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A measurement of observable Ô 
transforms a pure state |u〉〈u| in a 
mixed state Σi pi |ui〉〈ui|, where the 
ui are the eigenstates of operator 
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 Example 
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The probability that ↗ collapses into the eigenstates  ↕ and 
↔, respectively, is given by the square of the scalar product  
 

p1 = |〈↕, ↗〉|2  = ½ 

p2 = |〈↔, ↗〉|2  = ½ 
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A measurement changes the measured 
state. An observable that is sharp in a 
certain state can turn into a blunt one by 
a previous measurement with another 
instrument! 
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Density matrix 
 
Definition  

 for a pure state u the corresponding  density matrix is  
ρ =  |u〉〈u| 

 for a mixed state describing a quantum system that is in the 
states u1, u2, …, un with probabilities p1, p2,…, pn (Σi pi = 1) 
the corresponding  density matrix is  

ρ = Σi pi |ui〉〈ui| is a density matrix 

 If a density operator  ρ can be written in the form ρ = |u〉〈u| 
it is said to represent a pure ensemble. Otherwise, it is said 
to represent a mixed ensemble. 
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Facts 
 
 A density operator represents a pure ensemble if and only if 
ρ2 =ρ, or equivalently, if and only if Tr(ρ2) = 1.  

 note: Tr(Ô) = ∑i 〈ui|Ôui〉,  for orthonormal basis {ui} 

 For all ensembles, both pure and mixed,  

Tr(ρ2) ≤ 1. 

 If  ρ = |u〉〈u| then Tr(ρÔ) = 〈u|Ôu〉; the expectation value for 
the observable Ô in ℋ. 

 If ρ = Σi pi |ui〉〈ui|, then Tr(ρÔ) = Σi pi ⋅ 〈ui|Ôui〉 
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Probability measure 
 
Definition 
Let Π(ℋ) be the orthoalgebra of projections on ℋ. A 
(countably additive) probability measure on Π(ℋ) is a 
mapping μ : Π(ℋ)  → [0,1] such that μ(1) = 1 and, for any 
sequence of pair-wise orthogonal projections Ôi, i = 1,2,...   
 

μ(∪i Ôi) = ∑i μ(Ôi) 
 

Examples 
 μu(Ô) = < u | Ôu>, for a unit vector u of ℋ 

 μρ(Ô) = Tr(ρÔ), for a density matrix ρ = Σi pi |ui〉〈ui| 
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Probability measure 
 
Suppose we are given an arbitrary but consistent description of 
probabilities for an orthoalgebra of projections and call it a 
“putative” state. Is there a representation of states that has 
room for every such putative state. Gleason’s famous theorem 
answers this question affirmatively: take a density operator. 
 
Gleason’s Theorem 
 

Let ℋ have dimension > 2. Then every countably additive 
probability measure on Π(ℋ) has the form μ(Ô) = Tr(ρÔ), for 
a density operator ρ on ℋ. 
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Example 
 
Consider the following projection operator (angel 
α polarizer):  

=αP̂  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⋅
⋅
ααα
ααα

2

2

sinsincos
sincoscos  

 
 Distribution induced by |↗〉 = 

2
1  ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
1
1 : 

μ↗ ( αP̂ ) = cos α ⋅ sin α + ½  = ½ (1+sin(2α)) 
 
 Distribut. induced by  {50% |↕〉, 50% |↔〉}: 
μ{½ ↕, ½↔} ( αP̂ ) = ½ 
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Correlations* 
 
             
 
 
μρ ( βα PP ˆˆ )  can be taken as describing the correlation between 
the two polarization filters in the directions α and β. It holds: 
 

μρ ( βα PP ˆˆ )  = ½ cos2(α−β), with ρ = ½ 1 
 

 

Proof 
μρ ( βα PP ˆˆ )  = Tr(ρ βα PP ˆˆ )  = 

½ Tr( ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⋅
⋅
ααα
ααα

2

2

sinsincos
sincoscos

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⋅
⋅
βββ

βββ
2

2

sinsincos
sincoscos )= 

½ (cos α cos β + sin α sin β)2 = cos2(α−β) 

α 
β 

* Kümmerer & Maassen, Elements of Quantum Probability 
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Bell’s (third) inequality 
 
Proposition 
For any three Boolean (0-1) random variables P1, P2, P3 
on a classical probability space (W, μ) the following inequality 
holds: 

μ(P1 =1, P3 =0) ≤ μ(P1 =1, P2 =0) + μ(P2 =1, P3 =0) 
 
Proof 

μ(P1 =1, P3 =0) = 
μ(P1 =1,  P2 = 0, P3 =0) + μ(P1 =1,  P2 =1, P3 =0) ≤ 

μ(P1 =1, P2 =0) + μ(P2 =1, P3 =0). 
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Does god play dice? 
 

