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0 Introduction 
 

 

 Agents continually obtain new information and then must 
update their beliefs to takes this new information into 
account. 

 

 How this should be done depends in part on how 
uncertainty is represented. Each of the methods of 
representing uncertainty has an associated method of 
updating 

 
By understanding the mechanism of updating we also get a 
better understanding of the different approaches to represent 
uncertainty. 
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1 Updating knowledge 
  

Informally, if an epistemic space (W, W0) is updated by some 
new information U (expressing that the actual world is in U), 
then we have to take the set of possible worlds to be W0 ∩ U. 
 

Example: Tossing a die; W= {w1,w2,w3,w4,w5,w6}. Assume the 
initial epistemic space is (W, W) and then the agent learns that 
the die always lands on an even number: U = {w2,w4,w6}. Then 
the system is updated to (W, W ∩ U). 
 

Definition 1: Let (W, W0) be an epistemic space, and U ⊆ W a 
proposition. Then the operation of updating the initial 
epistemic space by the new information U is as follows: 
 

(W, W0)|U = (W, W0 ∩ U) 
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Example 
 

Suppose that a world describes which of 100 people have a 
certain disease. A world u can be taken as a tuple of hundred 
0s or 1s where the ith component is 1 iff individual i has the 
disease. W = {0,1}100 
 
 Individual i has the disease: {u: u[i]=1} 
 At least seven people have it: {u: |{i: u[i]=1}| ≥ 7} 
 More than 50% have it: {u: |{i: u[i]=1}| > 50} 

 
 
(W, W)|U1… Un = (W, W ∩ U1 ∩ … ∩ Un) 

Problems with this form of updating?  
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Four problems 
 
 Explicit representation of 2100 possible worlds is beyond the 

capacity of any computational system. Implicit 
representation required 

 

 Memory management (what about forgetting?) 
 

 Inconsistent knowledge  belief revision  
 

 Only one agent is involved. Normally, there are more than 
one agent; some of them have the relevant information, 
others not; some know who has the information, others not; 
…   multi agent systems 
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2 Probabilistic conditioning 
 

 

Suppose that an agent’s uncertainty is represented by a 
probability measure µ on W and he the agent observes or 
learns that U. How should µ be updated to a new probability 
measure µ’ = µ|U? 
 

(I) µ’(¬U) = 0 
(II) µ(V1)/µ(V2) = µ’(V1)/µ’(V2) [If all that the agent has learned is U 
then the relative likelihood of worlds in U should remain unchanged] 
 
Fact 1: If µ(U)>0  and µ’ = µ|U  is a probability measure on W 
satisfying (I) and (II) then µ’(V) = µ( V ∩ U)/µ(U). 
 

Proof: Halpern, p. 72 
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Definition and notation 
 

The unique function µ’(V) = (µ|U)(V) that satisfies the 
condition (I) and (II) is called conditional probability.  
Following traditional practice we write µ(V|U), and we have  

(III)    µ(V|U) = µ(V ∩ U)/µ(U)  
 

According to Halperns presentation this is not a definition but 
a consequence of the implicit definition given by (I) and (II). 
However, both formulations (I+II versus III) are equivalent. 
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Bayes’ rule 
 

Fact 3 (Bayes’ rule): If µ(U), µ(V) > 0, then 
 

µ(V|U) =  µ(U|V) µ(V)/µ(U) 
 
Proof: µ(U|V) µ(V)/µ(U) = µ(V∩U) µ(V)/µ(U) µ(V) = 
µ(V∩U)/µ(U). 
 
Consequence 
µ(V|U) =  µ(U|V) µ(V)/ (µ(U|V) µ(V) + µ(U|¬V) µ(¬V)) 
 
Proof: µ(U) = µ(U∩V) + µ(U∩¬V) =  
µ(U|V) µ(V) + µ(U|¬V) µ(¬V)) 
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Standard Example 
 

Suppose that Bob tests positive on a AIDS test that is known to 
be 99 % reliable. How likely is it that Bob has AIDS? 
 

Reliability of 99%: 99% of the subjects with AIDS tested 
positive and 99% of the subjects that did not have AIDS tested 
negative.  
  

µ(P|A) = 0.99 and µ(¬P|¬A) = 0.99 
 

To calculate µ(A|P) we need the prior µ(A). 
 

