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1 Fuzzy Sets and Logic

Uncertainty and vagueness should be sharply distinguished. It is not certain what will
be the outcome of the next throw of the die I hold in my hand. There is nothing vague
about the outcome, however—it is one of the numbers {1,...,6}. On the other hand,
in real-life applications of Al such as medicine, outcomes are not always sharply de-
fined. For instance, in the expertsystem MUNIN, which assists doctors in diagnosing
muscular diseases, there occurs a variable called ‘muscular loss’ whose values are {no,
moderate, severe, total, other}. Clearly ‘moderate’ or ‘severe’ are not sharply delin-
eated concepts; they are instances of vagueness. Often a single piece of knowledge
about a domain abounds with expressions both for uncertainty and for vagueness.
MUNIN provides one example; here is another, from a textbook on cancer. Vague
expressions are given in bold type, expressions for (un)certainty in italics.

Chronic cystic disease is often confused with carcinoma of the breast.
It usually occurs in parous women with small breasts. It is present most
commonly in the upper outer quadrant but may occur in other parts
and eventually involve the entire breast. It is often painful, particularly
in the premenstrual period, and accompanying menstrual disturbances
are common. Nipple discharge, usually servous, occurs in approxzimately
15% of the cases, but there are no changes in the nipple itself. The
lesion is diffuse without sharp demarcation and without fixation to
the overlying skin.. Multiple cysts are firm, round and fluctuant and
may transilluminate if they contain a clear fluid. A large cyst in an area
of chronic cystic disease feels like a tumor, but is usually smoother
and well-delimited. The axillary lymph nodes are usually not enlarged.
Chronic cystic disease infrequently shows large bluish cysts. More often,



the cysts are multiple and small. (J.A. del Regato, Diagnosis, treatment
and prognosis, in: L.V. Ackerman (ed.) Cancer (1970))

Vagueness and its paradoxes have been discussed since antiquity. A famous example
is the Sorites paradox which runs as follows. A man with a thick head of hair is not
bald. If he looses one hair, he is not bald. If he looses another hair, he is still not
bald. Etc. But then we seem forced to say that he is not bald even when he has lost
all his hair.

A possible solution is that baldness is a matter of degree, not an all-or-none matter,
and that pulling out one hair ever so slightly increases the degree of baldness. This
idea is formalised by fuzzy logic, a particular brand of many-valued logic. The status
of fuzzy logic is controversial. Allegedly, some modern devices such as autofocus
cameras, rice cookers or washing machines owe their superior functioning to what is
called ‘fuzzy control’, an implementation of fuzzy logic, and this has been heralded as
the well-deserved success of a new way of thinking, soft computing. Others claim that
there is no systematic reason for this success, and that it is mostly a matter of clever
engineering. We shall now introduce fuzzy logic, together with some applications in
fuzzy control and robotics, which will then give us a good starting point for a discussion
of its merits and demerits.

2 Formal aspects of uncertainty and vagueness

Many-valued logic is a relative of first order logic obtained when the algebra of truth
values {0, 1} is replaced by another structure. Examples are the finite fields Z, (i.e the
set {0,...,p— 1} (where p is a prime number) together with the operations + and
- taken modulo p) or the field of real numbers IR. Some applications require finite
structures which are not fields. For instance in computability theory one sometimes
considers a three-valued logic with truth values {t, f,u} (for true, false, undefined)
which have the structure of a partial order determined by the relations f < u, u < t.

A striking formal difference between probability and many-valued logic is that
the latter is truth functional, whereas the former is not. E.g. in the absence of an
independence assumption there is no way to compute P(ANB) from P(A) and P(B),
whereas by definition the truth value of A A B can be computed from the truth values
of A and B. Two questions therefore immediately arise

1. is uncertainty truth functional?
2. is vagueness truth functional?

As regards question 1, a positive answer has been suggested by the proponents
of the certainty factors model embodied in the expertsystem MYCIN. However, the



justification given is mostly one of expediency: the assumption of truth functionality
drastically reduces both time and space complexity of an expertsystem. Now consider
the disadvantages of this assumption. Let Deg(p) denote the (or my) degree of uncer-
tainty of p, and suppose that Deg(—p) = Deg(p). If Deg is truth functional, there is a
fixed function F' such that Deg(p A p) = F(Deg(p), Deg(p)) = F(Deg(p), Deg(—p)) =
Deg(p A =p). It is hard to come up with a situation where this is plausible.

The last example is also relevant to question 2: can we imagine a degree of vague-
ness Deg which has the property that, if Deg(p) = Deg(—p), Deg(pAp) = Deg(pA-p)?
This does not seem implausible if Deg(p) = Deg(-p) = % More generally, meaning in
natural language to a large extent seems to behave compositionally, i.e. the meaning
of a complex expression can be taken to be a function of its constituents. Thus the
meaning of the complex vague expression ‘small and beautiful’ is a function of the
two vague expressions ‘small’ and ‘beautiful’; and then it is but one step to argue
that the degree of vagueness of ‘small and beautiful’ is some function of the degrees
of vagueness of ‘small” and of ‘beautiful’. Then four important questions remain:

1. How should vagueness of atomic predicates be represented mathematically?
2. How does vagueness of formulas combine under logical operations?

3. How can we determine degrees of vagueness empirically?

4. What can one do in practice with degrees of vagueness?

In the following we shall treat these questions in turn. We will consider both fuzzy
sets and fuzzy logic; we first comment on the relation between the two. For a good
reference on fuzzy logic, see Hajek [2].

Fuzzy propositional logic has the same language as ordinary classical propositional
logic, i.e. consisting of proposition letters p,q,r,...,po,... (representing statements
such as ‘Laura has high fever’) and the logical constants =, A,V, —, <. The semantics
of fuzzy propositional logic is rather different however; although it is usually taken
to be a boundary condition that for the truthvalues 0,1 the logical constants behave
classically. In classical propositional logic, —,« are assumed to be definable from
=, A, V; this is not necessarily assumed here. Even talking about the semantics of fuzzy
propositional logic is apt to be misleading; as we shall see there are many different
possible semantics.

Similarly, fuzzy predicate logic has the same syntax as classical predicate logic, but
differs in its semantics. Fortunately, in this case there appear to be no competing
truth definitions for 3 and V; the first is always defined by means of a supremum, the
second by means of an infimum.



