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General Motivation 
 
 Classical Probability theories and all modifications 

considered so far are based on a Boolean algebra over W, 
i.e. a set ℱ of subsets of W that contains W and is closed 
under intersection, union and complementation. The 
elements of ℱ are called events or propositions. 

 

 The mathematics of Quantum Theory (QT) is based on 
vector spaces (Hilbert spaces) and ‘events’ or ‘propositions’ 
are considered as vector sub-spaces. The algebra of these 
subspaces is non-Boolean with regard to the corresponding 
operations (intersection, addition, ortho-complement) 

 

 This requires a non-classical definition of probabilities! 
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Mixture vs. superposition 
 
 Quantum mechanics makes a distinction between mixture 

and superposition of states. E.g., a light wave normally is a 
mixture of many photons. Sometimes, however, it comes to 
a superposition  (vector-addition) of photons (double split 
experiment); see http://video.google.com/videoplay?docid=-
4237751840526284618&q=quantum 

 Mixture and superposition of states can also be found in the 
macroworld including the mental realm. 
− percepts  
− concepts 
− meanings 
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Afterimages and superposition 
 

Als ich gegen Abend in ein Wirtshaus eintrat 
und ein wohlgewachsenes Mädchen mit 
blendendweißem Gesicht, schwarzen Haaren 
und einem scharlachroten Mieder zu mir ins 
Zimmer trat, blickte ich sie, die in einiger 
Entfernung 
vor mir 

stand, in der Halbdämmerung scharf 
an. Indem sie sich nun darauf hinweg-
bewegte, sah ich auf der mir entgegen 
stehenden Wand ein schwarzes 
Gesicht, mit einem hellen Schein 
umgeben, und die übrige Bekleidung 
der völlig deutlichen Figur erschien in 
einem schönen Meergrün.  
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More afterimages 
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More afterimages 
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Superposition 
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Superposition 
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Churchland’s chimeric afterimages 
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Churchland’s chimeric afterimages 
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 Phillip Otto Runge (1777-1810)  
 

 

 

 
 
 

Hue, Saturation, Luminance 
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Simple neural network  
The simple network connects 
the receptors on the retina (3 
types of cones: RED, GREEN, 
BLUE) with the visual cortex 
(two opponent systems red-
green, yellow-blue; one non-
opponent system black-white).  
 
Hering, Ewald 1964 [1920]. Outlines of a 
Theory of the Light Sense. Cambridge, 
Mass.: Harvard University Press. 
 
Jameson, D. and L.M. Hurvich (1955) 
Some quantitative aspects of an opponent-
colors theory. Journal of the Optical 
Society of America, 45:546-52. 
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 Superposition of faces 
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Superposition of faces 
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 The postulates of quantum mechanics (informal) 

 
1. States. States of a physical system are represented by 

vectors in a Hilbert space (  superposition) 

2. Observables. Observables are represented by Hermitian 
operators (i.e. operators having real eigen values) 

3. Evolution. The evolution of a (closed) system is described 
by a unitary transformation (leaving the scalar product of 
two vectors invariant)  
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The postulates of quantum mechanics (informal) 
 
4. Measurement. Measurement is an external observation of a 

system and so disturbs its unitary evolution.  A quantum 
state u can be measured by use of a set of orthogonal 
projections u1, …, un; u collapses into the state ui with 
probability  |〈ui , u〉|2  (  uncertainty principle) 

5. Composite systems. The state space of a composite system 
is the tensor product of the state spaces of its components. 
The unitary evolution of composed states u⊗v can lead to 
states that cannot longer be expressed as a tensor product of 
two vectors in the original two subsystems.  
(  entanglement)  
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Potential application 
 

 Applications in the micro world 
− Quantum Computation 
 

 Applications in the macro world 
− face recognition 
− manipulation of word vectors and geometrical 

meanings; modelling concepts 
− opinion forming 
− interference effects in perception and cognition 
− understanding the logic of activation patterns in 

connectionism  
− modelling types of personality (C.G. Jung) 
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Appendix: a note on complex numbers 
 
Complex numbers can be understood as points/vectors 
in a 2-dimensional space. 