Einstein in a letter to Niels Bohr: “I cannot believe that 
god plays dice with the cosmos.” 

 

Take three polarization filters (corresponding to three projectors 

321
ˆ,ˆ,ˆ
ααα PPP  in QM) and put them on the optical bench in pairs. 

Assume that there are three random variables Pi(w) that reflect the QM 
correlations, i.e. μ( Pi = 1, Pj = 1) = ½ cos2(αi−αj). Then 

 

μ(Pi =1, Pj =0) = μ( Pi =1) − μ(Pi =1, Pj =1) = 
½ −½ cos2(αi−αj) = ½ sin2(αi−αj). 

 

Then Bell’s third inequality reads 
 

½ sin2(α1−α3) ≤ ½ sin2(α1−α2) + ½ sin2(α2−α3). 
 

This is wrong for α1 = 0, α2 = π/6, α3 = π/3: 3/8 > 1/8 + 1/8 ! 
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Counterarguments  
 
 Is there really one photon state 

measured in all three cases? Could not 
filter i influence the photon’s reaction to  
filter j? 

  In fact, it seems quite obvious that it will. Are there 
possibilities to avoid this situation? 

 Calcium atoms excited by a laser emit pairs of photons. The 
two photons always have orthogonal polarization. 



 14 

An improved experiment 
 

 In an improved experiment, we should let the filters act on 
each of the photons without influence on each other. 

 
 
 
 

 
 

 
 
 

 

α β 

Ca 

|ψ〉 = 2
1 (|↔〉 ⊗ |↕〉 − |↕〉 ⊗ |↔〉)
= 2

1  (0, 1, −1, 0)  

Alice: observing 
photon 1 

Filters A(α1), A(α2) 

Bob: observing 
photon 2 

Filters B(β1), B(β2) 
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 Bell’s fourth inequality  
 

Proposition 
For any four Boolean (0-1) random variables A1, A2, B1, B2  
on a classical probability space (W, μ) the following inequality 
holds: 
 

μ(A1 = B1) ≤ μ(A1 = B2) + μ(A2 = B1) + μ(A2 = B2) 
 

Proof 
Write Cij for the random variable which is 1 if Ai = Bj and 0 otherwise. It is obvious 
then that μ(Ai = Bj) iff μ( Cij) = 1. 
It is simply to show now  that C11 ≤ C12 + C21 + C22. The contrary would mean that 
for some possible world w∈W, C11(w) = 1 and C12(w) = C21(w) = C22(w) = 0; i.e. 
A1(w) = B1(w) and A1(w) ≠ B2(w) ≠ A2(w) ≠ B1(w). This is not possible because 
there are an odd number of inequality signs here. From the inequality C11 ≤ C12 + 
C21 + C22  the conclusion is an immediate consequence. 



 16 

A violation of Bell’s fourth inequality  
 

 
QM predicts μ(Ai = Bj) = ½sin2(αi−βj) if we 
consider the pure state |ψ〉 given above. 
Hence, Bells fourth inequality reads  
 

sin2(α1−β1) ≤ sin2(α1−β2) + sin2(α2−β1) + sin2(α2−β2) 
 
It is clearly violated for the choices α1= 0, α2= π/3, β1 = π/2, 
and β2 = π/6,  in which case it reads  
 

1 ≤  ¼ +¼ +¼ 
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Explicit calculations  
 

 
μψ( )ˆ1̂)(1̂ˆ( βα BA ⊗⊗ )=μψ ( )ˆˆ( βα BA ⊗ )= 

〈ψ| ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⋅
⋅
ααα
ααα

2

2

sinsincos
sincoscos

⊗ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⋅
⋅
βββ

βββ
2

2

sinsincos
sincoscos |ψ〉 

 
 
= ½ (0, 1, −1, 0) 
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Some remarks  
 

 The state |ψ〉 = 2
1 (|↔〉 ⊗ |↕〉 − |↕〉 ⊗ |↔〉) cannot be written 

as the outer product |u〉 ⊗ |v〉 of two vectors of the 
corresponding subspaces (entanglement) 

 It is surprising that the correlation μψ )ˆˆ( βα BA ⊗  depends on 
the difference α−β of the angles only.  