Logic is about validity of arguments, and fuzzy logic differs from many-valued logic
in the peculiar type of inference rules it has proposed. We shall return to this matter
below.

As to fuzzy sets, these are generalisations of standard sets (for which membership
is a yes/no affair) to sets which allow degrees of membership. Operations on fuzzy
sets A, B include union (A U B), intersection (A N B), complement (A), but also for
example analogues of operations on relations such as relational composition and taking
the converse relation. Furthermore, an important concept here is that of linguistic
variable, a kind of fuzzy variable whose values are themselves fuzzy sets. For example,
‘age’ can be taken to be a linguistic variable when its values are of the form {very
young, young, middle-aged, old, very old}, instead of positive integers. This example
shows where the name ‘linguistic variable’ derives from: the values are taken to be
(the fuzzy sets denoted by) linguistic expressions. However, this is just accidental; the
important thing is that the values are fuzzy sets. Linguistic variables are the most

important ingredients of fuzzy control; they figure in control rules such as
IF pressure is high THEN opening valve is large,

where the linguistic variables involved are ‘pressure’ and ‘(the size of the) opening (of
the) valve’.

3 Fuzzy sets: mathematical representation

In standard set theory a sharp boundary exists between entities which belong to a
particular set and entities which do not. Therefore it is not obvious how one should
represent in standard set theory for example the set high-fever of patients with a
high fever. The point at which one calls a fever ‘high’ depends on the context and is
usually not completely determined. Each choice for a particular representation within
standard set theory of high-fever, say for example {x : Patient(z) A Temp(z) > 38.5},
is somewhat arbitrary and does no justice to the fact that a patient with a temperature
of 40.5 degrees could be said to belong to high-fever with a higher degree than a patient
with a fever of 38.6. In short, the extension of high-fever is vague. In the mid-sixties
Lotfi Zadeh developed fuzzy set theory especially for representing sets with a vague
extension. The following definition gives one particular mathematical representation;
for motivation, recall that a standard set A may be represented as a characteristic
function x4 : V. — {0,1} (where V' is the ‘universe of all sets’) such that xa(z) =
liff x € A.

Definition 3.1 Let V' be the universe, i.e., the (standard) set of the entities which
are considered. A fuzzy set A is represented by a function py : V. — [0,1]. p4 is



called the membership function, or compatibility function, of A and pa(x) is called
the grade of membership of z w.r.t. A. pa(x) can be considered to be a measure of the
certainty with which one can say that z is an element of A. pa(z) is also called the
degree of truth of the proposition that x is an element of A. The set {x : pa(z) > 0}
is called the support of A. If the range of uy is {0,1}, then A is called a crisp set.

Example 3.1 Let small be the set small positive integers. Then one might define

Homallll) = 1 Bgmati(2) = 1, bgmani(3) = 0.9, pgpan(4) = 0.9, pgpqn(5) = 0.8,
etc.

As noted in section 2, membership degrees do not have to be taken from [0,1]; it is
sufficient that they form a particular kind of algebraic structure. [0, 1] is the most
popular concrete set of membership grades, though. In order to define a membership
function p it is often sufficient to specify a number of parameters and a general type
to which p belongs:

Example 3.2 The function M high-fever might be defined as follows.
Rhigh-fever(®) = L(2;38.5,41), where

0 ifx<a
L(zya,c) =4 =% ifalz<c
1 ifx>c

Example 3.3 An alternative definition Ofluhz'gh-fever is the following. “hz’gh-fever(w) =
S(x;38.5,39.75,41), where

0 ife<a
2
2[1’_“] ifa<z<b

c—a

S(z;a,b,c)= 9
1-2]=2]" ifb<a<e

c—a

1 ifx>c

The parameter b in S(z;a,b,c) is chosen equal to “"z'c and is in fact superfluous.

Both L and S have the property that they take a value of 0.5 in “"Q'C, “half way™’
from a to ¢. In addition, S is continuously differentiable, which according to Zadeh
makes S the most appropriate membership function for increasing notions; like ‘high’,
‘large’, ‘old’, etc. Other important categories are the decreasing notions (‘low’, ‘small’,
‘voung’, etc.) and the approximating notions (‘about 100 meters’, ‘circa 30 years’,
‘near Utrecht’, etc.). It is not hard to guess which function is considered to be the




most appropriate for decreasing notions. Approximating notions are represented by
the following function:

oo ) Sb—ab—5.0) e <b
ﬂ(wvaab)—{ 1—S(2;0,0+ 5.a+0b) ife>D

Although “neat” function like 5 or m are convenient representations of membership
functions, it is by no means required that a fuzzy set is represented by such a “neat”
membership function. In fact, there seems to be scant motivation for any particular
type of membership function.

The meaning of high-fever as a fuzzy subset of for example [35,45] is given by the
union of all expressions “high—fever(x)/gvv where 2 € [35,45] and where “high—fever(x)/x
means that the membership grade of z w.r.t. high-fever equals “high—fever(x)' This
union is sometimes written in the following form:

45
high-fever = . “high—fever(x)/x

N.B. The integral sign is just a notation for the union! If the support of a set A is
finite, then the meaning of A can be given by means of an explicit enumeration of
pa(z)/x for every x in the support of A, and instead of the integral sign, it is then
customary to use ‘4.’

3.1 Linguistic variables

Now that we have fuzzy sets, we may also construct functions which have fuzzy sets as
values (even when their arguments are crisp). Above we have already seen examples of
such functions, for instance the function age which assigns to each integer n, 0 < n <
120, a value in the set {very-young, young, young-adult, middle-aged, old, very-old}.
Each of these labels represents a fuzzy subset of the interval [0,120].

Definition 3.2 A linguistic variable is a function whose domain is a crisp set, and
whose values are fuzzy sets.

The name derives from the circumstance that the values can often be labelled by
natural language expressions, but this feature is not essential. This notion of function
was introduced to formalise a type of expression often used in fuzzy reasoning, such as
‘the temperature is high’ or ‘muscle loss is moderate’; one then writes ‘X is A’, where
X is the relevant linguistic variable, and A a fuzzy subset.



4 Where do the numbers come from?

So far our investigation has been mostly formal: we have defined membership functions
and have given some examples, but we haven’t said how membership functions should
be determined in practice. Even when one chooses the standard membership functions
provided by examples 3.2 and 3.3, then one still has to determine the values of the
parameters. One might even plausibly argue that fuzzy logic tries to make a vague
concept like ‘high fever’ too precise by insisting on a numerical representation.