 

im
aginary axis   b 

ϕ 
a       real axis

a + i b =  r (cos ϕ + i sin ϕ) 
= r eiϕ 
 

r = 22 ba +  
sin ϕ = a/r 
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Some rules 
 
 

1. u+v = v+u 
2. (u+v)+w = u+(v+w) 
3. u v = v u 
4. u (v w) = (u v) w 
5. λ(u+v) = λu+λv 
6. (u+v)* = u* + v* 
7. (u v)* = u* v*;  where u* is the complex 

conjugate: (a + i b)* = a − ib. 
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1 Vector spaces with inner product 
 

 
Formally, an inner product space is a vector space V 
over the field of real/complex numbers with a so-called 
inner product  〈 . | . 〉, which satisfies the following 
conditions for all x, y, z ∈ V and all complex scalars a: 
 

1.  〈x | y〉 = 〈y | x〉*     (Conjugate symmetry) 
2. 〈a x | y〉 = a 〈x | y〉   (Linearity in the first 
〈x+y | z〉 = 〈x | z〉 + 〈y | z〉 variable) 

3. 〈x | x〉 ≥ 0 and 〈x | x〉 = 0  (Nonnegativity and 
if and only if x = 0.   nondegeneracy) 
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Examples 
Example 1 
In ℝN, the usual dot product  ∑

=

⋅=
N

k
kk yxyx

0

|  
 
Example 2 
In CN, the dot product ∑

=

⋅=
N

k
kk yxyx

0

*|  
 
Example 3 
For complex-valued continuous-time signals in CN[a,b] 

dttytxyx
b

a∫ ⋅= )()(| *       
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 Hilbert spaces 
 
A Hilbert space ℋ is a vector space with inner product; 
it is not restricted to finite dimensions. In the infinite 
case, it has to satisfy a certain completion requirement – 
the so-called Cauchy criterion with regard to the norm 
||x||2 =  〈x | x〉. 
 

The Cauchy criterion may be defined for sequences in this space (as it 
can in any uniform space): a sequence {xn} is a Cauchy sequence if for 
every positive real number ε there is a natural number N such that for all 
m, n > N, ||xn – xm|| < ε. ℋ is a Hilbert space if it is complete with 
respect to this norm, that is if every Cauchy sequence converges to an 
element in the space. Thus, every Hilbert space is also a Banach space 
(but not vice versa). 
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Elementary calculations 
 
Assume x and y to be vectors in ℝN. Show that 
 

1. ||x + iy||2 = ||x||2 + ||y||2 
2. ||x – iy||2  = ||x||2 + ||y||2 
3. 〈x + y | x – y〉 = ||x||2 – ||y||2 
4. 〈x + iy | x – iy〉 = ||x||2 – ||y||2 + 2i〈x | y〉. 
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2 Boolean algebras vs.  
orthoalgebras  

 
 

A Boolean algebra over W is a set ℱ of subsets of W such that 
it contains W and is closed under intersection, union and 
complementation.  
 

Instead of W we consider now a vector space ℋ; U, V ⊆ ℋ. 
U∩V is a vector space again. However, ¬U and U∪V are 
normally no vector spaces (examples?). Consequently, we 
cannot form a Boolean algebra over ℋ if it is required that the 
elements of this algebra are vector spaces! 
 

Problem: What operations can we take in order to save the idea 
of propositional structures in vector spaces? 
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Orthoalgebras 
 

Let ℋ be a Hilbert space and U, V sub (Hilbert) spaces of ℋ.   
It’s simply to show that U∩V is a Hilbert space.  
Ordered by set-inclusion ⊆, the closed subspaces of ℋ form a 
complete lattice, in which the meet (greatest lower bound) of a 
set of subspaces is their intersection, while their join (least 
upper bound) is the closed span of their union (sum). There are 
(infinitely) many complementary closed subsets, one of them 
is the orthocomplement. 
 