 
 
 
 

 2
1 (|↔〉 ⊗ |↕〉 − |↕〉 ⊗ |↔〉) = 2

1 (|↗〉 ⊗ |↘〉 − |↘〉 ⊗ |↗〉) 

Same correlations Corr = ½ 

2
1 (|↔〉 ⊗ |↕〉 − |↕〉 ⊗ |↔〉) 
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Conclusions  
 
 Is there a representation of states that has room for every 

“putative state”, i.e. a consistent description of probabilities 
for an orthoalgebra of projections. Gleason’s famous 
theorem says yes: take the density matrix. 

 The violations of Bell’s inequalities demonstrate that the 
formalism of quantum theory does not admit of a certain 
sort of hidden variable interpretation. 

 Quantum entanglement is a quantum mechanical phenom-
enon in which the quantum states of two or more spatially 
separated objects can apparently have an instantaneous 
influence on one another. This effect is now known as 
"nonlocal behaviour". 
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5 Aspects of quantum computation 
 

 

Prof. Sham: Well, we factored number 15 into 3 times 5. It was a thorny 
problem, but, by Jove, we did it. We started building our NMR 
computer in 1997 with a 5-million-dollar grant from DARPA. So it took 
5 years, a few million dollars, and much hard work to build our room 
sized computer. But just think how powerful it is! And according to 
theory, NMR computers have tremendous growth potential. They can 
have as many as 10 qubits!  
Reporter: Could you please tell us something about your future plans?  
Prof. Sham: Well. I plan to continue publishing in Nature Magazine. 
Another exciting development is that I plan to add one more qubit to 
NMR computers in the next few years. We've won another 3-million-
dollar grant from DARPA to continue our work. Isn't our government 
just great! We can't wait to start factoring number 18. 
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Single Q-bit gates  
 
X-gate:              
 

 
Z-gate:   
 
 
Hadamard   
Gate   
    
 

All these gates realize unitary transformations. 
Note that )ˆˆ(ˆ

2
1 ZXH +=  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

01
10

X̂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
10

01
Ẑ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
11

11ˆ
2

1H

leaves |↕〉 unchanged, 
turns |↔〉  into  –|↔〉 

turns |↕〉 into  |↗〉 and 

turns |↔〉 into |↘〉    

transforms  |↕〉 in |↔〉 and |↔〉 in |↕〉 
Negation: take |↕〉 as 0 and |↔〉 as 1 
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Controlled NOT gate  
 
 
 
 
 
 
If control is |↕〉 target left alone |↕↕〉 in |↕↕〉 or |↕↔〉 in |↕↔〉; 
else control is ↔target Q-bit is flipped |↔↕〉 in  |↔↔〉  
or |↔↔〉 in |↔↕〉. 
 

Any multiple Q-bit logic gate may be composed from CNOT 
and single Q-bit Gates 

0 0
0 0

0 0
0

0 1
1 0

0

0

1
0 1

CNU

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

A

B

A

B A⊕

A

B

A

B A⊕



 23 

    A two Q-bit quantum computer  
 

It is able to realize an arbitrary function f(x): {0,1} {0,1}  
1. Realize a unitary operator Uf such that Uf (|x,y〉)=|x,y⊕f(x)〉, 

where  ⊕ denotes addition modulo 2 

2. Consider the state |ψ〉 = 
2

1 ( |↕,↕〉+|↔,↕〉) and apply Uf  

3. Uf ( |ψ〉 ) = 
2

1 ( |↕,f(↕)〉+|↔,f(↔)〉). 
This is an entangled state that realizes (in parallel) the 
wanted computation. (Both values of the function show up 
in the final state solution) 

4. This can be generalized to functions on arbitrary number of 
bits using the Hadamard transform. 



 24 

Break through  
 
 Deutsch (1985) proposed the simplest example of a 

quantum algorithm which outperforms a classical algorithm. 

− The algorithm has given us the ability to determine a 
GLOBAL PROPERTY of f(x), namely f(0)⊕f(1) using 
only ONE evaluation of f(x) 

− A classical computer would require at least two 
evaluations!   

 Shor (1994) developed a quantum algorithm which can 
factorize efficiently. 

 Other quantum algorithms concern search problems and the 
simulation of  quantum systems. 
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6 Applications in the macroworld 
 

 
Three conceptions of applying QM to the macroworld 
 

(A) Reductionist approach  
Understand phenomena such as complementarity, entanglement, 
consciousness etc. always as manifestation of QM micro-laws 

(B) Quantum Computation 
Engineering approach of friezing short-living quantum states 

(C)  Systemic Approach 
Some structures of the micro world that are investigated by QM 
appear in non-physical domains 
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 Representatives of the systemic approach  
 

Diederik Aerts, Liane Gabora.  
“While some of the properties of quantum mechanics are essential-
ly linked to the nature of the microworld, others are connected to 
fundamental structures of the world at large and could therefore in 
principle also appear in other domains than the micro-world.” 