Let us first discuss the relatively simple case of assigning generalised truth values
(i.e. not just 0 or 1) to a proposition. Here one should sharply distinguish between
degree of belief and degree of vagueness : one can have a degree of belief in the propo-
sition

the next toss with this coin will yield heads,
but strictly speaking not in the proposition
this patient has high fever.

This becomes clear when one considers for example the justification of degrees of
belief in terms of betting behaviour: one can only bet on the truth (or falsity) of a
proposition, whereas ‘this patient has high fever’ is not simply true or false. Only
when one has (artificially) assigned to ‘high fever’ a precise meaning, can a degree
of belief be associated with this proposition. This shows that it is far from easy
to combine uncertainty and vagueness in one formalism, even though, for example,
putting medical knowledge into an expertsystem seems to require this.

There have been attempts to reduce generalised truth values to probabilities in
the guise of frequencies by means of the following strategem: ask a large number of
people what they think of the truth value of ‘this patient has high fever’ and take the
average. However, even if this would be reasonable for atomic sentences, it cannot
work for compound sentences, since there is no reason to assume that frequencies
behave truthfunctionally.

In practice, for example in fuzzy control, the problem often takes a different form,
because there the values yielded by measurement devices are initially taken to be pre-
cise. As we shall see, the heart of a fuzzy controller is a system of IF...THEN rules,
whose antecedents and consequents contain linguistic variables. Somewhat surpris-
ingly, the practical problem then takes the following form. First, a measured value
has to be fuzzified, i.e. it is asssociated to a set of membership degrees of values of
a linguistic variable. For example, the precise value ‘45’ for age can be mapped on
the set {0,0,0.2,1,0.2,0}, corresponding to the fuzzy sets {very-young, young, young-
adult, middle-aged, old, very-old}. These membership degrees of the measured value
are then used for computing a set of membership degrees for some control variable



(such as the width of the opening of a valve, etc.), using rules for IF...THEN that will
be discussed later. Lastly, there follows the stage of defuzzyfication, converting the set
of membership degrees into a single value. Various formulas have been proposed for
this stage, but they are not our present concern. We thus see that in fuzzy control
the practical problem boils down to the following: find a principled way to define a
linguistic variable, i.e. to associate a membership function to a linguistic description.
It is not impossible that there is a mathematical answer to this question: fuzzy con-
trollers can be viewed as discretisations of differential equations, and it could be that
one can prove that some membership functions are better suited for this purpose than
others.

Expertsystems with fuzzy rules seem to be in a much worse position in this respect,
at least when the expert has to assign a degree of truth to statements such as ‘muscle
loss is severe’ on the basis of his/her own estimate, and not on the basis of, say,
electromyography findings. Note that the procedure in case of a fuzzy controller is
objective when the linguistic variables are given, i.e. there can be no dispute about
the proper fuzzification of a measured value; whereas experts may strongly disagree
about the degree of truth to be assigned to ‘muscle loss is severe’.

In robotics applications of fuzzy logic one often has to give, not a single degree of
truth, but an entire membership function. An example would be the function which,
for a certain physical object, assigns a degree of truth to a location, representing
the ‘possibility’ that the object is present at that location. This type of problem is
further studied in section 8. We shall see that one can say something about the shape
of those functions due to an unexpected connection with Dempster-Shafer theory;
however, one generally has much less information about these membership functions
than about probability distributions, where the underlying model often suggests a
distribution coming from a wellknown family, so that only a few parameters have to
be fixed.

In addition, it will become clear that there is a serious problem in interpreting pre-
dictions made on the basis of fuzzy logic. In section 8 we will be interested in self-
localisation for a mobile robot. If the self-localisation function assigns 0 to a particular
location, this should imply that the robot is not there; hence the meaning of this is
reasonably straightforward. However, the function may assign 1 to several locations,
not necessarily contiguous—unlike probabilities, these ‘possibilities’ need not sum to 1.
To say that all these locations are ‘fully possible’ does not seem to elucidate much.
The situation becomes worse when a certain location gets assigned a number « strictly
between 0 and 1; does this really mean more than saying that the location cannot be
discounted?

In sum, the justification of degrees of truth or degrees of membership is a weak
point of fuzzy logic. Unlike the situation in probability theory, there is no principled



way to obtain these; in fact, if one compares fuzzy logic to probability theory, than
what fuzzy logic at present lacks is a counterpart of statistics.

5 Combining fuzzy sets

5.1 Boolean operations
One could define union and intersection on fuzzy sets by positing:

Definition 5.1 Let A and B be fuzzy sets. The membership functions of ANB, AUB,
and A are defined as follows:

1. panp(z) = min(pa(z), pp(z))

2. paup(r) = max(pa(e), pp())

3. uyle) = 1— pualo)
A well-known objection against these rules is that AN A (in standard set theory equal
to () has only an empty support in case Va(pua(z) = 0V pa(z) = 1). Analogously,
paoz(x) = 1iff pa(z) = 0V pa(2) = 1. In addition, the choice for the minimum
function seems arbitrary. Some alternative rules have been proposed, but those of
definition 5.1 are the most popular. Notice that the rules do satisfy the minimal

requirement that standard set theory can be considered to be the special case of fuzzy
set theory in which all sets are crisp.

A principled approach to the choice of a semantics would run as follows cf. Paris [4],
chapter 5. One lays down general mathematical properties one would like a connective
or set theoretic operation to have, and one then determines which possibilities are
consistent with those properties. We give some examples of desirable properties. First
for negation (or complement): its interpretation, also denoted -, is now considered as
a function - :[0,1] — [0, 1]:

N1 -0=1, -1=0
N2 = is decreasing
N3 —-z =z for z € [0, 1]
Principles N1-3 fairly constrain —; one can show
Theorem 5.1 If - satisfies N1-3, then ([0, 1], -, <) is isomorphic to (]0,1],1 -z, <).

Let’s do the same trick for conjunction (or intersection); A should be a function [0, 1] X
[0,1] — [0,1] such that



ClLOAL=1A0=0,1A1=1
C2 A is continuous
C3 A is increasing (not necessarily strictly) in each coordinate

C4 A is associative.

