
(fair bets). However, we cannot bet on fuzzy  expressions: 
- I bet you $5 that the patient is older than 30 
- ?? I bet you $5 that the patient is old 

 

• In some sense, fuzzy logic makes a vague expression too 
precise by insisting on a numerical description. 
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• For atomic sentences it may be a reasonable strategy to ask a 

large number of people what they think of a proposition like 
“this person is old” and take the average. 

 

• However, this cannot work for compound sentences since 
frequencies do not behave truth-functionally.  

 

• In fuzzy control the problem is different: start with discrete 
values and fuzzify it. E.g. 45 for age can be mapped on the set 
{0, 0.2, 1, 0,2, 0} corresponding to the fuzzy sets {very 
young, young, middle aged, old, very old} 
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3  Combining fuzzy sets 
 

 
Definition 
Let A and B be fuzzy sets. The membership functions of A∪B, 
A∩B, and      are defined as follows: 

 
 
 
 

Note: sometimes we will write ¬A instead of      . 
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Empirical problems 
 

 The support of A∩¬A is empty iff ∀x(μA(x)=0 ∨ μA(x)=1). 
(Exercise: prove it) 

Consider an object that is 40% red (and, consequently 60% non-
red). Then the same object has a value of 40% for being both red 
and non-red. This is counter-intuitive 

 Prototyp semantics and fuzzy sets. The example of a 
‘stripped apple’. 

 Can these and other puzzles by resolved by considering other 
combination rules? Or is this a principled shortcoming of a 
compositional approach (as cognitive scientists claim) 
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Fuzzy sets and possibilities 
 
Classical probability theory start with a set of events W and assigns to all subsets of 
W a probability μ. Possibility theory is just another approach to assign numbers to 
subsets of W. Instead of the probabilistic axioms P we assume axioms Poss: 
 

 

For fixed instances a, and X⊆V  the function Poss(X) = μX(a) is 
a possibility function.  

P1. μ(∅)=0 
P2. μ(W)=1 
P3. μ(U∪V) =  μ(U)+μ(V) 

if U and V are disjoint 
 

Poss1. Poss(∅)=0 
Poss2. Poss(W)=1 
Poss3. Poss(U∪V) =  

max(Poss(U),Poss(V)) 
if U and V are disjoint 



 

 19 

Principled approach to the choice of semantics  

(Paris 1994, Hájek 1998)  
(A) For negation 
Consider ¬ as a function, ¬: [0, 1] → [0, 1]. 

a theorem: 
Theorem1 
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(B) For conjunction 
Consider ∧ as a function, ∧: [0, 1] × [0, 1] → [0, 1]. 
 

 
 

A conjunction satisfying C1-C4 is called a t-Norm.
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Examples for t-norms 
 
 

 min(x, y) is a t-norm  (Gödel t-norm) 
 

 max(0, x+y-1) is a t-norm (Lukasiewicz t-norm) 
 

 xy is a t-norm (Product t-norm) 
 
Exercise: Show that these are t-norms 
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Theorem 2 
Suppose ∧ satisfies C1-4. 
 

 
ccc   

  
 

 

A good reference w.r.t. the mathematical details is Petr Hájek: 
Metamathematics of Fuzzy Logic. Kluwer 1998. 
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 Fuzzy Relations 
 

Example        2    
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Relational Composition 1 
 

Let A be a a fuzzy set on the domain X and B a fuzzy relation 
on the domain X×X. 
 

 
Relational Composition 2 
Let B and C fuzzy relation on the domain Y×Y. 
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4  Fuzzy Logic 
 

 
Definition 3 
Fuzzy propositional logic has the syntax of classical 
propositional logic and semantics given by real valuations ν 
(i.e. valuations assigning real numbers from the interval [0, 1]) 
satisfying  
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Definition 4 
 
• ϕ is a valid formula iff ν(ϕ) = 1 for all real valuations ν. 

 

• φ is a valid fuzzy consequence of ϕ1 …ϕn , written  
(ϕ1, …,ϕn) |=F φ, if for all real valuations ν:  
ν(ϕ1 ∧ … ∧ ϕn) ≤ ν(φ). 

 
Example (deduction theorem) 
Show that A→B is valid iff A |=F B  
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Definition 5 
Fuzzy predicate logic has the syntax of classical predicate logic 
and semantics given by first order models M = [D, ν] with 
valuations ν such that ν(A) : D  [0, 1];  ν(R) : DxD  [0, 1]. 
Further,  ν has to satisfy the above rules for the propositional 
connectives and in addition these rules:  
 

ν(A(t)) = [ν(A)] ν(t) 
ν(R(t, u)) = [ν(R)] (ν(t),  ν(u)) 

ν(∃xϕ(x)) = sup ({ν(ϕ(t)): t is a term}) 
ν(∀xϕ(x)) = inf ({ν(ϕ(t)): t is a term}) 

 

Further, we assume that for each object x ∈ D there exists a 
unique name x.
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The connection to fuzzy set theory hen is simply given by the 
following principle: 
 

ν(A(x)) = μA(x) 
 

This principle allows translating valid statements in fuzzy set 
theory into valid logical formulas of fuzzy set logic.  
 