µ(A|P)  = µ(P|A) µ(A)/( µ(P|A) µ(A) + µ(P|¬A) µ(¬A)) 
  = 0.99 µ(A)/(0.01 + 0.98 µ(A)) 
  = 0.5  if  µ(A) = 0.01  

≈ 0.09 if µ(A) = 0.001  (≈ 0.98 if µ(A) = 1/3) 
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Example with a biased coin  
 

Suppose Alice has a coin and she knows that it has either bias 
2/3 (head is preferred) or bias 1/3 (tail preferred). Further, she 
considers it much more likely that the bias is 1/3 than 2/3. 
Thus, she assigns a probability 0.99 to bias 1/3 and 0.01 to bias 
2/3. Alice tosses the coin 25 times to learn more about its bias; 
she sees 19 heads and 6 tails. What is the result of updating her 
probabilities? 
 

W = {1/3, 2/3}×{h,t}25 

e.g. (1/3, hhhhhhhhhhhhhhhhhhhtttttt) 
or   (2/3, thttthhthhtthhhttttthhthh) 
 

Remark: the bias is taken here as a part of the possible world!  
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The calculation  
 

We have  
 µ(B1/3) = 0.99 and µ(B2/3) = 0.01.  
 µ( Hn|B1/3) = (1/3)n (2/3)25−n,  where Hn denotes a particular 

sequence of  tosses with n heads and 25−n tails.  
 

We have to calculate µ(B1/3|Hn), with n = 19 
 

µ(B1/3|H19) =  
µ( H19|B1/3) µ(B1/3) /(µ( H19|B1/3) µ(B1/3) +µ( H19|B2/3) µ(B2/3) = 
0.99 (1/3)19 (2/3)6 / (0.99 (1/3)19 (2/3)6 + 0.01 (2/3)19 (1/3)6) = 
99 / (99 + 213) ≈ 0.01 
Consequence: Although initially Alice gives B1/3 probability 
0.99 and B2/3 probability 0.01, after seeing the evidence of 19 
heads and 7 tails she gives B2/3 probability 0.99. 
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 3 Conditioning with sets of probabilities 
 

 

A biased coin: 
 If we know the prior α for the bias, then we should include 

the bias into the possible world: 
W = {(1/3, h), (1/3, t), (2/3, h), (2/3, t)} 

µ (1/3, h) = α⋅1/3, µ (2/3, h) = (1−α)⋅2/3, … 
 

 If we do not know the prior for the bias, then we should not 
include the bias into the possible world and use a set of 
probabilities instead: 

W = {h, t} 
µ 1/3 (h) = 1/3, µ 2/3 (h) = 2/3, … 

P = {µ2/3, µ1/3} 
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The definition  
 

Definition 2: Let P be a set of probability measures. Then the 
updating of P with an event (proposition) U is as follows: 
 

P|U =def {µ|U ∈ P, µ(U) > 0}, i.e. 
P(V|U) = def {µ(V|U), µ∈P, µ(U) > 0}  

 

Example: with two tosses of a biased coin: 
W = {hh, ht, th, tt} 
P = {µ1/3, µ2/3}, where µα(hh) = µα(H1) µα(H2) = α2, and   
µα(ht) = µα(H1) µα(T2) = α⋅(1−α) (independence)  
 

P|H1 (H2) = P(H2|H1) = {µ1/3(H2|H1), µ2/3(H2|H1)} = {1/3, 2/3} 
P|H1 (T2) =  P(T2|H1) = {µ1/3(T2|H1), µ2/3(T2|H1)} = {2/3, 1/3} 
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The three prisoner puzzle: classical treatment 
 

W = {(a,b), (a,c), (b,c), (c,b)} where (x,y) represents a  world 
where prisoner x is pardoned and the guard says that y will be 
executed. 
  

Principle of Indifference 
lives-a =   {(a,b), (a,c)}  1/3 
lives-b =   {(b,c)}   1/3 
lives-c =   {(c,b)}   1/3   
 

µ(says-b|lives-a) = δ, a fixed value in the interval [0, 1].  
 