A conjunction satisfying C1-4 is called a t-norm; one can show that any t-norm is also
commutative. In a sense there are just three t-norms, as the following theorem shows.

Theorem 5.2 Suppose A satisfies C1-4.
1. If for all x € [0,1], x A2 = z, then A = min.

2. If for some a,b,c such that 0 < a < ¢ <b<1: ¢cAc=a, then ([a,b],A,<) is
isomorphic to ([0,1], maz(0,2 4+ y —1),<)

3. Otherwise, ([a,b],A, <) is isomorphic to (]0, 1], x, <).

Observe that only the second possibility gives a ‘decent’ value to the set AN A. For
completeness’ sake we add the analogous conditions for disjunction (or union): V must
be a function [0, 1] x [0, 1] — [0, 1] satisfying

D10v0=0,1v0=1
D2 V is continuous
D3 V is increasing (not necessarily strictly) in each coordinate

D4 V is associative

Results on disjunction follow directly from results on conjunction: if v satisfies D14,
then A defined by 2 Ay = 1—((1—2)V(1—y)) satisfies C1-4. We leave the converse
to the reader. Applying theorem 5.2 then yeilds precisely three choices for V satisfying
D1-4, of which the maximum is one; these choices will be collectively called ¢-conorms.

5.1.1 Modifiers

Next to the usual Boolean operations on sets fuzzy set theory allows modifiers or
hedges:

Example 5.1 Let “hz’gh-fever(w) = 5(2;38.5,39.75,41). The meaning of very-high-
fever is built up from the meaning of high-fever and the meaning of very. Here very
can be considered to be a concentration modifier, which modifies M high-fever into

very-high-fever: for example as follows:

MUpigh-fever = (“hz'gh-fever(x))Q'

10



This particular choice, due to Zadeh, has some drawbacks: e.g. if “high—fever(x) =1,

then also “Very—high—fever(x) = 1, which is precisely what one does not want to have.

Example 5.2 An alternative interpretation of very is that of a translation modifier, such
as, Wyery-high-feverl®) = Hhigh-fever(® +0.5) = 5(2339,40.25,41.5).

5.2 Composition

Lastly, a very important way of combining fuzzy sets is relational composition. In
classical predicate logic, the composition S o R of relations S C X XY and RCY x Z
is defined by

(z,2) e SoRiff Iy e Y((z,y) € 5 & (y,2) € R).

If we interpret & by the minimum, and 3 by the supremum, we obtain the following
analogue for fuzzy sets.

Definition 5.2 Let AC X, BCXXxY,and CCY x Z.

1. Ao B, the composition of A and B (w.r.t. X ) is given by:

Haop(y) = sup(minpa(w), up({z, y))))

2. BoC (w.r.t Y)is given by:

pBoc((z,2)) = Egg(min(uB(@a Y 1e((y,2))))

Obviously this definition has variants in terms of other t-norms, but we can safely
leave this to the reader.

6 Fuzzy Logic

We now consider this material from the standpoint of fuzzy logic: i.e. we have to give
an interpretation of the connectives, and a definition of valid consequence.

Definition 6.1 Let £ be a propositional language. A (real) valuation is a function v
which to each formula assigns a real number from the interval [0, 1].

Since it is a distinguishing feature of fuzzy logic that it is truth functional, a valuation
is completely determined if we know v(p) for proposition letters p and in addition how
v interacts with the connectives. We have seen above that, given N3, there is little
choice for the interpretation of —: v(—p) must equal 1 — v(p). The interpretation of A

11



should be given by a t-norm, and that of V by a t-conorm; in fuzzy logic one takes for
these minimum and maximum respectively. In classical propositional logic, implication
can be defined in terms of negation and disjunction; the reader may wish to check that
the analogous definition in fuzzy logic would be unreasonable. One therefore needs a
separate definition, for which fuzzy logic takes the so-called Lukasiewicz implication.!
We therefore obtain:

Definition 6.2 Fuzzy propositional logic has the syntax of classical propositional logic,
and semantics given by real valuations v satisfying

v(—A) = 1-v(A)

v(AANB) = min(v(A),v(B))

v(AV B) = max(v(A),v(B))
v(A— B) = min(l,1—v(A4)+v(B))

Definition 6.3 Fuzzy predicate logic has the syntax of classical predicate logic, and
semantics given by first order models M and real valuations v such that v satisfies the
above rules for the propositional connectives and in addition (where d is a sequence of
elements from M)

v(3rp(a).d) = sup{v(p(a,d)|ae M},
d) inf{v(p(a,d) | a € M}

The next item on the agenda is the definition of valid consequence in fuzzy (proposi-
tional or predicate) logic, ¢1,...,¢, Er .

Definition 6.4 We say that ¢ is a valid fuzzy consequence of pl, ..., ¢n, ©1,..., 00 EF
W, if for all first order models M, all valuations v: v(piA, ..., Ap,) < ().

One now could go on to ask questions about complete axiomatisations of fuzzy logic
and its variants. However, this is a surprisingly difficult topic, and we prefer to let the
matter rest. Instead, we shall add a few remarks on a special type of inference rule
first proposed by Zadeh, which is of some importance in fuzzy control.

When describing a system in fuzzy terms, the basic building blocks are so-called
fuzzy implications, that is, statements of the form ‘IF X is A, THEN Y is B’, where
the X,Y are linguistic variables, and A, B are fuzzy sets. The semantics of such a
statement should be understood as follows. Since X is a linguistic variable, its domain
Dx is a crisp set, and its values are fuzzy sets; likewise for Y. The idea is now

1Exercise 10.4 asks you to examine whether this choice is reasonable.

2Clearly V is defined as a generalised A. This raises the question whether there can be definitions
of V¥ corresponding to other ¢-norms, such as & -y. While in principle this can be done, in practice the
definition of the quantifiers is kept constant.

12



to evaluate the generalised truth value of ‘IF X is A, THEN Y is B’ for each pair
(z,y) € Dx X Dy; ‘IF X is A, THEN Y is B’ thus corresponds to a fuzzy relation.
However, we can only determine which fuzzy relation this will be if the meaning of
IF...THEN has been fixed. This is where the typical features of the fuzzy implication
arise. Omne obvious possibility for IF...THEN is implication in the sense of definition
6.2. This means that the value of the fuzzy relation corresponding to the IF...THEN
for arguments (z,y) € Dx X Dy can be computed from the values of p4(2z) and
pup(y). Interestingly, however, in applications one often needs a ‘fuzzier’ notion of
fuzzy implication, which is not truthfunctional.