Definition 6 
 
φ is a valid fuzzy consequence of ϕ1 …ϕn , written  
(ϕ1, …,ϕn) |=F φ, if for all first order models M = [D, ν]:  
ν(ϕ1 ∧ … ∧ ϕn) ≤ ν(φ). 
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5  Fuzzy control 
 

 
The general situation is as follows: We have a process S, 
yielding output y(t), where t is the time variable. d is a 
disturbance (input that cannot be influenced). The output signal 
is compared to the desired r(t). If y(t) differs significantly from 
r(t), then a corrective signal u(y,r,t) is supplied to S with the 
purpose of bringing y(t) in line with r(t). The task is to 
determine the most appropriate u.  
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Mathematically 

 

 
 dy/dt = h(y,t,u), y(0) = c 

 
                            →  minimize and determine u! 

 
Difficult to solve ! Calculus of variation, 
dynamic programming.   
Fuzzy logic has been applied to easy the 
computational difficulties. 

σ ( ( ) ( ))
0

T

y t u t dt∫ −
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Example 
Steam engine driving a steam  
turbine (Mamdami & Asilian 1975) 
 

u [VC] 
y [DR,CDR] 
 
 

 VC, the required change in the valve opening 
 DR, the deviation in the number of revolutions 
 CDR, the change in DR with respect to the last measurement 

 

IF …THEN  rules are all of the form:  IF DR is A AND CDR is 
B, THEN VC is C 
 

e.g.    IF DR is LN AND CDR is SP THEN VC is LP 
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Example, cont. 
 
Values of A, B, C:   
LP  large positive 
MP  medium positive 
SP  small positive 
0  zero 
SN  small negative 
MN  medium negative 
LN  large negative 
 
 
Such rules are intuitively plausible. They give a qualitative 
analysis of the corresponding differential equation. 
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Fuzzy system components 
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(A) Fuzzification 
 

It is fairly straightforward in the case under discussion.  
 
 Measure the precise outcome x for a linguistic variable X 

 
 Determine the number μA(x) 

for each fuzzy value A of X 
 

e.g. μN(x) = 0.3, μZ(x) = 0.8, 
μP(x) = 0.4 

 
 Combine these numbers into a 

new fuzzy set  
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(B)  De-Fuzzification 
 

 
Various strategies have been formulated, all of them apparently  
rather arbitrary.  
 

  
Center of gravity method 
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 (C)  Fuzzy reasoning 
 

  
Fuzzy implications: IF X is A THEN Y is B 
X, Y linguistic variables; A,B fuzzy sets 
 

Ideas 
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Idea 1 
 Fuzzy implications correspond to fuzzy relations: 

[IF X is A THEN Y is B](x,y) = I(μA(x), (μB(y)) = 
min(1, 1-μA(x)+μB(y)) 
 

 1 2 3 4 5 6 7 8 
μsmall 
μmedium 

  μlarge 

1 
0 
0 

1 
.5 
0 

.5 

.5 
0 

.5 

.5 

.5 

.5 
1 
.5 

0 
1 
.5 

0 
.5 
.5 

0 
.5 
1 

 

 e.g. If X is large then Y is small: I(μlarge(x), (μsmall(y)) 
    If X is small then Y is large: I(μsmall(x), (μlarge(y)) 
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If X is large then Y is small  If X is small then Y is large 
I(μlarge(x), (μsmall(y))    I(μsmall(x), (μlarge(y)) 

 

x\y 1 2 3 4 5 6 7 8 
 1         
2         
3         
4         
5         
6         
7         
8         

x\y 1 2 3 4 5 6 7 8 
 1         
2         
3         
4         
5         
6         
7         
8         
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 Idea 2 
 
 Using aggregation to construct one relation representative 

for the entire rule base. 
 

 
 
The aggr operator is the minimum for implications (notice that 
the maximum in case conjunction has been used) 
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x\y 1 2 3 4 5 6 7 8 
 1         
2         
3         
4         
5         
6         
7         
8         

x\y 1 2 3 4 5 6 7 8 
 1         
2         
3         
4         
5         
6         
7         
8         

x\y 1 2 3 4 5 6 7 8 
 1         
2         
3         
4         
5         
6         
7         
8         
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Idea 3 
 Using relational fuzzy composition we can derive the fuzzy 

set A* ○ R. This fuzzy set represents the consequence that 
can be drawn from the fact that X is an A* and the set of the 
collected Rules. 

 

For example, let A* be the crisp set {6}, then  
The operation of composition, repeated here, 

 
gives us the following fuzzy set: 



 

 42 

 
 
 
  
 

 
 

 
For A* = {6}    μB = 
 
For A* = {1}   μB = 
 

For  A* ={8}    μB = 

x\y 1 2 3 4 5 6 7 8 
 1         
2         
3         
4         
5         
6         
7         
8         

1 2 3 4 5 6 7 8 
        

        

        