Update the probability of lives-a after getting the information 
that b will be executed.  
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The calculation  
 

We have  
 µ(lives-x) = 1/3 for x = a, b, c. 
 µ(says-b|lives-a) =  δ 
 µ(says-b|lives-c) = 1 and µ(says-b|lives-b) = 0 

 

We have to calculate µ( lives-a|says-b) 
 

µ(lives-a|says-b) = µ(says-b|lives-a) µ( lives-a) / C 
C = µ(says-b|lives-a) µ(lives-a) + µ(says-b|lives-c) µ(lives-c) 
 

µ(lives-a|says-b) = 1/3 δ / (1/3 δ + 1/3) = δ/(δ+1) 
If δ = ½ , then µ( lives-a|says-b) = 1/3,  
If δ = 1 , then µ( lives-a|says-b) = ½ !  
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The three prisoner puzzle: sets of probabilities 
 
Set of probabilities: P = {µδ : δ∈ [0, 1]} 
 
Calculate P(lives-a|says-b) and show  
that the lower probability P*(lives-a|says-b) = 0   
and the upper probability P*(lives-a|says-b) = ½. 
 
You can use the result from the last slide in the form 
µδ(lives-a|says-b) = δ/(δ+1) 
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4 Conditioning inner and outer measures 
 

Given a probability space (W, ℱ, µ), we can extend µ by 
considering all algebras (W, 2W, µ’) such that (W, ℱ, µ) is a 
subalgebra of the classical algebra (W, 2W, µ’). Consequently, 
we can use the extension set Pµ (defined as set of all extensions 
of µ to the classical algebra) and we condition with respect to 
sets of probabilities:  
 
 For U,V⊆W, µ*(V|U) = (Pµ)*(V|U) = min{µ’(V|U): µ’∈Pµ} 
 For U,V⊆W, µ*(V|U) = (Pµ)*(V|U) = max{µ’(V|U): µ’∈Pµ} 
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Fact about conditioning inner and outer measure 
 

Fact 4: Let (W, ℱ, µ) be a finite probability space and suppose 
that µ*(U)>0.  Then: 
 
 µ*(V|U)=µ*(V∩U)/( µ*(V∩U)+µ*(¬V∩U)) if  µ*(¬V∩U)>0 

            =             1                                        if µ*(¬V∩U)=0 
 
 µ*(V|U)=µ*(V∩U)/( µ*(V∩U)+µ*(¬V∩U)) if  µ*(V∩U)>0 

            =             1                                        if  µ*(V∩U)=0 
 

 

Proof: Halpern p. 90! 
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 Three prisoner puzzle 
W = {(a,b), (a,c), (b,c), (c,b)}                   
lives-a :   µ{(a,b), (a,c)} =  1/3 
lives-b :   µ{(b,c)}      = 1/3 
lives-c :   µ{(c,b)} = 1/3   
says-b = {(a,b), (c,b)}  (µ not defined for it) 
 

Calculate: µ*( lives-a|says-b) and µ*(lives-a|says-b)! 
 

 µ*(lives-a∩says-b) = µ*{(a,b)} = 0 (since the only element 
with defined µ that is contained in {(a,b)} is the empty set! 
Therefore µ*( lives-a|says-b) = 0 

 µ*(lives-a∩says-b) = µ*{(a,b)} = 1/3 and µ*(¬lives-a ∩ 
says-b) = µ*(¬lives-a ∩ says-b) = µ{(c,b)}=1/3. 
Therefore   µ*(lives-a|says-b) = (1/3)/(1/3+1/3) = 1/2 
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5 Conditioning possibility measures 
 

 

There are two approaches in the literature for defining 
conditional possibility measures: 
 

Definition 3: 
Poss(V||U) = Poss(V∩U)/Poss(U)  (assuming  Poss(U) > 0) 
 

Definition 4: 
Poss(V|U)  = Poss(V∩U) if Poss(V∩U) < Poss(U) 

=          1         if Poss(V∩U) = Poss(U) 
 

It is not difficult to show that both Poss( ⋅ ||U) and Poss( ⋅ |U) 
are possibility measures. 
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 6 Conditioning ranking functions 
  

As we have seen, ranking functions are very similar in spirit to 
possibility measures. 
 

Definition 5: 
κ(V|U) =def  κ(V∩U) − κ(U) 
 
Notice that there is an obvious analogue of Bayes’ rule for 
ranking functions: 
 

κ(U|V) =  κ(V|U) + κ(U) − κ(V) 