If ‘IF X is A, THEN Y is B’ is interpreted truthfunctionally, then its truthvalue is less
than 1if pa(z) > pp(y). In practice, one often wants to use IF...THEN rules which
allow exceptions; but then IF...THEN can no longer be interpreted truthfunction-
ally. One can think of such rules as the analogues of probabilistic statements such as
P(Yis B|X is A) ~ 1. For the counterexamples we then have P(Y is not B, X is A) ~
0; we may loosely think of such an event as not occurring.

Fuzzy logic tries toincorporate this construction into its own framework by introducing
a relation R on Dyx X Dy which isolates the events which are considered possible.
IF...THEN is now interpreted by means of this relation, i.e. we get for (z,y) € Dx x Dy,

(IF X is A, THEN Y is B)(z,y) = A(z)A R(z,y) — B(y).

Given R, write (M, R) = (IF X is A, THEN Y is B) to mean that in M, for all
instantiations of z,y: v(A(2) A R(z,y)) < v(B(y)). Using the fact that Va(A(z) A
R(z,y) — B(y)) is equivalent to Jz(A(z) A R(z,y)) — B(y), we then have

Lemma 6.1 (M,R) = (IF X is A, THEN Y is B) if for all y € Dy,

pB(y) = sup min(pua(z), pr(z,y)).
r€Dx
The reader will recognise relational composition (cf. definition 5.2) in this definition.
We will restate the lemma just given in a form that will be useful later. In terms of
fuzzy predicate logic, the condition in the definition is equivalent to the truth of the
statement

Yy(3e(A(2) A R(z, ) — B(y).
Call this latter statement Comp(A,B,R), then we have

Theorem 6.1 Fuzzy predicate logic derives®

Comp(A,B,R) — (A(X)A R(X,Y) — B(Y)).

*When the correct implication has been chosen.

13



Informally, if Comp(A,B,R) is true, i.e. if up can be computed in a certain way from
pa and pg, then from ‘X is A” and (X,Y) is R’ we may infer ‘Y is B’; this is what
takes the place of modus ponens in fuzzy logic.

Here is an important special case, with IF...THEN taken to mean ordinary impli-
cation. Let A, A*, B, B* denote fuzzy sets, and define Compprp to mean Yy(B*(y) <
Ja(A*(2z) A (A(z) — B(y))). Then one can prove

Compyrp N A" (X)A (A(X) — B(Y))) — B*(Y).

Thus, if Comppsp has truth value 1, A* has truth value r and A(X) — B(Y') has truth
value s, then B*(Y') has truth value at least min(r, s). This inference rule is applicable
in situations where the observation (‘X is A*’) does not match the antecedent of the
IF...THEN rule; e.g. if the rule says something about ‘IF X is low, THEN ... , and we
know that X takes value very-low.

The important point to remember is that a statement of the form ‘IF X is A,
THEN Y is B’ has no unique semantics, but derives its meaning from a relation R.
In practical applications, both in expertsystems and in fuzzy control, one often has
the following situation: a system can be described at an intuitive level by a number
of IF...THEN rules between linguistic variables; from these rules one then tries to
determine an underlying relation R, which then represents the ‘dynamics’ or ‘causal
structure’ of the system.

As a preparation for the discussion of an application of fuzzy logic in robotics, we
now briefly study another interpretation of the membership function (cf. Paris [4],
chapter 5).

7 Possibility Theory

The membership degree of fuzzy set theory can also be interpreted as a degree of
possibility. For example, suppose patient P is known to have a high fever. In other
words, the temperature of P is in the support of the fuzzy set high-fever. Then the
degree of possibility of a particular x to be the temperature of P can be said to be
equal 1o fipie} foyer(?)-

The notions of probability and possibility are clearly different: the degree of pos-
sibility of 42 is for example equal to “high—fever(42) ~ 1, whereas the probability that
someone with high fever has a temperature of (exactly) 42 degrees is rather small.
Hence improbable events can very well be quite possible. Of course, impossible events
are improbable. Formally, possibility measures can be characterised as follows.
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Definition 7.1 Let Q be a sample space. A function 11 : 2% — [0,1] is called a
possibility measure iff it satisfies the following conditions.

) =0, Q) =1 (1)
For all families{ A;} C 2, H(U A;) =suplI(A)). (2)
i€l el

Notice that, in particular, II{ AU B) = max(1I(A),II(B)); but there is no such simple
relation for A N B. The dual of a possibility measure 11 is called a necessity measure

N: N(A)=1-1I(A).
For example, starting from a fuzzy membership function p : € — [0, 1], one can
define the measure II as follows: II(A) = sup,c4 p(z). If one assumes that at least
once p has the value 1, then the resulting measure is a possibility measure.
Possibility theory is formally related to (a very special case of) DS theory. Recall
that a mass function on a sample space € is a function m : 2% — [0, 1] such that
m(@) =0 and Y 4cq m(A) = 1. In the present context, an appealing interpretation
of mass functions arises when we assume given a space of sensors © together with a
mapping I' : @ — 2% such that T'(#) is the imprecise outcome, i.e. nonempty set of
outcomes, of sensor 8. If we also assume given a distribution of reliability weights over
O whose sum equals 1, then I' induces a mass function on 2%. Call a mass function
consonant if the elements of the core of m are nested, i.e. if m(A) > 0 and m(B) > 0,
then A C B or B C A. In terms of sensors, this means that the outcomes of any pair
of sensors with nonzero reliability are comparable. It turns out that consonant mass
functions are strongly related to possibility distributions. Recall that a plausibility
function Plis induced by a mass function m by means of the condition

PI(A) = > m(B).

BNnA#£D
We then have

Theorem 7.1 If the mass function m is consonant, then its plausibility function is a
possibility measure. Conversely, given a possibility function 1l one can find a unique
mass function m such that the plausibility function Pl induced by m equals 11.

Thus, if I is a possibility measure, we may interpret II(w) as the total reliability of
the sensors for which outcome w is possible.