Intersection: U ∩ V 
Sum: U +V = {w: w = u+v for some u∈U and some v∈V} 

Orthocomplement: U⊥ = {v∈ℋ: ∀u∈U, 〈u | v〉 = 0} 
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Facts 
 
Let ℋ be a Hilbert space and U, V sub (Hilbert) spaces of ℋ.    
Then it holds 
 
1. (U⊥)⊥ = U 
2. (U∩V)⊥ = U⊥ + V⊥ 
3. (U + V)⊥ = U⊥ ∩ V⊥ 
 
Distributivity doesn’t hold generally!  
(U+V)∩W  ≠  (U∩W) + (V∩W) 
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Examples 
 

 
In ℝ3 assume a vector space U spanned by the unit 
vector u = 3

1 (1, 1, 1). What is U⊥ ? Give an orthonormal 
basis for U⊥! 
 
(0, 1, -1)   2

1 (0, 1, -1)   
(1, 0, -1) 
(1, -1, 0) 
(2, -1 -1)   6

1  (2, -1 -1) 
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Operators in the Hilbert space 
 
 

 An (linear) operator or transformation Ô on a Hilbert space 
ℋ is a Hilbert space morphism of ℋ into ℋ  

 Example ℝN, CN: operators are represented by matrices of 
real/complex numbers.   

 

[Ô u]i = ∑j Ôij uj (matrix multiplication) 
 

 The adjoint Ô+ of an operator Ô is that operator such that  
 

〈Ô+u | v〉 = 〈u | Ôv〉, for all elements u,v of ℋ. 
 

 The trace of an operator is  

Tr(Ô) = Σi 〈ei  | Ôei〉, with an orthonormal basis {ei} of ℋ. 
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Observables and eigenvalues 
 
 
 

 An eigenvalue a of an operator Ô is a complex number for 
which there is an element of ℋ such that 

 

Ô u = λ u 
 

The element u is called an eigen-state of Ô corresponding to 
the eigenvalue λ.  
 

 In quantum mechanics, an observable is simply a Hermitian 
(also called self-adjoint) operator on a Hilbert space ℋ, i.e., 
an operator Ô such  

 

Ô+ = Ô. 
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Spectral theorem 
 
Theorem: The eigenvalues λi of an observable Ô are all real 
numbers. Moreover, the eigen-states ui for distinct eigenvalues 
of an observable are orthogonal. Hence, we can write 
 

Ô = Σi λi |ui〉〈 ui| 
 

 An eigenvalue is called degenerate if there are at least two 
linearly independent eigen-states for that eigenvalue. 
Otherwise, it is called non-degenerate. 

 

  Usually, the eigenvalues of observables can be assumed to 
be non-degenerate. In this case, we have  

 

Ô ui = λi ui , 〈ui | uj〉 = δij 
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Example: the Q-bit 
 
The Q-bit is a physical system each of its (nontrivial) 
observables has a discrete spectrum with two non-degenerate 
eigenvalues (say ±1): Sp( X̂ ) = Sp( Ŷ ) = Sp( Ẑ ) = {-1,+1}. 
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The Bloch sphere 
 
 |ψ〉 = α|0〉 + β|1〉 with α2 + β2 = 1 

 

|ψ〉 = cos(θ/2) e−iΔ/2 |0〉 + sin(θ/2) e+iΔ/2 |1〉  
 

 
Figure: an arbitrary (normalized) state 
of the two dimensional Hilbert space 
can parameterized  by the two 
spherical polar coordinates θ and Δ.  
Hereby,  Δ corresponds to a phase 
shift of the two superposing states |0〉 
and |1〉) 
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 How can a Q-bit be realized? 
 
 
 Two polarizations of a photon  

 Alignment of a nuclear spin (proton!) in a uniform 
magnetic field 

 Two states of an electron orbiting a single atom 
(ground or excited state) atom 
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Stationary photons as Q-bits 
 
 Horizontal and Vertical polarization:  |↕〉 and |↔〉  

(can be seen as basis vectors of  C2 ) 

 Equal superposition of |↕〉 and |↔〉:   

 |↗〉 =  
2

1 (|↕〉 + |↔〉);    |↘〉 =  
2

1 (|↕〉 − |↔〉) 
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Circular polarization 
 