Harald Atmanspacher, Hans Primas, Peter beim Graben. 
“A generalized version of the formal scheme of ordinary quantum 
theory, in which particular features of ordinary quantum theory 
are not contained, should be used in some non-physical contexts.” 

Andrei Khrennikov 
“According to our interference viewpoint to quantumness human 
being is quantum − but not because it is composed of microscopic 
quantum systems.” 
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Potential applications  
 

 Puzzles of bounded rationality: interference effects 

 Prototype semantics and conceptual combination: 
entanglement  

 Theory of ambiguities: superposition vs. mixture 

 Nonclassical theory of questions and answers: un-
certainty principle (cf. the psychology of C.G. Jung) 

 Modelling connectionist  networks:  tensor product.  
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7 Two qubits for Jung’s theory of personality 
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C.G. Jung’s theory of personality in a nutshell  
 

 All people have broadly the same psychological 
equipment of apperception and responsiveness 

 Where people differ is the way that each of them 
typically makes use of the equipment  

 Main questions for the psychologist: 
– What are the essential components of the 

equipment? 
– How do people differ in using these 

components to form their habitual mode of 
adaptation to reality? 
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The four psychological attitudes  
 
• Two rational opposites: 

− Thinking / Feeling (evaluation) 
 

• Two irrrational opposites: 
− Sensation (perception) / iNtuition 

 

• Sensation tells us that 
something exist; Thinking tells 
you what it is; Feeling tells you 
whether it is agreeable or not; 
and iNtuition tells you whence it 
comes and where it is going (Man 
and his Symbols, 61) 
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The two attitudes  
 

 Extravert  primarily oriented to events in  
 the outer world 

 Introvert  primarily concerned with the  
 inner world 

 
 The functions are always realized under a certain 

attitude, either extroverted or introverted  
 

 We all have these four psychological functions (in 
one or the other attitude). We just have them in 
different proportions. 
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Some test questions  
 

(1) Extraverted/Introverted opposition 
a. At parties, do you stay late with increasing energy or leave early 

with decreased energy? (E/I) 
b. When the phone rings, do you hasten to get to it first, or do you 

hope someone else will answer? (E/I) 
 

(2) Feeling/Thinking opposition 
a. In making decisions do you feel more comfortable with feelings 

or standards? (F/T) 
b. In order to follow other people do you need trust, or do you need 

reason? (F/T) 
 

(3) Sensing/iNtuition opposition 
a. Which seems the greater error: to be too passionate or to be too 

objective? (S/N) 
b. Facts speak for themselves or illustrate principles? (S/N)  
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C.G. Jung’s eight basis types  
 
E/I Feeling type 1 & 8  
E/I  iNtuition type 2 & 3 
E/I Thinking type 4 & 5 
E/I Sensing type 6 & 7 
 
These eight basic types 
discussed by Jung can be 
further refined into 16 
psychological types depending on what is considered as 
the secondary function (E/I 1-8) 
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Two Restrictions  
 
Assume that the relevant attitude-function pairs are 
linearly ordered. Then the following restrictions apply: 
 
 If the superior function is rational/irrational, then the 

secondary function must be irrational/rational. This 
alternation of rational and irrational function is 
continued along the ranking hierarchy.  

 
 Opponent (or dual) functions (i.e. T/F and N/S) have 

different attitudes (otherwise, they could not 
‘coexist’)  
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Socionics & MBTI: 16 Types  
 
16 psychological types  
The first two dominant 
psychological functions 
are given with the 
corresponding attitude 
(extraverted / intro-
verted). Further, the 
closest pendant in the 
MBTI is specified. E.g.  
 
C.G. Jung    1IN 2IT  
S. Holmes   1ET 2ES 
Leo Tolstoi  1EN 2EF 
G.I Cäsar  1ES 2EF    Napoleon 1ES 2EF 

Extravert Introvert 
1 1EF 2EN ENFJ 1IF 2IN INFP 1 
2 1EN 2EF ENFP 1IN 2IF INFJ 2 
3 1EN 2ET ENTP 1IN 2IT INTJ 3 
4 1ET 2EN ENTJ 1IT 2IN INTP 4 
5 1ET 2ES ESTJ 1IT 2IS ISTP 5 
6 1ES 2ET ESTP 1IS 2IT ISTJ 6 
7 1ES 2EF ESFP 1IS 2IF ISFJ 7 
8 1EF 2ES ESFJ 1IF 2IS ISFP 8 
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Opinion forming  
 
Q1 : Are you in favour of the use of nuclear energy? 
Q2 : Do you think it would be a good idea to legalize soft-
drugs? 
Q3 : Do you think capitalism is better than social-democracy? 
 