A slightly different interpretation arises when we recall that a mass function is
determined by a family of probability distributions. We may then write the degree of
possibility of A,

II(A) = sup{P(A)| P € F a probability measure},

where F is the family of probability distributions determined by the mass function m,
which is in turn given by the theorem 7.1.
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8 Fuzzy logic in robotics

As an application of the preceding theoretical material, we illustrate how fuzzy logic
can be used for self-localisation of a mobile robot. Clearly, when planning its future
actions, a robot needs to know where it is at present. What’s more, it needs to know
this in order to interpret the data yielded by its sensors. In general it is not possible
for a robot to determine its position by keeping track of where it is going (so-called
‘dead-reckoning’); this is because there is too much noise in the effectors (such as
wheel slippage). Typically, therefore, interpreting sensor data proceeds by matching
perceptual clues with certain items on a stored map of the environment; but this can
succeed only when the robot knows its approximate location on that map.* Indeed,
perception and self-localisation mutually constrain each other in the following cycle

1. the sensors try to detect features in the environment; however, due to sensor noise
identification of features is not foolproof, and unique identification is usually
unattainable

2. the robot tries to match the (various possibilities for) features with items on the
map, and then computes a self-location (or set of self-locations) which would
explain the observed features

3. the more constrained self-localisation is used to obtain a better interpretation of
the next round of sensor-data.

We now present a simple algorithm for self-localisation based on fuzzy logic, which is
due to Saffiotti and Wesley [5]. Our presentation will differ slightly from the original
in its emphasis on logic; the algorithm becomes very perspicuous when one writes a
specification of what is needed in predicate logic.

Definition 8.1 A global location space is a vector space G of the form IRx IR x [0, 27],
where the third coordinate denotes a direction with respect to the z-axis (i.e. the first
coordinate); for example, the direction of motion of the robot.

An approximate map on G is a structure (M, Type, Pos), where M is a non-empty
set of names of objects; Type associates to each object an object type (e.g. door, wall,
corridor, ...), and Pos is a binary relation on M x G such that for each m € M,
g € G, the truth value of Pos(m,g) denotes the possibility of m being present at g.

*Here and in the following we assume a fairly traditional view of Al, which works with repre-
sentations. The opposed view, reactive robotics as pioneered by Brooks [1], holds that building
up a representation is unnecessary and that all one needs is frequent perceptual sampling of the
environment.

°If Pos(m, g) is supplied by the designer of the robot, it can be assumed to be crisp; the generality
of the definition is needed for the case where the robot has to build the map of the environment all
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Here and in the following, we may interpret ‘possibility’ in the sense given in the
previous section, i.e. as an upper bound of probabilities from a given family, as
in theorem 7.1. In particular possibility 0 will mean probability 0 for any of the
probability measures from the family. Thus, if the robot has possibility 0 to be at a
certain location, we may feel confident in asserting that it is not there.

Definition 8.2 The space of local locations is a subspace L of IR x IR x [0,27]. The
origin of L is taken to be on the robot, such that the robot moves in the positive
x-direction. Again, the third coordinate is added because it is sometimes useful to
represent an object, such as a door, by means of a point and an orientation 0 € [0, 27]
(with respect to the robot’s direction of motion).

The crisp current locational hypothesis is a vector h € G which represents the position
of the origin of L in G. Given such an h, each location in L can be mapped onto a
location in G by a coordinate transformation T(h,-): L — G:

hy Iy cos(hg) —sin(hg) 0 l; hy
T hy || &y = | sin(hg) cos(hg) O L | + | hy
g lg 0 0 1 lg hg

More generally, the current locational hypothesis is a unary predicate H on G such
that the truth value of H(g) represents the possibility that the origin of L is located at
g.

The robot has stored an approximate map on G, and on the basis of its sensor data
builds up a map of the environment in terms of coordinates from L. Due to sensor
noise, the locations of the perceived objects on the map L will be fuzzy, and it may
even be unclear to what type the perceived object belongs. Self-localisation consists in
matching L with GG, such that the expected local position of each object m, determined
by means of a self-localisation hypothesis H, is (very nearly) equal to the observed
local position. This motivates the following stipulations

Definition 8.3 Expected local position in I of m given H is the following binary
relation EXPg(m,l), defined by

EXPg(m,l) — 3dg(g € GNH(g)N Pos(m,T(g,l))).

Definition 8.4 Feat(p,t) is a binary predicate whose truth value measures the degree
of possibility that (observed) feature p is of type t. Perc(p,l) is a binary predicate the
truth value of which represents the degree of possibility that (observed) feature p is at
location | € .

by itself. However, in that case the form of the functions Pos(m, g) cannot be constrained a priori,
and this may lead to computational problems.
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Both sensing and the locational hypothesis yield approximate positions in L for an
object m. If p is the feature sensed, then p is similar to m to the degree that p is
of the type of m, and the degree that the expected position of m (given the current
locational hypothesis) and p overlap. Both these aspects are taken into account in the
definition of a similarity predicate:

Definition 8.5 The degree of similarity of an observed feature p and a map object
m, on the basis of a current locational hypothesis H is given by a binary predicate
Simpg (p, m) satisfying

Simp(p,m) < (€ L N EXPg(m,l) A Perc(p,l)) A Feal(p, Type(m)).

The next task is to build localisers, i.e. hypotheses about the robot’s (fuzzy) location
in G. We first define a ternary auxiliary predicate Loc(p,m,g), whose truth value
represents the degree of possibility that the robot is at ¢ € G, by measuring the
overlap of p and the position in L of m, given g. It seems reasonable to assume that,
the larger the locational similarity of m and p given g, the more plausible g is as a
location of the robot (in ).% This predicate does not depend on the current locational
hypothesis.

Definition 8.6
Loc(p,m,g) < 3l € L A Pos(m,T(g,1)) A Perc(p,l)).

We now want to update the current locational hypothesis H by means of the location
estimate just defined. H gave us the degree of similarity Simg(p, m) between m and p;
now if for instance this degree is small, then the locations g which would lead to large
overlap between m and p are not plausible as locations for the robot. Furthermore,
the observed p may be explained by several different m. We thus construct the binary
predicate Loc(p,g) by ‘averaging’ over m, taking into account that there may be no
m to which p is very similar; this is done by means of an implication with antecedent
dm(m € M A Simg(p, m)).

Definition 8.7
Loc(p,g) < [3m(m € M A Simg(p,m)) — Im(m € M A Loc(p, m, g) A Simg(p, m))].

Note that the effect of the implication is that if there is no m matching p, then Loc(p, ¢)
is vacuous in the sense that every location gets possibility 1.