 2 states ↺ and ↻ of circular polarization 

 Equal superposition of of |↕〉 and |↔〉 (the latter with ± π/2 
phase shift; note i = ei π/2):    

|↺〉=   
2

1 (|↕〉 + i |↔〉); |↻〉= 
2

1 (|↕〉 − i |↔〉)   
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Projection operators 
 

Definition 
A self-adjoint operator Ô with the property Ô2 = Ô is called a 
projection (= projection operator) 
 

 It is not difficult to show that a self-adjoint operator Ô with 
spectrum Sp(Ô) ⊆ {0,1} must be a projection 

 Projection operators are in one-to-one correspondence with 
the closed subspaces of ℋ. 
− Assume a projection operator Ô with eigenvectors Ô(ui) = ui. 

Then the orthonormal vectors ui span a closed subspace U of ℋ. 

− Conversely, if U is such a closed subspace, then the operator  
∑i |ui〉〈ui| is a projection.  
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Orthoalgebra of projections 
 

Definitions 
 || P̂ || = {u∈ℋ: P̂ u = u} (range of an operator) 
 With the projections P̂  and Q̂ , the projections ⊥P̂ , QP ˆˆ ∪  

and QP ˆˆ ∩  are defined by the conditions: 
1. || ⊥P̂ || = || P̂ ||⊥ 
2. || QP ˆˆ ∪ || = || P̂ || + || Q̂ || 
3. || QP ˆˆ ∩ ||= || P̂ || ∩ || Q̂ || 

 

Facts 
1.  ⊥P̂ u = u − P̂ u (i.e. ⊥P̂  = 1− P̂ ) 
2.  ( QP ˆˆ ∪ )u = P̂ u + Q̂ u  if P̂ Q̂  = − Q̂ P̂  
3. ( QP ˆˆ ∩ )u = P̂ Q̂ u  if P̂ Q̂  = Q̂ P̂  
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 Intermezzo Quantum Logic 
 

 

 
Orthomodular Law Axiom 

 

        
Foulis-Holland Theorems 
     
     
     
     

 

The relation   
 

  : =     
 

is read “a commutes with b”. 

Axioms for an Ortho-lattice
 
 

 
 

 
      

        
      

Definition 
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Conclusions 
 

 Projection operators correspond to Boolean random 
variables in the classical case 

 In both cases there is a one-one correspondence between the 
projection operator/Boolean random variable and the range 
defined by these elements (a subspace of the domain  under 
discussion) 

 Whereas Boolean random variables commute, projection 
operators do not necessarily. 

 The familiar distributive laws of classical logic are 
not obeyed here. De Morgan’s laws are valid (taking 
negation as orthocomplement)   
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3 Application: Word-vectors 
 and search engines 

 
 
 Representing word meanings by vectors  
 Similarity and orthogonality  
 Excurse about LSA   
 Superposition and ambiguities 

 
see Dominic Widdows’ Geometry of Meaning, chapters 5-8. 
Also relevant: Keith van Rijsbergen, The Geometry of Inform-
ation Retrieval, Cambridge University Press, 2004 
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Word vectors and the term-document matrix 
 
Consider the frequencies of words in certain documents. From 
this information we can construct a vector for each word 
reflecting the corresponding frequencies: 
 

Document 1 is about music instruments, document 2 about 
fishermen, and document 3 about financial institutions. 
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Normalization and similarity 
 
 

 d(u, v) = ||u–v||  
not very reasonable to measure similarity since larger 
vectors (corresponding to more frequent words) tend to be 
more distant from most other vectors than small vectors. 

 Use unit vectors (normalization)  
cos(u, v) = 〈u | v〉 / ||u||⋅||v|| 
d(u, v) =  v))(u,cos-2(1 2  (for unit vectors) 

 Similarities between words and documents:  
cos(u, doci), where doci is the ith unit vector (representing 
the document as a whole). 
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Example 
 
 

 
 

 guitar 
cream 

guitar 
bass 

guitar 
fisherman 

d(u,v) 0 0.81 1.41 
cos(u,v) 1 0.477 0 
cos(v, doc1) 1 0.447 0 
cos(v, doc2) 0 0.894 1 
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 Two Problems 
 

 Ambiguous words: words such as bass are ambiguous (i. 
music instrument, ii. fish). If a user is only interested in one 
of these meanings, how are we to enable users to search for 
only the documents containing this meaning of the word? 