Interestingly, in such situations most people don’t have 
a predetermined opinion. Instead, the opinion is formed 
to a large extend during the process of questioning in a 
context-dependent way. That means, opinions formed 
by earlier questions can influence the actual opinion 
construction.  
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Observables for T, F, S, and N 
 
|ψ〉 = cos(θ/2) |0〉 + sin(θ/2) |1〉  (Zero phase shift Δ) 

 
 

 
 

 
 
 
 

 

 T = Ẑ , F = Ẑ− , S = X̂ , N = X̂−  
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 The opponent observables  
 
Expectation values for the 
opponent observables  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
10

01
Ẑ  and ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛−
=−

10
01

Ẑ  

in case of a qubit state with 
zero phase shift Δ including  
an indication of the 
corresponding standard 
derivations. 
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Complementary observables  
 
Expectation values for the 
complementary observables  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
10

01
Ẑ  and ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

01
10

X̂  

in case of a qubit state with 
zero phase shift Δ including  
an indication of the 
corresponding standard 
derivations. 
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The 8 types  
 

 
 
 

 

 
 
 
 
 
 
 

The 8 types as resulting from different proportions of the 
expectation values for N, T, S, and F. 

1.  F>N>S>T 
2.  N>F>T>S 
3.  N>T>F>S 
4.  T>N>S>F 
5.  T>S>N>F 
6.  S>T>F>N  
7.  S>F>T>N 
8.  F>S>N>T 
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Entanglement  
 
 Opponent (or dual) psychological functions (i.e. T/F 

and N/S) are realized with contrasting attitudes.  
 In the present formal theory, this idea suggests that 

the attitudes are entangled with the psychological 
functions 

 |Ψ〉 = |α〉⊗|ψ〉 − |α〉⊥⊗|ψ〉⊥    
Here the first qubit stands for the E/I dimension and 
the second for the psychological functions 

 CΨ (E,T)+CΨ (M,T)+CΨ (E,S)−CΨ (M,S) = 2 2  > 2 
(Bell violation!) M = interMediate (between E and I).
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Calculating the expected answers  

 
 |Ψ〉 = |0〉⊗|ψ〉 − |1〉⊗|ψ〉⊥ (|0〉 stands for E/I) 

 

 〈T / E = 1〉ψ =  cos(θ)  〈F / I = 1〉ψ =  cos(θ)  
 〈S / E = 1〉ψ  =  sin(θ)  〈N / I = 1〉ψ   =  sin(θ) 
 〈N / E = 1〉ψ =  −sin(θ) 〈S / I = 1〉ψ  =  −sin(θ) 
 〈F / E = 1〉ψ  =  −cos(θ) 〈T / I  = 1〉ψ     =  −cos(θ) 
 

 Consider region 5 as example, i.e. take 0 < θ < π/4: 
then we get the ranking 1T 2S 3N 4F for the 
extraverted attitude, and for the inverted attitude we 
get the ranking 1F 2N 3S 4T. 
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Fitting personality types  
 
Subjects have to answer the questions conforming to E, I, T, F, 
ET, IT, … Parameter fitting based on maximum likelihood.  
 
Two parameter model: include θ and ρ (relative strength of 
the  two parts of the entangled state |Ψ〉.  
 

So far we have assumed ρ = 1 , i.e. both parts are equally strong 
(reflecting the case of an “ideal” personality integrating its own shadow 
– i.e., it is symmetric under the X-gate operation). According to Jung’s 
idea of type elaboration, the process starts without entanglement (ρ = 0) 
and during the process the parameter ρ is slowly increased up to ρ = 1.  
 
Three parameter model: add phase angle Δ.  
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Conclusions  
 
 Quantum theory, as a mathematical construction, provides a 

natural framework for giving a sound foundation of C.G. 
Jung's theory of personality.  

 It is the abstracted formalism which is ‘borrowed’ from 
quantum theory, not in any way its microphysical ontology 
of particles and fields. 

 Notions from quantum physics fit better with the 
conceptual, algebraic and numerical requirements of the 
cognitive domain than the traditional modelling of concepts 
in terms of Boolean algebras and the classical probabilities 
based upon it. 

 For more applications see www.quantum-cognition.de  