The preceding definition of the updated H took into consideration only one observed
feature p. Now suppose the set of observed features at time t is P; if H = H;, then
Loc(p, ¢g) is implicitly relativised to ¢.

In probability theory this argument would be suspect; it smacks of the base rate fallacy, i.e.

assuming P(A | B) = P(B | A).
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Definition 8.8 Given the current locational hypothesis H = Hy, the updated hypoth-
esis Hy1q is obtained by

Hipi(g) =\ Loc(p,g).
pEP;

If additional information I(g) is available, for instance information obtained by dead-
reckoning, then the previous definition can be modified by adding a ...\ I(g) clause.

What we have done so far is to give the specification of the self-localisation problem
in terms of predicate logic. Although we indicated informally what the formulas are
supposed to mean, what we did so far is pure syntax. On the semantic side, this
corresponds to a computation whose inputs are

1. functions ¢ — [0, 1] interpreting Pos(m, -)
2. functions L — [0, 1] interpreting Perc(p, -)
3. functions L — [0, 1] interpreting Feat(p,-)

and whose output is a function H : G — [0, 1]. To perform the actual computation,
we need to know the shapes of the input functions, and the computational meaning of
the logical constants used. For instance, as regards the latter, we have seen that there
are various possible interpretations for the logical constants in a many-valued setting.
The choice of fuzzy logic would be z Vy = min(z,y), 2t Ay = max(z,y), z —
y = min(l,1 -2+ y),3 = sup. The choices for input functions and interpretation
of logical constants should be determined by internal consistency and by what can be
termed performance criteria.

In the implementation used by Saffiotti and Wesley [5], the self-localisation function
is evaluated at each control cycle of the robot. This leads to the following desiderata
on performance:

1. the ‘informativeness’ of H should be nondecreasing with time,
2. if H assigns zero possibility to a location, then the robot should not be there,

3. the support of H should converge fairly rapidly to an area little larger than that
occupied by the robot.

None of these desiderata has been formulated very precisely, and this indeed seems
hardly possible. Part of the problem is that it is hard to say how to evaluate values
of H strictly between 0 and 1 in practice. If these values were probabilities, we would
be in a slightly better position, because in that case we could try to find some kind of
frequency model. However, possibilities are not probabilities, although a case can be
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made for stating that possibility 0 means probability 0. Thus perhaps condition 1 could
be glossed as saying that the support of H; should be nonincreasing (and preferably
decreasing) with time ¢. Fortunately, the algorithm is such that, on any interpretation
of the logical constants, the support of H; is nonincreasing with ¢.

However, this then leads to the problem of what the relevance of the precise shape of
the fuzzy sets is; after all, there are very many fuzzy sets with the same support. For
example, one may consider on the one hand, the familiar ‘hat’ shape, on the other
hand a function which assigns possibility 1 to each element of the support (i.e. an
ordinary set). In an intuitive sense, the latter function has less information than the
former, but it is not clear whether the difference matters in practice.

Looking at this problem from another angle: how are the shapes of the fuzzy sets
determined in this particular application? ‘Flakey’, the robot on which the algorithm
outlined above was implemented, only has sonar sensors, and this influences the reli-
ability of the data obtained; in general the uncertainty in distance is much less than
the uncertainty in angle. Take for instance the function Perc(p,!), which measures the
possibility that feature p is located at [. Consider first the case that pis a wall. As the
robot moves along the wall, it will get fairly accurate readings for the distance of the
wall, but the length component will be largely undetermined. Hence Perc(p,!) will be
such that it is precise with respect to the y and 8 coordinates, but vague with respect
to the 2 coordinate. One may then try to transfer the reliability of the sonars to their
readings, as indicated in section 7. It is clear that desideratum 2 must already be
satisfied at this stage, if it is to be satisfied later. To continue with the example, if p is
a door, the sonars can fairly reliably sense the position of the door in the wall, but they
may have extreme difficulty determining its orientation. This suggests that Perc(p,!)
has the following form: an almost precise pair (x,y) which fixes the point where the
door is attached to the wall, and a largely undetermined value for the orientation 8;
in an extreme case Perc(p,l) could be the product of a very narrow ‘hat’ for (z,y)
and the function # = 1. However, the sensor data will not determine the shape of the
fuzzy set uniquely; the situation is different from that in probability theory where one
often may determine the general shape of the probability distribution on theoretical
grounds (e.g. as being of normal or exponential type), so that only a few parameters
have to be determined empirically.

9 Fuzzy control

Autofocus cameras, washing machines, microwaves, but also older feats of engineering
such as steam engines, contain control loops in order to ensure stable behaviour of
some sort. For instance, in an autofocus camera, the controller first determines what
is to be figure (i.e. subject), and what ground, and then by means of a cyclic feedback
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process adjusts the lens so as to get the figure sharply in focus. In the case of a
steam engine driving a steam turbine which is desired to have constant a number of
revolutions, the pressure in the boiler must be adjusted continuously depending on
the deviation between desired and actual number of revolutions of the turbine.
Fuzzy logic has been applied in all these cases, and in this section we intend to discuss
some of the principles behind these applications. The general situation is as follows.
We have a system 9, yielding output z(t), where ¢ is the time variable. The output
signal is compared to the desired output w(?). If z(¢) differs significantly from w(?),
then a corrective signal y = y(a,w,t) is supplied to S with the purpose of bringing
z(t) more in line with w(t). The task is then to determine the most appropriate y.
This depends on the amount of deviation one is willing to tolerate, the speed with
which correction has to be effected, the cost of executing a corrective action, and, last
but not least, the desire to obtain a stable system.
Mathematically, the problem takes the following form: the system is governed by a
differential equation

W ey, w(0) = e 3)
where y is to be chosen so as to satisfy the aforementioned goals. E.g. if o(z — w) is
some way of measuring the deviation of z from w (say the quadratic difference), then
we are interested in a solution of 3 which minimises fOT o(x — w)dt. This is not an
easy problem”, and fuzzy logic has been applied here in part to ease the computational
difficulties: it is clear that one does not want to equip household appliances with
elaborate computing hardware.

As an example we shall treat the case of a steam engine driving a steam turbine,
following Mamdami and Assilian [3]. We concentrate on the control loop consisting of
the revolution counter on the turbine and the valve determining the amount of steam
let into the turbine.