 Superposition, Vector negation 

 Synonymous and other similar words: Some terms only 
appear singular in a document. Similar or even synonymous 
terms may appear much more often in a document. The user 
searching for one word is most likely also interested in 
finding documents containing the related words.   

 Vector representations after performing Latent Semantic 
Analysis 
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 Excurse: LSA and Singular Value Decomposition 
 

 The SVD can be seen as a generalization of the spectral 
theorem, which says that normal matrices can be unitarily 
diagonalized using a basis of eigenvectors, to arbitrary, not 
necessarily square, matrices. 

 SVD: Any m×n matrix M can be factorized as the product 
UΣV* of three matrixes where U is an m×m unitary matrix 
over K (i.e., the columns of U are orthonormal), the matrix 
Σ is m×n with nonnegative numbers on the diagonal (called 
the singular values) and zeros off the diagonal, and V* 
denotes the conjugate transpose of V, an n×n unitary matrix 
over K. Such a factorization is called a singular-value 
decomposition of M. 
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 Example 
 

 Projecting words related to 2 documents (cars, driving) onto 
a new coordinate axis (from Widdows 2004, p. 176) 
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 SVD: links 
 
 http://en.wikipedia.org/wiki/Singular_value_decomposition 
 http://users.pandora.be/paul.larmuseau/SVD.htm (for per-

forming online computations) 
 http://mathworld.wolfram.com/SingularValueDecompositio

n.html  
 http://math.ut.ee/~toomas_l/linalg/  
 http://www.cs.ut.ee/~toomas_l/linalg/lin2/node1.html 
 http://www.cs.ut.ee/~toomas_l/linalg/lin2/node11.html#SE

CTION00013000000000000000  
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Ambiguous words and superposition 
 
 Quantum mechanics makes a distinction between mixture 

and superposition of states. 
 Assume that certain ambiguities can be represented by 

superposition:  
w = α1 w1 + α2 w2, with α1

2 + α2
2 = 1 

 If the meanings w1 and w2 are orthogonal (i.e. unrelated to 
each other), the we can “disambiguate” w1 and w2 by vector 
negation 

α2 w2 = w NOT w1 =def  w – (w ⋅ w1) w1 
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Vector negation 
 
 The vector a NOT b has the form a – λb 
 The vector a NOT b is orthogonal to b, i.e.  

(a NOT b ) ⋅ b = 0 
 

consequence in case of normalized vectors:  
λ = a ⋅ b 

 

a NOT b = a – (a ⋅ b) b 



 54 

Example 
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Conclusions 
 
 The basic for the present presentation of word vectors and 

searching engines is the representation of similarities and 
distances by the inner product representation. 

 Certain ambiguities can be represented by superposition (= 
vector addition) of the different meaning vectors. 

 The Euclidean model adopted here is not universally valid, 
however. For instance, the realization of colours using 
vector algebras has to make use of Riemannian geometry.   

 Quantification is a perfectly natural idea both extending 
Boolean and Quantum logic, but we have not investigated it 
here.  
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Appendix: Linear algebraic proof of SVD 
 
Let M be a rectangular matrix with complex entries. M*M is positive semidefinite, 
therefore Hermitian. By the spectral theorem, there exist an unitary U such that 
 

 
 
where Σ is diagonal and positive definite. Partition U appropriately so we can write 
 

 
 
Therefore U*1M*MU*1 = Σ, and MU2 = 0. Define 
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Then 

 
 
We see that this is almost the desired result, except that W1 and U1 are not unitary in 
general. W1 is a partial isometry (W1W*1 = I ) while U1 is an isometry (U*1U1 = I ). 
To finish the argument, one simply has to "fill out" these matrices to obtain 
unitaries. U2 already does this for U1. Similarly, one can choose W2 such that 
 

 
 
is unitary. Direct calculation shows 
 

, 
 
which is the desired result.  
Notice the argument could begin with diagonalizing MM* rather than M*M (This 
shows directly that MM* and M*M have the same non-zero eigenvalues). 
 