Typically, a fuzzy controller consists of a number of IF...THEN rules, stated in terms
of several linguistic variables. The variables of interest in our application are

o V() the required change in the valve opening

e DR, the deviation in the number of revolutions

o (DR, the change in DR with respect to the last measurement
The IF...THEN rules are then all of the form

IF DR is A AND CDRis B, THEN V('is (|

Tt belongs to the calculus of variations; computational techniques to solve it are sometimes avail-
able in what is known as dynamic programming.
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Rule | DR CDR VC
1 LN - (LNV MN) | LP
2 MN LPv MPv SP| SP
3 SN LPvV MP SP
4 0~ LP SP
5 0~ v or | SPV SNV O 0

6 o LP SN
7 SP LPvV MP SN
8 MP LPv MPv SP | SN
9 Lp ~(LNV MN) | LN

where the A, B, C are fuzzy sets, often identified by means of linguistic descriptions.
For example, the descriptions could be LP (large-positive), MP (medium-positive), SP
(small-positive), O (zero), OF (second order positive difference from 0), O~ (second
order negative difference from 0), SN (small-negative), MN (medium-negative) and LN
(large-negative). Each of these descriptions is then associated to a fuzzy set over the
possible values of the valve-opening or the number of revolutions; we need not inquire
how this is done exactly. The IF...THEN rules can then be represented by means of a
table such as the following:

A few remarks on this fuzzy controller are in order. Firstly, the rules only have an
exact meaning when the meaning of IF...THEN has been fixed, i.e. the underlying
relation R. Mamdami and Assilian choose for this the relation

MAMD(z,y) = \/ Ai(x) A Bi(y),

where A; is the A of the values of DR and C'DR in the ¢th row, and B; is the value of
VC'in the ith row. The meaning of MAMD is that it singles out the pairs (2, y) which
are compatible according to the dynamics of the system. Its use in derivations is the
following. Given a unary predicate A*, define a unary B* from A* by forcing Comp
to be true, i.e. we put

Vy(Ja(A™(z) N MAMD(z,y)) — B*(y)).

Theorem 9.1 In fuzzy logic, the following formula is valid®

/\(IF X is A; THEN Yis B;) A\ Ai(X)| — (A"(X) — B*(Y)).

K3

®].e. when the correct implication is chosen!

22



That is, if the truthvalue of the antecedent (the part between [ ]) is 1, then the
truthvalue of A*(X)is less than or equal to that of B*(Y). The relation MAMD(z,y)
is thus necessary to allow the derivation of new IF...THEN rules, featuring predicates
which do not occur in the original rules. This is important considering the third point
below.

Secondly, on an intuitive level the rules are plausible, and could be written down with-
out much detailed knowledge of the process involved: if the target value is a constant,
the rules tell one what to do given information about the number of revolutions and
the first order derivative of the number of revolutions. We thus have a qualitative
analysis of equation 3 above. For instance the fourth rule says that if the number of
revolutions is only a little less than the desired value, and the number of revolutions
has been increasing rapidly, then one should effect a small change in the direction
opposite to that of the deviation (to prevent overshoot). The very unspecificity of this
controller might of course also be a drawback. This is related to the point that it is in
general not possible to prove that a system governed by a fuzzy controller is stable.
Thirdly, not all combinations of (fuzzy) values occur in the antecedent; for example
the situation where DR takes value LP and CDR takes value LN is not considered
explicitly. IF...THEN rules for this situation can be derived using the rule of inference
given by theorem 9.1.

Fourthly, it should be recalled that these rules come together with procedures for
fuzzification and defuzzification of measured values, in order to supply the link with
experience.

Fuzzification is fairly straightforward. One measures a precise outcome for a linguistic
variable X, which then determines a number for each fuzzy value A of X. Using
the IF...THEN rules, these numbers then determine degrees of membership for fuzzy
values B of a linguistic variable Y. These numbers have somehow to be combined to
yield a single number which can be fed into an effector; this is defuzzification. Various
strategies have been proposed, all of them apparently rather arbitrary, so we shall not
discuss them here.

10 Exercises

Exercise 10.1 Let v(A) and »(B) € {0,1}. Show that the truth values of A A B,
AV B, mA en A — B in fuzzy logic are those of classical two-valued proposition logic.

Exercise 10.2 Show that in fuzzy logic ~A Vv B and A — B are not equivalent.

Exercise 10.3 For each pair of t-norms, find a principle on A which is valid according
to one member of the pair, but not according to the other.
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Exercise 10.4 Although in many-valued logic — is not definable in terms of the other
connectives, it is related to them, in the following sense. Let < be the order in [0, 1],
and * any t-norm. Then (the interpretation of) the implication — should satisfy

forall z,y,z€[0,1] (zx2) < yiff z < = —y.

Why is this a necessary property for an implication? Using this property, compute for
each t-norm the corresponding implication.

Exercise 10.5 Can one find a consistent interpretation of the certainty factor for-
malism inside many-valued logic? If so give the interpretation; if not, state what goes
wrong and how one might remedy this.

Exercise 10.6 Verify that the following predicate-logical principles are valid for any
t-norm:

Y1 Wa(o(z) — o(s)) (s a term substitutable for « in )
31 () — Jag(x)) (s a term substitutable for  in ¢)
Y2 Wa(v — @) — (¢ — Yap) (2 not free in 1)

32 Va(g — ¥) — (Jag — 9) (= not free in 1)
V3 Va(g V) — (Yoo V ) (2 not free in 1),

Exercise 10.7 Assuming the above five principles, prove for the case that ¢ does not
contain z free

1. 32(¢ — @) — (Y — Jzp)
2. Ja(p — ) — (Vep — )

Are the converse implications derivable in standard predicate logic? Are they valid
when A is interpreted as product? Are they valid when A is interpreted as min? Are
they valid when the ¢-norm is instead taken to be z xy = max(0,z2+y —1)?

Exercise 10.8 Show that for a necessity measure N one has N(ANB) =min(N(A), N(B)).

Exercise 10.9 Show that if the capacity F is both a possibility measure and a prob-
ability measure, then F can only assign the values 0 and 1.

Exercise 10.10 Show that a consonant mass function induces a possibility function.

Exercise 10.11 Saffiotti and Wesley used fuzzy logic to interpret their formulas.
Discuss what would change if instead of interpreting A by min, one would use the
product for this purpose.
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